AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The changes in soil organic carbon stock and quality across a subalpine forest successional series

Fei Lia,b,cZhihui Wanga,b,cJianfeng Houa,b,cXuqing LidDan Wanga,b,cWanqin Yanga,b,c( )
Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
Linhai Station of Zhejiang Provincial Forest Ecological Research, Taizhou University, Taizhou 318000, China
Taizhou Key Laboratory of Mountain Ecological Restoration and Special Industry Cultivation, Taizhou University, Taizhou 318000, China
Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
Show Author Information

Abstract

Soil organic carbon (SOC) affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle. Yet, large uncertainty still existed regarding the changes in SOC stock and quality with forest succession. Here, the stock and quality of SOC at 1-m soil profile were investigated across a subalpine forest series, including shrub, deciduous broad-leaved forest, broadleaf-conifer mixed forest, middle-age coniferous forest and mature coniferous forest, which located at southeast of Tibetan Plateau. The results showed that SOC stock ranged from 9.8 to 29.9 ​kg·m−2, and exhibited a hump-shaped response pattern across the forest successional series. The highest and lowest SOC stock was observed in the mixed forest and shrub forest, respectively. The SOC stock had no significant relationships with soil temperature and litter stock, but was positively correlated with wood debris stock. Meanwhile, the average percentages of polysaccharides, lignins, aromatics and aliphatics based on FTIR spectroscopy were 79.89%, 0.94%, 18.87% and 0.29%, respectively. Furthermore, the percentage of polysaccharides exhibited an increasing pattern across the forest successional series except for the sudden decreasing in the mixed forest, while the proportions of lignins, aromatics and aliphatics exhibited a decreasing pattern across the forest successional series except for the sudden increasing in the mixed forest. Consequently, the humification indices (HIs) were highest in the mixed forest compared to the other four successional stages, which means that the SOC quality in mixed forest was worse than other successional stages. In addition, the SOC stock, recalcitrant fractions and HIs decreased with increasing soil depth, while the polysaccharides exhibited an increasing pattern. These findings demonstrate that the mixed forest had higher SOC stock and worse SOC quality than other successional stages. The high proportion of SOC stock (66% at depth of 20–100 ​cm) and better SOC quality (lower HIs) indicate that deep soil have tremendous potential to store SOC and needs more attention under global change.

References

 

Atiwesh, G., Parrish, C.C., Banoub, J., Le, T.A.T., 2022. Lignin degradation by microorganisms: a review. Biotechnol. Prog. 38 (2), e3226.

 

Bai, J.H., Yu, L., Du, S.D., Wei, Z.Q., Liu, Y.T., Zhang, L., Zhang, G.L., Wang, X., 2020. Effects of flooding frequencies on soil carbon and nitrogen stocks in river marginal wetlands in a ten-year period. J. Environ. Manag. 267, 110618.

 

Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z., Hatté, C., 2018. Atmosphere–soil carbon transfer as a function of soil depth. Nature 559 (7715), 599–602.

 

Bastin, J.F., Berrahmouni, N., Grainger, A., Maniatis, D., Mollicone, D., Moore, R., Patriarca, C., Picard, N., Sparrow, B., Abraham, E.M., Aloui, K., Atesoglu, A., Attorre, F., Bassüllü, C., Bey, A., Garzuglia, M., García-Montero, L.G., Groot, N., Guerin, G., Laestadius, L., Lowe, A.J., Mamane, B., Marchi, G., Patterson, P., Rezende, M., Ricci, S., Salcedo, I., Diaz, A.S.P., Stolle, F., Surappaeva, V., Castro, R., 2017. The extent of forest in dryland biomes. Science 356 (6338), 635–638.

 

Batterman, S.A., Hedin, L.O., van Breugel, M., Ransijn, J., Craven, D.J., Hall, J.S., 2013. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502 (7470), 224–227.

 

Berbeco, M.R., Melillo, J.M., Orians, C.M., 2012. Soil warming accelerates decomposition of fine woody debris. Plant Soil 356 (1–2), 405–417.

 

Bosatta, E., Ågren, G.I., 1999. Soil organic matter quality interpreted thermodynamically. Soil Biol. Biochem. 31 (13), 1889–1891.

 

Bradford, M.A., Wieder, W.R., Bonan, G.B., Fierer, N., Raymond, P.A., Crowther, T.W., 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6 (8), 751–758.

 

Broder, T., Blodau, C., Biester, H., Knorr, K.H., 2012. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9 (4), 1479–1491.

 

Bugg, T.D.H., Ahmad, M., Hardiman, E.M., Rahmanpour, R., 2011. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 28 (12), 1883–1896.

 

Carney, K.M., Hungate, B.A., Drake, B.G., Megonigal, J.P., 2007. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc. Natl. Acad. Sci. USA 104 (12), 4990–4995.

 

Chadburn, S.E., Krinner, G., Porada, P., Bartsch, A., Beer, C., Marchesini, L.B., Boike, J., Ekici, A., Elberling, B., Friborg, T., Hugelius, G., Johansson, M., Kuhry, P., Kutzbach, L., Langer, M., Lund, M., Parmentier, F.J.W., Peng, S.S., Van Huissteden, K., Wang, T., Westermann, S., Zhu, D., Burke, E.J., 2017. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences 14 (22), 5143–5169.

 

Chandel, A.K., Jiang, L.F., Luo, Y.Q., 2023. Microbial models for simulating soil carbon dynamics: a review. J. Geophys. Res. Biogeosci. 128 (8), e2023JG007436.

 

Chen, L., Liang, J., Qin, S., Liu, L., Fang, K., Xu, Y., Ding, J., Li, F., Luo, Y., Yang, Y., 2016. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat. Commun. 7 (1), 13046.

 

Chen, S.P., Wang, W.T., Xu, W.T., Wang, Y., Wan, H.W., Chen, D.M., Tang, Z.Y., Tang, X.L., Zhou, G.Y., Xie, Z.Q., Zhou, D.W., Shangguan, Z.P., Huang, J.H., He, J.S., Wang, Y.F., Sheng, J.D., Tang, L.S., Li, X.R., Dong, M., Wu, Y., Wang, Q.F., Wang, Z.H., Wu, J.G., Chapin, F.S., Bai, Y.F., 2018. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 115 (16), 4027–4032.

 

Cheshmberah, F., Fathizad, H., Parad, G.A., Shojaeifar, S., 2020. Comparison of RBF and MLP neural network performance and regression analysis to estimate carbon sequestration. Int. J. Environ. Sci. Technol. 17 (9), 3891–3900.

 

Crowther, T.W., Riggs, C., Lind, E.M., Borer, E.T., Seabloom, E.W., Hobbie, S.E., Wubs, J., Adler, P.B., Firn, J., Gherardi, L., 2019. Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecol. Lett. 22 (6), 936–945.

 

Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440 (7081), 165–173.

 

Deng, L., Wang, K.B., Chen, M.L., Shangguan, Z.P., Sweeney, S., 2013. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena 110, 1–7.

 

Ding, J., Li, F., Yang, G., Chen, L., Zhang, B., Liu, L., Fang, K., Qin, S., Chen, Y., Peng, Y., 2016. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Global Change Biol. 22 (8), 2688–2701.

 

Feng, X., Simpson, M.J., 2011. Molecular-level methods for monitoring soil organic matter responses to global climate change. J. Environ. Monit. 13 (5), 1246–1254.

 

Finegan, B., 1984. Forest succession. Nature 312 (5990), 109–114.

 

Freschet, G.T., Weedon, J.T., Aerts, R., van Hal, J.R., Cornelissen, J.H.C., 2012. Interspecific differences in wood decay rates: insights from a new short-term method to study long-term wood decomposition. J. Ecol. 100 (1), 161–170.

 

Frey, S.D., Lee, J., Melillo, J.M., Six, J., 2013. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3 (4), 395–398.

 

García-Palacios, P., Crowther, T.W., Dacal, M., Hartley, I.P., Reinsch, S., Rinna, R., Rousk, J., van den Hoogen, J., Ye, J.S., Bradford, M.A., 2021. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Environ. 2 (7), 507–517.

 

German, D.P., Weintraub, M.N., Grandy, A.S., Lauber, C.L., Rinkes, Z.L., Allison, S.D., 2012. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43 (7), 1387–1397.

 

Harmon, M.E., Fasth, B.G., Yatskov, M., Kastendick, D., Rock, J., Woodall, C.W., 2020. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Bal. Manag. 15, 1.

 

Harris, L.I., Olefeldt, D., Pelletier, N., Blodau, C., Knorr, K.H., Talbot, J., Heffernan, L., Merritt Turetsky, M., 2023. Permafrost thaw causes large carbon loss in boreal peatlands while changes to peat quality are limited. Global Change Biol. 29 (19), 5720–5735.

 

Henneron, L., Balesdent, J., Alvarez, G., Barré, P., Baudin, F., Basile-Doelsch, I., Cécillon, L., Fernandez-Martinez, A., Hatté, C., Fontaine, S., 2022. Bioenergetic control of soil carbon dynamics across depth. Nat. Commun. 13 (1), 7676.

 

Herencia, J.F., 2018. Soil quality indicators in response to long-term cover crop management in a Mediterranean organic olive system. Biol. Agric. Hortic. 34 (4), 211–231.

 

Hodgkins, S.B., Tfaily, M.M., McCalley, C.K., Logan, T.A., Crill, P.M., Saleska, S.R., Rich, V.I., Chanton, J.P., 2014. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc. Natl. Acad. Sci. USA 111 (16), 5819–5824.

 

IPCC, 2013. Climate Change 2013: the Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

 

Jin, H.J., Chang, X.L., Wang, S.L., 2007. Evolution of permafrost on the qinghai-Xizang (tibet) plateau since the end of the late pleistocene. J. Geophys. Res. Earth Surf. 112, F02S09.

 

Jing, X., Wang, Y.H., Chung, H.G., Mi, Z.R., Wang, S.P., Zeng, H., He, J.S., 2014. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry 117 (1), 39–54.

 

Jobbágy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10 (2), 423–436.

 

Kleine, M., Ghosh, S., Leitgeb, E., Berger, A., bin Ibrahim, H., Gschwantner, T., Ow, L.F., Michel, K., 2022. Variation in soil organic carbon stocks in Singapore with forest succession and land management. J. Trop. Ecol. 38 (5), 275–284.

 

Kopácek, J., Evans, C.D., Hejzlar, J., Kana, J., Porcal, P., Santrucková, H., 2018. Factors affecting the leaching of dissolved organic carbon after tree dieback in an unmanaged European mountain forest. Environ. Sci. Technol. 52 (11), 6291–6299.

 

Lankiewicz, T.S., Choudhary, H., Gao, Y., Amer, B., Lillington, S.P., Leggieri, P.A., Brown, J.L., Swift, C.L., Lipzen, A., Na, H.Y.S., Amirebrahimi, M., Theodorou, M.K., Baidoo, E.E.K., Barry, K., Grigoriev, I.V., Timokhin, V.I., Gladden, J., Singh, S., Mortimer, J.C., Ralph, J., Simmons, B.A., Singer, S.W., O'Malley, M.A., 2023. Lignin deconstruction by anaerobic fungi. Nat. Microbiol. 8 (4), 596–610.

 

Li, F., Peng, Y.F., Chen, L.Y., Yang, G.B., Abbott, B.W., Zhang, D.Y., Fang, K., Wang, G.Q., Wang, J., Yu, J.C., Liu, L., Zhang, Q.W., Chen, K.L., Mohammat, A., Yang, Y.H., 2020. Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem. Funct. Ecol. 34 (4), 911–922.

 

Li, J.Q., Pei, J.M., Fang, C.M., Li, B., Nie, M., 2023. Thermal adaptation of microbial respiration persists throughout long-term soil carbon decomposition. Ecol. Lett. 26 (10), 1803–1814.

 

Lindahl, B.D., Kyaschenko, J., Varenius, K., Clemmensen, K.E., Dahlberg, A., Karltun, E., Stendahl, J., 2021. A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecol. Lett. 24 (7), 1341–1351.

 

Liu, Q.Y., Xu, X.L., Wang, H.M., Blagodatskaya, E., Kuzyakov, Y., 2019. Dominant extracellular enzymes in priming of SOM decomposition depend on temperature. Geoderma 343, 187–195.

 

Liu, X.F., Lin, T.C., Yang, Z.J., Vadeboncoeur, M.A., Lin, C.F., Xiong, D.C., Lin, W.S., Chen, G.S., Xie, J.S., Li, Y.Q., Yang, Y.S., 2017. Increased litter in subtropical forests boosts soil respiration in natural forests but not plantations of Castanopsis carlesii. Plant Soil 418, 141–151.

 

Liu, Z., Deng, Z., Davis, S., Ciais, P., 2023. Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 4 (4), 205–206.

 

Lohbeck, M., Poorter, L., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J.A., Paz, H., Pérez-García, E.A., Romero-Pérez, I.E., Tauro, A., Bongers, F., 2013. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94 (6), 1211–1216.

 

Loisel, J., Walenta, J., 2022. Carbon parks could secure essential ecosystems for climate stabilization. Nat. Ecol. Evol. 6 (5), 486–488.

 

Luo, Y.X., Li, Y.X., Liu, S.W., Yu, P.J., 2022. Effects of vegetation succession on soil organic carbon fractions and stability in a karst valley area, Southwest China. Environ. Monit. Assess. 194 (8), 562.

 

Luo, Z.K., Eady, S., Sharma, B., Grant, T., Liu, D.L., Cowie, A., Farquharson, R., Simmons, A., Crawford, D., Searle, R., Moor, A., 2019. Mapping future soil carbon change and its uncertainty in croplands using simple surrogates of a complex farming system model. Geoderma 337, 311–321.

 

McGuire, A.D., Lawrence, D.M., Koven, C., Clein, J.S., Burke, E., Chen, G.S., Jafarov, E., MacDougall, A.H., Marchenko, S., Nicolsky, D., Peng, S.S., Rinke, A., Ciais, P., Gouttevin, I., Hayes, D.J., Ji, D.Y., Krinner, G., Moore, J.C., Romanovsky, V., Schaedel, C., Schäfer, K., Schuur, E.A.G., Zhuang, Q.L., 2018. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl. Acad. Sci. USA 115 (15), 3882–3887.

 

Melillo, J.M., Frey, S.D., DeAngelis, K.M., Werner, W.J., Bernard, M.J., Bowles, F.P., Pold, G., Knorr, M.A., Grandy, A.S., 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358 (6359), 101–104.

 

Mesgar, M., Voroney, R.P., Lo, A., Ardakani, O.H., Gillespie, A.W., 2024. Chemical composition and thermal stability of topsoil organic carbon: influence of cropping system and tillage practices. Eur. J. Soil Sci. 75 (1), e13459.

 

Müller-Using, S., Bartsch, N., 2009. Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany. Eur. J. For. Res. 128 (3), 287–296.

 

Myers-Smith, I.H., Thomas, H.J.D., Bjorkman, A.D., 2019. Plant traits inform predictions of tundra responses to global change. New Phytol. 221 (4), 1742–1748.

 

Nakhavali, M., Lauerwald, R., Regnier, P., Guenet, B., Chadburn, S., Friedlingstein, P., 2021. Leaching of dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance. Global Change Biol. 27 (5), 1083–1096.

 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333 (6045), 988–993.

 

Peng, Y.F., Li, F., Zhou, G.Y., Fang, K., Zhang, D.Y., Li, C.B., Yang, G.B.A., Wang, G.Q., Wang, J., Mohammat, A., Yang, Y.H., 2017. Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe. Environ. Res. Lett. 12 (2), 024018.

 

Ping, C.L., Michaelson, G.J., Kimble, J.M., Romanovsky, V.E., Shur, Y.L., Swanson, D.K., Walker, D.A., 2008. Cryogenesis and soil formation along a bioclimate gradient in Arctic North America. J. Geophys. Res. Biogeo. 113 (G3), 2008jg000744.

 

Poeplau, C., Kätterer, T., Leblans, N.I.W., Sigurdsson, B.D., 2017. Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland. Global Change Biol. 23 (3), 1316–1327.

 

Pries, C.E.H., van Logtestijn, R.S.P., Schuur, E.A.G., Natali, S.M., Cornelissen, J.H.C., Aerts, R., Dorrepaal, E., 2015. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biol. 21 (12), 4508–4519.

 

Qin, S.P., Yuan, H.J., Hu, C.S., Li, X.X., Wang, Y.Y., Zhang, Y.M., Dong, W.X., Clough, T., Luo, J.F., Zhou, S.G., 2023. Anthropogenic N input increases global warming potential by awakening the "sleeping" ancient C in deep critical zones. Sci. Adv. 9 (6), eadd0041.

 

Qin, S.Q., Chen, L.Y., Fang, K., Zhang, Q.W., Wang, J., Liu, F.T., Yu, J.C., Yang, Y.H., 2019. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Sci. Adv. 5 (7), eaau1218.

 
R Development Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
 

Ran, Y.G., Wu, S.J., Jiang, Y., Qu, J.F., Herath, I.K., Huang, P., 2023. The legacy effects of soil types on carbon content are erased by extreme flooding stress in a water-level drawdown zone. Catena 231, 107283.

 

Reich, P.B., 2014. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto. J. Ecol. 102 (2), 275–301.

 

Repo, M.E., Susiluoto, S., Lind, S.E., Jokinen, S., Elsakov, V., Biasi, C., Virtanen, T., Martikainen, P.J., 2009. Large N2O emissions from cryoturbated peat soil in tundra. Nat. Geosci. 2 (3), 189–192.

 

Rumpel, C., Kögel-Knabner, I., 2011. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143–158.

 

Satdichanh, M., Dossa, G.G.O., Yan, K., Tomlinson, K.W., Barton, K.E., Crow, S.E., Winowiecki, L., Vågen, T.G., Xu, J.C., Harrison, R.D., 2023. Drivers of soil organic carbon stock during tropical forest succession. J. Ecol. 111 (8), 1722–1734.

 

Satdichanh, M., Ma, H.X., Yan, K., Dossa, G.G.O., Winowiecki, L., Vågen, T.G., Gassner, A., Xu, J.C., Harrison, R.D., 2019. Phylogenetic diversity correlated with above-ground biomass production during forest succession: evidence from tropical forests in Southeast Asia. J. Ecol. 107 (3), 1419–1432.

 

Scharlemann, J.P., Tanner, E.V., Hiederer, R., Kapos, V., 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5 (1), 81–91.

 

Schiedung, M., Don, A., Beare, M.H., Abiven, S., 2023. Soil carbon losses due to priming moderated by adaptation and legacy effects. Nat. Geosci. 16, 909–914.

 

Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature 478 (7367), 49–56.

 

Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E., Schaefer, K., Turetsky, M.R., Treat, C.C., Vonk, J.E., 2015. Climate change and the permafrost carbon feedback. Nature 520 (7546), 171–179.

 

Shannon, V.L., Vanguelova, E.I., Morison, J.I.L., Shaw, L.J., Clark, J.M., 2022. The contribution of deadwood to soil carbon dynamics in contrasting temperate forest ecosystems. Eur. J. For. Res. 141 (2), 241–252.

 

Simpson, M.J., Simpson, A.J., 2012. The chemical ecology of soil organic matter molecular constituents. J. Chem. Ecol. 38 (6), 768–784.

 

Sinsabaugh, R.L., Shah, J.J.F., 2012. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343.

 

Soong, J.L., Castanha, C., Hicks Pries, C.E., Ofiti, N., Porras, R.C., Riley, W.J., Schmidt, M.W., Torn, M.S., 2021. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 7 (21), eabd1343.

 

Spohn, M., Bagchi, S., Biederman, L.A., Borer, E.T., Brathen, K.A., Bugalho, M.N., Caldeira, M.C., Catford, J.A., Collins, S.L., Eisenhauer, N., Hagenah, N., Haider, S., Hautier, Y., Knops, J.M.H., Koerner, S.E., Laanisto, L., Lekberg, Y., Martina, J.P., Martinson, H., McCulley, R.L., Peri, P.L., Macek, P., Power, S.A., Risch, A.C., Roscher, C., Seabloom, E.W., Stevens, C., Veen, G.F., Virtanen, R., Yahdjian, L., 2023. The positive effect of plant diversity on soil carbon depends on climate. Nat. Commun. 14 (1), 6624.

 

Todd-Brown, K.E.O., Randerson, J.T., Hopkins, F., Arora, V., Hajima, T., Jones, C., Shevliakova, E., Tjiputra, J., Volodin, E., Wu, T., Zhang, Q., Allison, S.D., 2014. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11 (8), 2341–2356.

 

Wambsganss, J., Stutz, K.P., Lang, F., 2017. European beech deadwood can increase soil organic carbon sequestration in forest topsoils. For. Ecol. Manag. 405, 200–209.

 

Wang, H., Harrison, S.P., Prentice, I.C., Yang, Y.Z., Bai, F., Togashi, H.F., Wang, M., Zhou, S.X., Ni, J., 2018. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99 (2), 500–500.

 

Wang, J.Y., Ren, C.J., Feng, X.X., Zhang, L., Doughty, R., Zhao, F.Z., 2020. Temperature sensitivity of soil carbon decomposition due to shifts in soil extracellular enzymes after afforestation. Geoderma 374, 114426.

 

Wang, Z.H., Bai, Y., Hou, J.F., Li, F., Li, X.Q., Cao, R., Deng, Y.Y., Wang, H.B., Jiang, Y.R., Yang, W.Q., 2022. The changes in soil microbial communities across a subalpine forest successional series. Forests 13 (2), 289.

 

Wang, Z.H., Zhao, L.J., Bai, Y., Li, F., Hou, J.F., Li, X.Q., Jiang, Y.R., Deng, Y.Y., Zheng, B.Q., Yang, W.Q., 2021. Changes in plant debris and carbon stocks across a subalpine forest successional series. For. Ecosyst. 8 (1), 40.

 

Wei, X.R., Shao, M.G., Gale, W., Li, L.H., 2014. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci. Rep. 4, 4062.

 

Xiang, H.M., Luo, X.Z., Zhang, L.L., Hou, E.Q., Li, J., Zhu, Q.D., Wen, D.Z., 2022. Forest succession accelerates soil carbon accumulation by increasing recalcitrant carbon stock in subtropical forest topsoils. Catena 212, 106030.

 

Yang, W., Wu, F., 2021. The Ecosystem Processes and Management of the Subalpine Coniferous Forest in the Upper Reaches of Yangtze River. Science Press, Beijing, China.

 
Yang, Y.P., Li, C.B., Guan, Z.T., 1992. Forests in Sichuan. China Forestry Publishing House, Beijing (in Chinese).
 

Zeng, Z.Q., Wang, S.L., Zhang, C.M., Gong, C., Hu, Q., 2013. Carbon storage in evergreen broad-leaf forests in mid-subtropical region of China at four succession stages. J. For. Res. 24 (4), 677–682.

 

Zhang, Y., Duan, B., Xian, J.R., Korpelainen, H., Li, C., 2011. Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China. For. Ecol. Manag. 262 (3), 361–369.

 

Zhao, Y.C., Wang, M.Y., Hu, S.J., Zhang, X.D., Ouyang, Z., Zhang, G.L., Huang, B.A., Zhao, S.W., Wu, J.S., Xie, D.T., Zhu, B., Yu, D.S., Pan, X.Z., Xu, S.X., Shi, X.Z., 2018. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 115 (16), 4045–4050.

 

Zhu, J.X., Hu, H.F., Tao, S.L., Chi, X.L., Li, P., Jiang, L., Ji, C.J., Zhu, J.L., Tang, Z.Y., Pan, Y.D., Birdsey, R.A., He, X.H., Fang, J.Y., 2017. Carbon stocks and changes of dead organic matter in China's forests. Nat. Commun. 8, 151.

Forest Ecosystems
Article number: 100203
Cite this article:
Li F, Wang Z, Hou J, et al. The changes in soil organic carbon stock and quality across a subalpine forest successional series. Forest Ecosystems, 2024, 11(4): 100203. https://doi.org/10.1016/j.fecs.2024.100203

127

Views

5

Downloads

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 08 March 2024
Revised: 26 April 2024
Accepted: 30 April 2024
Published: 11 May 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return