AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

No effect of invasive tree species on aboveground biomass increments of oaks and pines in temperate forests

Sebastian Bury( )Marcin K. Dyderski
Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
Show Author Information

Abstract

Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe. In addition, according to climate models, decreased growth of many economically and ecologically important native trees will likely be observed in the future. We aimed to assess the impact of these two neophytes, which differ in the biomass range and nitrogen-fixing abilities observed in Central European conditions, on the relative aboveground biomass increments of native oaks Quercus robur and Q. petraea and Scots pine Pinus sylvestris. We aimed to increase our understanding of the relationship between facilitation and competition between woody alien species and overstory native trees. We established 72 circular plots (0.05 ​ha) in two different forest habitat types and stands varying in age in western Poland. We chose plots with different abundances of the studied neophytes to determine how effects scaled along the quantitative invasion gradient. Furthermore, we collected growth cores of the studied native species, and we calculated aboveground biomass increments at the tree and stand levels. Then, we used generalized linear mixed-effects models to assess the impact of invasive species abundances on relative aboveground biomass increments of native tree species. We did not find a biologically or statistically significant impact of invasive R. pseudoacacia or P. serotina on the relative aboveground biomass increments of native oaks and pines along the quantitative gradient of invader biomass or on the proportion of total stand biomass accounted for by invaders. The neophytes did not act as native tree growth stimulators but also did not compete with them for resources, which would escalate the negative impact of climate change on pines and oaks. The neophytes should not significantly modify the carbon sequestration capacity of the native species. Our work combines elements of the per capita effect of invasion with research on mixed forest management.

References

 

Aerts, R., Ewald, M., Nicolas, M., Piat, J., Skowronek, S., Lenoir, J., Hattab, T., Garzón-López, C.X., Feilhauer, H., Schmidtlein, S., Rocchini, D., Decocq, G., Somers, B., Van De Kerchove, R., Denef, K., Honnay, O., 2017. Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest. Front. Plant Sci. 8, 179. https://doi.org/10.3389/fpls.2017.00179.

 

Alberti, G., Candido, P., Peressotti, A., Turco, S., Piussi, P., Zerbi, G., 2005. Aboveground biomass relationships for mixed ash (Fraxinus excelsior L. and Ulmus glabra hudson) stands in eastern prealps of friuli venezia giulia (Italy). Ann. For. Sci. 62, 831–836. https://doi.org/10.1051/forest:2005089.

 

Ammer, C., 2019. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66. https://doi.org/10.1111/nph.15263.

 
Bartoń, K., 2023. MuMIn: multi-model inference. R package version 1.47.5. https://CRAN.R-project.org/package=MuMIn. (Accessed 26 March 2024).
 
Bauhus, J., Forrester, D.I., Gardiner, B., Jactel, H., Vallejo, R., Pretzch, H., 2017a. Ecological stability of mixed-species forests. In: Pretzch, H., Forrester, D.I., Bauhus, J. (Eds.), Mixed-Species Forests: Ecology and Management. Springer, Berlin, pp. 337–382.
 
Bauhus, J., Forrester, D.I., Pretzch, H., 2017b. From observations to evidence about effects of mixed-species stands. In: Pretzch, H., Forrester, D.I., Bauhus, J. (Eds.), Mixed-Species Forests: Ecology and Management. Springer, Berlin, pp. 28–66.
 

Biging, G., Dobbertin, M., 1995. Evaluation of competition indices in individual tree growth models. For. Sci. 41, 360–377. https://doi.org/10.1093/forestscience/41.2.360.

 
BDL, 2024. Bank Danych O Lasach. https://www.bdl.lasy.gov.pl/portal/mapy-en. (Accessed 26 March 2024).
 

Biging, G., Dobbertin, M., 1992. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For. Sci. 38, 695–720.

 
Binkley, D., 1992. Mixtures of N2-fixing and non-N2-fixing tree species. In: Cannell, M.G.R., Malcolm, D.C., Robertson, P.A. (Eds.), The Ecology of Mixed-Species Stands of Trees. Blackwell Sci. Publ, London, pp. 92–123.
 

Bouteiller, X.P., Bussolo, M., Ségura, R., Mariette, S., Porté, A.J., 2023. Considering both sexual and clonal reproduction could help loosen the conflict of use over Robinia pseudoacacia. Dendrobiology 90, 30–38. https://doi.org/10.12657/denbio.090.002.

 

Brown, J.K., 1976. Estimating shrub biomass from basal stem diameters. Can. J. Res. 6 (2), 153–158. https://doi.org/10.1139/x76-019.

 

Castro-Diez, P., Vaz, A.S., Silva, J.S., van Loo, M., Alonso, A., Aponte, C., Bayón, Á., Bellingham, P.J., Chiuffo, M.C., DiManno, N., Kahua, J., Kandert, S., La Porta, N., Marchante, H., Maule, H.G., Mayfield, M.M., Metcalfe, D., Monteverdi, M.C., Nuñez, M.A., Ostertag, R., Parker, I.M., Peltzer, D.A., Potgieter, L.J., Raymundo, M., Rayome, D., Reisman-Berman, O., Richardson, D.M., Roos, R.E., Saldaña, A., Shackleton, R.T., Torres, A., Trudgen, M., Urban, J., Vicente, J.R., Vilà, M., Ylioja, T., Zenni, R.D., Godoy, O., 2019. Global effects of non-native tree species on multiple ecosystem services. Biol. Rev. 94, 1477–1501. https://doi.org/10.1111/brv.12511.

 

Chmura, D., 2004. Penetration and naturalisation of invasive alien plant species (neophytes) in woodlands of the Silesian Upland (Southern Poland). Nat. Conserv. 60, 3–11.

 

Cierjacks, A., Kowarik, I., Joshi, J., Hempel, S., Ristow, M., Von Der Lippe, M., Weber, E., 2013. Biological flora of the British isles: Robinia pseudoacacia. J. Ecol. 101, 1623–1640. https://doi.org/10.1111/1365-2745.12162.

 

Czortek, P., Królak, E., Borkowska, L., Bielecka, A., 2023. Effects of surrounding landscape on the performance of Solidago canadensis L. and plant functional diversity on heavily invaded post-agricultural wastelands. Biol. Invasions 25, 2477–2494. https://doi.org/10.1007/s10530-023-03050-2.

 

D'Amato, A.W., Puattmann, K.J., 2004. The relative dominance hypothesis explains interaction dynamics in mixed species Alnus rubra/Pseudotsuga menziesii stands. J. Ecol. 92, 450–463. https://doi.org/10.1111/j.0022-0477.2004.00888.x.

 

Del Río, M., Pretzsch, H., Ruíz-Peinado, R., Ampoorter, E., Annighöfer, P., Barbeito, I., Bielak, K., Brazaitis, G., Coll, L., Drössler, L., Fabrika, M., Forrester, D.I., Heym, M., Hurt, V., Kurylyak, V., Löf, M., Lombardi, F., Madrickiene, E., Matović, B., Mohren, F., Motta, R., Den Ouden, J., Pach, M., Ponette, Q., Schütze, G., Skrzyszewski, J., Sramek, V., Sterba, H., Stojanović, D., Svoboda, M., Zlatanov, T.M., Bravo-Oviedo, A., 2017. Species interactions increase the temporal stability of community productivity in Pinus sylvestris–Fagus sylvatica mixtures across Europe. J. Ecol. 105, 1032–1043. https://doi.org/10.1111/1365-2745.12727.

 

Dukes, J.S., Mooney, H.A., 1999. Does global change increase the success of biological invaders? Trends Ecol. Evol. 14, 135–139. https://doi.org/10.1016/S0169-5347(98)01554-7.

 
Dyderski, M.K., Bury, S., 2024. Dataset for No effect of invasive tree species on aboveground biomass increments of oaks and pines in temperate forests. Figshare. doi: 10.6084/m9.figshare.25603110.
 

Dyderski, M.K., Chmura, D., Dylewski, Ł., Horodecki, P., Jagodziński, A.M., Pietras, M., Robakowski, P., Woziwoda, B., 2020. Biological flora of the British isles: Quercus rubra. J. Ecol. 108, 1199–1225. https://doi.org/10.1111/1365-2745.13375.

 

Dyderski, M.K., Jagodziński, A.M., 2019. Similar impacts of alien and native tree species on understory light availability in a temperate forest. Forests 10, 951. https://doi.org/10.3390/f10110951.

 

Dyderski, M.K., Paź, S., Frelich, L.E., Jagodziński, A.M., 2018. How much does climate change threaten European forest tree species distributions? Global Change Biol. 24, 1150–1163. https://doi.org/10.1111/gcb.13925.

 

Forrester, D.I., Bauhus, J., 2016. A review of processes behind diversity–productivity relationships in forests. Curr. For. Rep. 2, 45–61. https://doi.org/10.1007/s40725-016-0031-2.

 

Forrester, D.I., Tachauer, I.H.H., Annighoefer, P., Barbeito, I., Pretzsch, H., Ruiz-Peinado, R., Stark, H., Vacchiano, G., Zlatanov, T., Chakraborty, T., Saha, S., Sileshi, G.W., 2017. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For. Ecol. Manag. 396, 160–175. https://doi.org/10.1016/j.foreco.2017.04.011.

 
Gams, H., 1924. Leguminosae. In: Hegi, G. (Ed.), Illustrierte Flora von Mitteleuropa, Ⅳ/3. J. Lehmanns Verlag, Munchen, Germany.
 

García, R.A., Fuentes-Lillo, E., Cavieres, L., Cóbar-Carranza, A.J., Davis, K.T., Naour, M., Núñez, M.A., Maxwell, B.D., Lembrechts, J.J., Pauchard, A., 2023. Pinus contorta alters microenvironmental conditions and reduces plant diversity in Patagonian ecosystems. Diversity 15, 320. https://doi.org/10.3390/d15030320.

 

Giuggiola, A., Zweifel, R., Feichtinger, L.M., Vollenweider, P., Bugmann, H., Haeni, M., Rigling, A., 2018. Competition for water in a xeric forest ecosystem – effects of understory removal on soil micro-climate, growth and physiology of dominant Scots pine trees. For. Ecol. Manag. 409, 241–249. https://doi.org/10.1016/j.foreco.2017.11.002.

 

Halarewicz, A., 2011. The reasons underlying the invasion of forest communities by black cherry, Prunus serotina and its subsequent consequences. For. Res. Pap. 72, 267–272. https://doi.org/10.2478/v10111-011-0026-5.

 

Halarewicz, A., Szumny, A., Bączek, P., 2021. Effect of Prunus serotina Ehrh. volatile compounds on germination and seedling growth of Pinus sylvestris L. Forests 12, 846. https://doi.org/10.3390/f12070846.

 

Heger, T., Jeschke, J.M., Kollmann, J., 2021. Some reflections on current invasion science and perspectives for an exciting future. NeoBiota 68, 79–100. https://doi.org/10.3897/neobiota.68.68997.

 

Horodecki, P., Nowiński, M., Jagodziński, A.M., 2019. Advantages of mixed tree stands in restoration of upper soil layers on postmining sites: a five-year leaf litter decomposition experiment. Land Degrad. Dev. 30, 3–13. https://doi.org/10.1002/ldr.3194.

 
Huntley, J.C., 1990. Silvics of NorthNorth America. In: Burns, R.M., Honkala, B.H. (Eds.), Agriculture Handbook 654 [online]. US Department of Agriculture, Washington DC, USA.
 
Jactel, H., Nicoll, B.C., Branco, M., Gonzalez-Olabarria, J.R., Grodzki, W., Långström, B., Moreira, F., Netherer, S., Orazio, C., Piou, D., Santos, H., Schelhaas, M.J., Tojic, K., Vodde, F., 2009. The influences of forest stand management on biotic and abiotic risks of damage. Ann. For. Sci. 66, 701. https://doi.org/10.1051/forest/2009054, 701.
 

Jagodziński, A., Dyderski, M., Gęsikiewicz, K., Horodecki, P., 2018. Tree- and stand-level biomass estimation in a Larix decidua mill. Chronosequence. Forests 9, 587. https://doi.org/10.3390/f9100587.

 

Jagodziński, A.M., Dyderski, M.K., Gęsikiewicz, K., Horodecki, P., 2019. Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. Eur. J. For. Res. 138, 673–683. https://doi.org/10.1007/s10342-019-01197-z.

 

Kahveci, G., Arslan, M., 2021. Factors affecting the radial growth of Juniperus foetidissima Willd. and J. excelsa M. Bieb. in central Anatolia. J. For. Sci. 67 (10), 477–488. https://doi.org/10.17221/42/2021-JFS.

 

Kanzler, M., Böhm, C., Freese, D., 2021. The development of soil organic carbon under young black locust (Robinia pseudoacacia L.) trees at a post-mining landscape in eastern Germany. New For. 52, 47–68. https://doi.org/10.1007/s11056-020-09779-1.

 

Knoke, T., Stimm, B., Ammer, C., Moog, M., 2005. Mixed forests reconsidered: a forest economics contribution on an ecological concept. For. Ecol. Manag. 213, 102–116. https://doi.org/10.1016/j.foreco.2005.03.043.

 
Korhonen, K., Stahl, G., Freudenschuss, A., Brändli, U.-B., Fridman, J., Cienciala, E., Linser, S., 2020. Criterion 1: maintenance and appropriate enhancement of forest resources and their contribution to global carbon cycles. In: State of Europe's Forests 2020, Forest Europe, pp. 30–50.
 

Kotta, J., 2023. Biological invasions in a changing world: introduction to the special issue. Diversity 15, 891. https://doi.org/10.3390/d15080891.

 

Kubota, Y., Hara, T., 1995. Tree competition and species coexistence in a sub-boreal forest, northern Japan. Ann. Bot. 76, 503–512.

 

Li, K., Han, X., Ni, R., Shi, G., de-Miguel, S., Li, C., Shen, W., Zhang, Y., Zhang, X., 2021. Impact of Robinia pseudoacacia stand conversion on soil properties and bacterial community composition in Mount Tai, China. For. Ecosyst. 8, 19. https://doi.org/10.1186/s40663-021-00296-x.

 

Li, K., Tian, H., Moser, W.K., Overby, S.T., Baggett, L.S., Ni, R., Li, C., Shen, W., 2022. Black locust coppice stands homogenize soil diazotrophic communities by reducing soil net nitrogen mineralization. For. Ecosyst. 9, 100025. https://doi.org/10.1016/j.fecs.2022.100025.

 

Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.-D., McGuire, A.D., Bozzato, F., Pretzsch, H., de-Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C.B., Glick, H.B., Hengeveld, G.M., Nabuurs, G.-J., Pfautsch, S., Viana, H., Vibrans, A.C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.V., Chen, H.Y.H., Lei, X., Schelhaas, M.-J., Lu, H., Gianelle, D., Parfenova, E.I., Salas, C., Lee, E., Lee, B., Kim, H.S., Bruelheide, H., Coomes, D.A., Piotto, D., Sunderland, T., Schmid, B., Gourlet-Fleury, S., Sonké, B., Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E.B., Neldner, V.J., Ngugi, M.R., Baraloto, C., Frizzera, L., Bałazy, R., Oleksyn, J., Zawiła-Niedźwiecki, T., Bouriaud, O., Bussotti, F., Finér, L., Jaroszewicz, B., Jucker, T., Valladares, F., Jagodzinski, A.M., Peri, P.L., Gonmadje, C., Marthy, W., O'Brien, T., Martin, E.H., Marshall, A.R., Rovero, F., Bitariho, R., Niklaus, P.A., Alvarez-Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V., Engone-Obiang, N.L., Ferreira, L.V., Odeke, D.E., Vasquez, R.M., Lewis, S.L., Reich, P.B., 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957. https://doi.org/10.1126/science.aaf8957.

 

Lüdecke, D., 2018. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772. https://doi.org/10.21105/joss.00772.

 

Ma, C., Li, X., Luo, Y., Shao, M., Jia, X., 2019. The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China. J. Hydrol. 577, 123849. https://doi.org/10.1016/j.jhydrol.2019.06.021.

 

McLellan, A.J., Law, R., Fitter, A.H., 1997. Response of calcareous grassland plant species to diffuse competition: results from a removal experiment. J. Ecol. 85, 479. https://doi.org/10.2307/2960571.

 

Mina, M., Huber, M.O., Forrester, D.I., Thürig, E., Rohner, B., 2018. Multiple factors modulate tree growth complementarity in Central European mixed forests. J. Ecol. 106, 1106–1119. https://doi.org/10.1111/1365-2745.12846.

 

Morimoto, J., Kominami, R., Koike, T., 2010. Distribution and characteristics of the soil seed bank of the black locust (Robinia pseudoacacia) in a headwater basin in northern Japan. Landsc. Ecol. Eng. 6, 193–199. https://doi.org/10.1007/s11355-009-0096-1.

 

Motte, F., Rötzer, T., Biber, P., Uhl, E., Pritsch, K., Pretzsch, H., 2023. Growth of European beech recovered faster than that of Norway spruce after a five-year experimental drought in a mixed forest stand. Trees (Berl.) 37, 1695–1715. https://doi.org/10.1007/s00468-023-02453-x.

 
Namura-Ochalska, A., Borowa, B., 2015. Walka z czeremchą amerykańską Padus serotina (Ehrh.) Borkh. w leśnictwie Rózin w Kampinoskim Parku Narodowym; ocena skuteczności wybranych metod. In: Krzysztofiak, L., Krzysztofiak, A. (Eds.), Inwazyjne Gatunki Obcego Pochodzenia Zagro_zeniem Dla Rodzimej Przyrody Red. Stowarzyszenie "Człowiek i Przyroda, Krzywe, pp. 127–142.
 
Nyssen, B., Vanhellemont, M., 2016. 5.6 Integrating black cherry in forest management in The Netherlands and Belgium. In: Krumm, F., Vítková, L. (Eds.), Introduced Tree Species in European Forests: Opportunities and Challenges. European Forest Institute, Freiburg, pp. 362–372. European Forest Institute.
 
Otręba, A., 2016. Czeremcha amerykańska Padus serotina (Ehrh.) borkh. In: Obidziński, A., Kołaczkowska, E., Otręba, A. (Eds.), Metody Zwalczania Obcych Gatunków Roślin Występujących Na Terenie Puszczy Kampinowskiej. Kampinowski Park Narodowy, Izabelin, pp. 73–88.
 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609.

 

Parker, I.M., Simberloff, D., Lonsdale, W.M., Goodell, K., Wonham, M., Kareiva, P.M., Williamson, M.H., Von Holle, B., Moyle, P.B., Byers, J.E., Goldwasser, L., 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19. https://doi.org/10.1023/A:1010034312781.

 

Pearse, I.S., Sofaer, H.R., Zaya, D.N., Spyreas, G., 2019. Non-native plants have greater impacts because of differing per-capita effects and nonlinear abundance–impact curves. Ecol. Lett. 22, 1214–1220. https://doi.org/10.1111/ele.13284.

 
Pretzsch, H., 2009. Forest Dynamics, Growth and Yield: from Measurement to Model. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88307-4.
 
Pretzsch, H., Forrester, D.I., 2017. Stand dynamics of mixed-species stands compared with monocultures. In: Pretzsch, H., Forrester, D.I., Bauhus, J. (Eds.), Mixed-Species Forests: Ecology and Management. Springer, Berlin, pp. 117–209.
 

Pretzsch, H., Steckel, M., Heym, M., Biber, P., Ammer, C., Ehbrecht, M., Bielak, K., Bravo, F., Ordóñez, C., Collet, C., Vast, F., Drössler, L., Brazaitis, G., Godvod, K., Jansons, A., de-Dios-García, J., Löf, M., Aldea, J., Korboulewsky, N., Reventlow, D.O.J., Nothdurft, A., Engel, M., Pach, M., Skrzyszewski, J., Pardos, M., Ponette, Q., Sitko, R., Fabrika, M., Svoboda, M., Černý, J., Wolff, B., Ruíz-Peinado, R., Del Río, M., 2020. Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 139, 349–367. https://doi.org/10.1007/s10342-019-01233-y.

 

Puchałka, R., Koprowski, M., Gričar, J., Przybylak, R., 2017. Does tree-ring formation follow leaf phenology in Pedunculate oak (Quercus robur L.)? Eur. J. For. Res. 136, 259–268. https://doi.org/10.1007/s10342-017-1026-7.

 

Puchałka, R., Paź-Dyderska, S., Jagodziński, A.M., Sádlo, J., Vítková, M., Klisz, M., Koniakin, S., Prokopuk, Y., Netsvetov, M., Nicolescu, V.-N., Zlatanov, T., Mionskowski, M., Dyderski, M.K., 2023. Predicted range shifts of alien tree species in Europe. Agric. For. Meteorol. 341, 109650. https://doi.org/10.1016/j.agrformet.2023.109650.

 

Puchałka, R., Prislan, P., Klisz, M., Koprowski, M., Gričar, J., 2024. Tree-ring formation dynamics in Fagus sylvatica and Quercus petraea in a dry and a wet year. Dendrobiology 91, 1–15. https://doi.org/10.12657/denbio.091.001.

 

Qiu, L., Zhang, X., Cheng, J., Yin, X., 2010. Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant Soil 332, 207–217. https://doi.org/10.1007/s11104-010-0286-5.

 
R Core Team, 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
 

Rebola-Lichtenberg, J., Streit, J., Schall, P., Ammer, C., Seidel, D., 2021. From facilitation to competition: the effect of black locust (Robinia pseudoacacia L.) on the growth performance of four poplar-hybrids (Populus spp.) in mixed short rotation coppice. New For. 52, 639–656. https://doi.org/10.1007/s11056-020-09813-2.

 

Reyer, C., Lasch, P., Mohren, G.M.J., Streck, F.J., 2010. Inter-specific competition in mixed forests of Douglas-fir (Pseudotsuga menziesii) and common beech (Fagus sylvatica) under climate change – a model-based analysis. Ann. For. Sci 67, 805. https://doi.org/10.1051/forest/2010041.

 

Richardson, D.M., Pysek, P., Rejmanek, M., Barbour, M.G., Panetta, F.D., West, C.J., 2000. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107. https://doi.org/10.1046/j.1472-4642.2000.00083.x.

 
Röhle, H., 2018. Growth performance and management in mixed forest stands. In: Proceedings of the International Scientific Conference "Rural Development 2017. ". Aleksandras Stulginskis University. https://doi.org/10.15544/RD.2017.122. Lithuania.
 
Ronch, F.D., Caudullo, G., de Rigo, D., 2016. Pseudotsuga menziesii in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. 146–147.
 
Roy, H.E., Pauchard, A., Stoett, P., Renard Truong, T., Bacher, S., Galil, B.S., Hulme, P.E., Ikeda, T., Sankaran, K., McGeoch, M.A., Meyerson, L.A., Nuñez, M.A., Ordonez, A., Rahlao, S.J., Schwindt, E., Seebens, H., Sheppard, A.W., Vandvik, V., 2023. IPBES Invasive Alien Species Assessment: Summary for Policymakers. Zenodo. https://doi.org/10.5281/ZENODO.7430692.
 

Ruiz-Benito, P., Gómez-Aparicio, L., Paquette, A., Messier, C., Kattge, J., Zavala, M.A., 2014. Diversity increases carbon storage and tree productivity in Spanish forests. Global Ecol. Biogeogr. 23, 311–322. https://doi.org/10.1111/geb.12126.

 

Ruiz-Peinado, R., Pretzsch, H., Löf, M., Heym, M., Bielak, K., Aldea, J., Barbeito, I., Brazaitis, G., Drössler, L., Godvod, K., Granhus, A., Holm, S.-O., Jansons, A., Makrickienė, E., Metslaid, M., Metslaid, S., Nothdurft, A., Otto Juel Reventlow, D., Sitko, R., Stankevičienė, G., Del Río, M., 2021. Mixing effects on Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) productivity along a climatic gradient across Europe. For. Ecol. Manag. 482, 118834. https://doi.org/10.1016/j.foreco.2020.118834.

 

Rumyantseva, A.V., Chekrygin, S.A., Vidyagina, E.O., 2023. Interrelation of the radial increment of trees with various factors. Physiologia 3, 347–365. https://doi.org/10.3390/physiologia3020024.

 

Sádlo, J., Vítková, M., Pergl, J., Pyšek, P., 2017. Towards site-specific management of invasive alien trees based on the assessment of their impacts: the case of Robinia pseudoacacia. NeoBiota 35, 1–34. https://doi.org/10.3897/neobiota.35.11909.

 

Sapsford, S.J., Brandt, A.J., Davis, K.T., Peralta, G., Dickie, I.A., Gibson, R.D., Green, J.L., Hulme, P.E., Nuñez, M.A., Orwin, K.H., Pauchard, A., Wardle, D.A., Peltzer, D.A., 2020. Towards a framework for understanding the context dependence of impacts of non-native tree species. Funct. Ecol. 34, 944–955. https://doi.org/10.1111/1365-2435.13544.

 

Slabejová, D., Čejka, T., Hegedüšová, K., Májeková, J., Medvecká, J., Mikulová, K., Šibíková, M., Škodová, I., Šustek, Z., Jarolímek, I., 2023. Comparison of alien Robinia pseudoacacia stands with native forest stands across different taxonomic groups. For. Ecol. Manag. 548, 121413. https://doi.org/10.1016/j.foreco.2023.121413.

 

Starfinger, U., Kowarik, I., Rode, M., Schepker, H., 2003. From desirable ornamental plant to pest to accepted addition to the flora? – The perception of an alien tree species through the centuries. Biol. Invasions 5, 323–335. https://doi.org/10.1023/B:BINV.0000005573.14800.07.

 

Steckel, M., Del Río, M., Heym, M., Aldea, J., Bielak, K., Brazaitis, G., Černý, J., Coll, L., Collet, C., Ehbrecht, M., Jansons, A., Nothdurft, A., Pach, M., Pardos, M., Ponette, Q., Reventlow, D.O.J., Sitko, R., Svoboda, M., Vallet, P., Wolff, B., Pretzsch, H., 2020. Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) – site water supply and fertility modify the mixing effect. For. Ecol. Manag. 461, 117908. https://doi.org/10.1016/j.foreco.2020.117908.

 
Szymański, S., 2001. Ekologiczne Podstawy Hodowli Lasu. PWRiL, Warszawa.
 

Thurm, E.A., Pretzsch, H., 2016. Improved productivity and modified tree morphology of mixed versus pure stands of European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) with increasing precipitation and age. Ann. For. Sci. 73, 1047–1061. https://doi.org/10.1007/s13595-016-0588-8.

 
Topcuoglu, A., 1940. Die Verteilung des Zuwachses auf die Schaftlänge der Bäume. In: Tharandter Forstliches Jahrbuch, vol. 91. Paul Parey, Berlin, pp. 485–554.
 

Turner, D.P., Koerper, G.J., Harmon, M.M., Jeffrey, J.L., 1995. A carbon budget for forests of the conterminous United States. Ecol. Appl. 5, 421–463.

 

Vannoppen, A., Kint, V., Ponette, Q., Verheyen, K., Muys, B., 2019. Tree species diversity impacts average radial growth of beech and oak trees in Belgium, not their long-term growth trend. For. Ecosyst. 6, 10. https://doi.org/10.1186/s40663-019-0169-z.

 

Vítková, M., Müllerová, J., Sádlo, J., Pergl, J., Pyšek, P., 2017. Black locust (Robinia pseudoacacia) beloved and despised: a story of an invasive tree in Central Europe. For. Ecol. Manag. 384, 287–302. https://doi.org/10.1016/j.foreco.2016.10.057.

 

Vospernik, S., Heym, M., Pretzsch, H., Pach, M., Steckel, M., Aldea, J., Brazaitis, G., Bravo-Oviedo, A., Del Rio, M., Löf, M., Pardos, M., Bielak, K., Bravo, F., Coll, L., Černý, J., Droessler, L., Ehbrecht, M., Jansons, A., Korboulewsky, N., Jourdan, M., Nord-Larsen, T., Nothdurft, A., Ruiz-Peinado, R., Ponette, Q., Sitko, R., Svoboda, M., Wolff, B., 2023. Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe – a dynamic, sensitive equilibrium. For. Ecol. Manag. 530, 120753. https://doi.org/10.1016/j.foreco.2022.120753.

 

Wagner, R.G., Radosevich, S.R., 1998. Neighborhood approach for quantifying interspecific competition in coastal Oregon forests. Ecol. Appl. 8, 779–794. https://doi.org/10.1890/1051-0761(1998)008[0779:NAFQIC]2.0.CO;2.

 

Warner, E., Cook-Patton, S.C., Lewis, O.T., Brown, N., Koricheva, J., Eisenhauer, N., Ferlian, O., Gravel, D., Hall, J.S., Jactel, H., Mayoral, C., Meredieu, C., Messier, C., Paquette, A., Parker, W.C., Potvin, C., Reich, P.B., Hector, A., 2023. Young mixed planted forests store more carbon than monocultures—a meta-analysis. Front. For. Glob. Change 6, 1226514. https://doi.org/10.3389/ffgc.2023.1226514.

 

Wiatrowska, B., Kurek, P., Moroń, D., Celary, W., Chrzanowski, A., Trzciński, P., Piechnik, Ł., 2023. Linear scaling – negative effects of invasive Spiraea tomentosa (Rosaceae) on wetland plants and pollinator communities. NeoBiota 81, 63–90. https://doi.org/10.3897/neobiota.81.95849.

 
Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
 

Wohlgemuth, T., Gossner, M.M., Campagnaro, T., Marchante, H., van Loo, M., Vacchiano, G., Castro-Díez, P., Dobrowolska, D., Gazda, A., Keren, S., Keserű, Z., Koprowski, M., La Porta, N., Marozas, V., Nygaard, P.H., Podrázský, V., Puchałka, R., Reisman-Berman, O., Straigytė, L., Ylioja, T., Pötzelsberger, E., Silva, J.S., 2022. Impact of non-native tree species in Europe on soil properties and biodiversity: a review. NeoBiota 78, 45–69. https://doi.org/10.3897/neobiota.78.87022.

 

Woziwoda, B., Dyderski, M.K., Jagodziński, A.M., 2021. Forest land use discontinuity and northern red oak Quercus rubra introduction change biomass allocation and life strategy of lingonberry Vaccinium vitis-idaea. For. Ecosyst. 8, 9. https://doi.org/10.1186/s40663-021-00287-y.

 

Yang, K., Zhu, J., Zhang, W., Gu, J., Wang, Z., Xu, S., 2022. Comparison of soil chemical and microbial properties in monoculture larch and mixed plantations in a temperate forest ecosystem in Northeast China. Ecol. Process. 11, 12. https://doi.org/10.1186/s13717-022-00358-0.

 
Zasada, M., 2017. Raport Końcowy Z Tematu Badawczego "Ekologiczne, Gospodarcze Ⅰ Urządzeniowe Konsekwencje Występowania Wybranych Gatunków Drzew Obcych W Polsce" Realizowanego W Latach 2013-2017 Przez Samodzielną Pracownię Dendrometrii Ⅰ Nauki O Produkcyjności Lasu Na Zlecenie Dyrekcji Generalnej Lasów Państwowych W Warszawie. SGGW, Warszawa.
Forest Ecosystems
Article number: 100201
Cite this article:
Bury S, Dyderski MK. No effect of invasive tree species on aboveground biomass increments of oaks and pines in temperate forests. Forest Ecosystems, 2024, 11(4): 100201. https://doi.org/10.1016/j.fecs.2024.100201

140

Views

3

Downloads

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 07 January 2024
Revised: 07 May 2024
Accepted: 07 May 2024
Published: 14 May 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return