AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Differential roles of seed and sprout regeneration in forest diversity and productivity after disturbance

Marek Mejstříka( )Martin SvátekbMartina PollastrinicMartin ŠrámekbRadim Matulaa
Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300, Brno, Czech Republic
Department of Agriculture, Food, Environment and Forestry, University of Firenze, Piazzale Delle Cascine 28, 50144, Firenze, Italy
Show Author Information

Abstract

Natural regeneration after disturbances is a key phase of forest development, which determines the trajectory of successional changes in tree species composition and diversity. Regenerating trees can originate from either seeds or sprouts produced by disturbed trees with sprouting ability. Although both regeneration strategies often develop and co-occur after a disturbance, they tend to affect forest development differently due to significant functional differences. However, the origin of tree regeneration is rarely distinguished in post-disturbance forest surveys and ecological studies, and the differential roles of seed and sprout regeneration in forest productivity and diversity remain poorly understood. To address these research gaps, we explored the role of sprout and seed regeneration in the formation of woody species diversity and above-ground biomass (AGB) productivity in early-stage forest development. Data were collected in two experimental forest stands in the Czech Republic, where trees were cut with varying intensities with the density of residual (uncut) trees ranging from 0 to 275 trees per hectare. All trees were mapped and their sizes were measured before cutting and then, either as a stump with sprouts or a residual tree, remeasured 11 years later. In addition, all tree saplings were mapped and measured 11 years after logging, and their origin (sprout or seed) was identified. To assess abundances and productivity, we estimated AGB of all 2,685 sprouting stumps of 19 woody species and 504 generative (i.e., seed origin) individuals of 16 woody species, using allometric equations. Mixed-effects models were used to analyze the effects of each regeneration strategy on woody species diversity and the total AGB under varying densities of residual trees. Nonmetric multidimensional scaling was used to evaluate the effect of regeneration strategies on species composition. AGB and diversity of sprouts were significantly higher than those of seed regeneration. Sprouts formed on average 97.1% of the total regeneration AGB in Hády and 98.6% in Soběšice. The average species richness of sprouts was 4.7 in Hády and 2.2 in Soběšice, while the species richness of seed regeneration averaged 2.1 and 1.1 in Hády and Soběšice, respectively. Increasing density of residual trees reduced AGB and diversity of both sprouts and seed regeneration, but seed regeneration was affected to a greater extent. Residual trees had an especially strong inhibitory effect on the establishment of seed regeneration. Consequently, seed-originated saplings were nearly absent in plots with high residual tree density, and abundant sprouts accounted for most of the AGB and diversity. However, unlike sprouts whose species composition resembled that of the original stand, seed regeneration brought in new species, enriching the stand's overall species pool and beta diversity. Our results demonstrated differential roles of sprout and seed regeneration in the early stage of forest succession. Sprout regeneration was the main source of woody AGB productivity as well as species diversity, and its importance increased with the increasing density of standing mature trees. The results indicate the crucial yet previously underestimated role of sprout regeneration in post-disturbance forest dynamics. They suggest that the presence of residual mature trees, whether retained after partial cutting or undisturbed, can substantially suppress seed regeneration while the role of sprout regeneration in early succession becomes more distinctly evident.

References

 

Anderson, M.J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253. https://doi.org/10.1111/J.1541-0420.2005.00440.X.

 

Anderson, M.J., Ellingsen, K.E., McArdle, B.H., 2006. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693. https://doi.org/10.1111/J.1461-0248.2006.00926.X.

 

Anderson-Teixeira, K.J., Miller, A.D., Mohan, J.E., Mohan, J.E., Hudiburg, R.W., Duval, B.D., Delucia, E.H., 2013. Altered dynamics of forest recovery under a changing climate. Global Change Biol. 19, 2001-2021. https://doi.org/10.1111/gcb.12194.

 

Atwood, C.J., Fox, T.R., Loftis, D.L., 2011. Effects of various silvicultural systems on regeneration in mixed hardwood stands of the Southern Appalachians. J. Sustain. For. 30, 419-440. https://doi.org/10.1080/10549811.2011.541020.

 

Aussenac, G., 2003. Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann. For. Sci. 57, 287-301. https://doi.org/10.1051/forest:2000119.

 

Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1-48. https://doi.org/10.18637/jss.v067.i01.

 

Bellingham, P.J., Sparrow, A.D., 2000. Resprouting as a life history strategy in woody plant communities. Oikos 89, 409-416.

 

Bergeron, Y., Harvey, B., Leduc, A., Gauthier, S., 1999. Forest management guidelines based on natural disturbance dynamics: Stand- and forest-level considerations. For. Chron. 75, 49-54. https://doi.org/10.5558/tfc75049-1.

 

Bond, W.J., Midgley, J.J., 2001. Ecology of sprouting in woody plants the: persistence niche. Trends Ecol. Evol. 16, 45-51.

 

Bond, W.J., Midgley, J.J., 2003. The evolutionary ecology of sprouting in woody plants. Int. J. Plant Sci. 164, S103-S114.

 

Brokaw, N., Busing, R.T., 2000. Niche versus chance and tree diversity in forest gaps. Trends Ecol. Evol. 15, 183-188. https://doi.org/10.1016/S0169-5347(00)01822-X.

 

Browne, L., Markesteijn, L., Engelbrecht, B.M.J., Jones, F.A., Lewis, O.T., Manzané-Pinzón, E., Wright, S.J., Comita, L.S., 2021. Increased mortality of tropical tree seedlings during the extreme 2015–16 El Niño. Global Change Biol. 27, 5043-5053. https://doi.org/10.1111/GCB.15809.

 

Buckley, P., 2020. Coppice restoration and conservation: a European perspective. J. For. Res. 25, 125-133.

 

Caldwell, M.M., Richards, J.H., 1989. Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79, 1-5. https://doi.org/10.1007/BF00378231.

 

Caldwell, M.M., Dawson, T.E., Richards, J.H., 1998. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113, 151-161. https://doi.org/10.1007/S004420050363.

 

Calviño-Cancela, M., 2002. Spatial patterns of seed dispersal and seedling recruitment in Corema album (Empetraceae): The importance of unspecialized dispersers for regeneration. J. Ecol. 90, 775-784. https://doi.org/10.1046/j.1365-2745.2002.00711.x.

 

Chamagne, J., Tanadini, M., Frank, D., Matula, R., Paine, C.E.T., Philipson, Ch. D., Svátek, M., Turnbull, L.A., Volařík, D., Hector, A., 2017. Forest diversity promotes individual tree growth in central European forest stands. J. Appl. Ecol. 54, 71-79. https://doi.org/10.1111/1365-2664.12783.

 

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.-P., Nelson, B.W., Ogawa, H., Puig, H., Riéra, B., Yamakura, T., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87-99. https://doi.org/10.1007/s00442-005-0100-x.

 

Chazdon, R.L., Guariguata, M.R., 2016. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716-730. https://doi.org/10.1111/btp.12381.

 

Clark, S.L., Hallgren, S.W., 2003. Dynamics of oak (Quercus marilandica and Q. stellata) reproduction in an old-growth cross timbers forest. SE. Nat. 2, 559-574. https://doi.org/10.1656/1528-7092(2003)002[0559:DOOQMA]2.0.CO;2.

 

Clark, J.S.C., Beckage, B., Camill, P., Cleveland, B., HilleRisLambers, J., Lichter, J., McLachlan, J., Mohan, J., Wyckoff, P., 1999. Interpreting recruitment limitation in forests. Am. J. Bot. 86, 1-16. https://doi.org/10.2307/2656950.

 

Clarke, P.J., Knox, K.J.E., Wills, K.E., Campbell, M., 2005. Landscape patterns of woody plant response to crown fire: disturbance and productivity influence sprouting ability. J. Ecol. 93, 544-555.

 

Clarke, P.J., Lawes, M.J., Midgley, J.J., Lamont, B.B., Ojeda, F., Burrows, G.E., Enright, N.J., Knox, K.J.E., 2013. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol. 197, 19-35. https://doi.org/10.1111/nph.12001.

 

Connell, J.H., 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynam. populat. 298-313.

 

Coomes, D.A., Allen, R.B., 2007. Effects of size, competition and altitude on tree growth. J. Ecol. 95, 1084-1097. https://doi.org/10.1111/j.1365-2745.2007.01280.x.

 

Del Tredici, P., 2001. Sprouting in temperate trees: A morphological and ecological review. Bot. Rev. 67, 121-140.

 

Demeter, L., Molnár, Á. P., Öllerer, K., Csóka, G., Kiš, A., Vadász, C., Horváth, F., Molnár, Z., 2021. Rethinking the natural regeneration failure of pedunculate oak: The pathogen mildew hypothesis. Biol. Conserv. 253, 108928. https://doi.org/10.1016/j.biocon.2020.108928.

 

Dietze, M.C., Clark, J.S., 2008. Changing the gap dynamics paradigm: Vegetative regeneration control on forest response to disturbance. Ecol. Monogr. 78, 331-347. https://doi.org/10.1890/07-0271.1.

 

Dinh, T.T., Kajikawa, C., Akaji, Y., Yamada, K., Matsumoto, T.K., Makimoto, T., Miki, N.H., Hirobe, M., Sakamoto, K., 2019. Stump sprout dynamics of Quercus serrata Thunb. and Q. acutissima Carruth. four years after cutting in an abandoned coppice forest in western Japan. For. Ecol. Manag. 435, 45-56. https://doi.org/10.1016/j.foreco.2018.12.034.

 

Engelbrecht, B.M.J., Kursar, T.A., Tyree, M.T., 2005. Drought effects on seedling survival in a tropical moist forest. Trees 19, 312-321. https://doi.org/10.1007/S00468-004-0393-0/FIGURES/6.

 

Engelbrecht, B.M.J., Dalling, J.W., Pearson, T.R.H., Wolf, R.L., Gálvez, D.A., Koehler, T., Tyree, M.T., Kursar, T.A., 2006. Short dry spells in the wet season increase mortality of tropical pioneer seedlings. Oecologia 148, 258-269. https://doi.org/10.1007/S00442-006-0368-5/TABLES/5.

 

Espeleta, J.F., West, J.B., Donovan, L.A., 2004. Species-specific patterns of hydraulic lift in co-occurring adult trees and grasses in a sandhill community. Oecologia 138, 341-349. https://doi.org/10.1007/s00442-003-1460-8.

 

Fang, S., Liu, Z., Cao, Y., Liu, D., Yu, M., Tang, L., 2011. Sprout development, biomass accumulation and fuelwood characteristics from coppiced plantations of Quercus acutissima. Biomass Bioenergy 35, 3104-3114. https://doi.org/10.1016/j.biombioe.2011.04.017.

 

Forrester, D.I., Tachauer, I.H.H., Annighoefer, P., Barbeito, I., Pretzsch, H., Ruiz-Peinado, R., Stark, H., Vacchiano, G., Zlatanov, T., Chakraborty, T., Saha, S., Sileshi, G.W., 2017. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For. Ecol. Manag. 396, 160-175. https://doi.org/10.1016/J.FORECO.2017.04.011.

 

Frelich, L.E., 2002. Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen-Deciduous Forests. Cambridge University Press, Cambridge.

 

Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., Ruiz-Jaen, M.C., Fröberg, M., Stendahl, J., Philipson, C.D., Mikusiński, G., Andersson, E., Westerlund, B., Andrén, H., Moberg, F., Moen, J., Bengtsson, J., 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340. https://doi.org/10.1038/ncomms2328.

 

Gray, A.N., Spies, T.A., Easter, M.J., 2002. Microclimatic and soil moisture responses to gap formation in coastal Douglas-fir forests. Can. J. For. Res. 32, 332-343. https://doi.org/10.1139/x01-200.

 

Guariguata, M.R., Pinard, M.A., 1998. Ecological knowledge of regeneration from seed in neotropical forest trees: Implications for natural forest management. For. Ecol. Manag. 112, 87-99. https://doi.org/10.1016/S0378-1127(98)00318-1.

 

Harvey, B.J., Donato, D.C., Turner, M.G., 2016. High and dry: Post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches. Glob. Ecol. Biogeogr. 25, 655-669. https://doi.org/10.1111/geb.12443.

 

Howe, H.F., Smallwood, J., 1982. Ecology of Seed Dispersal. Source Annu. Rev. Ecol. Syst. 13, 201-228.

 

Imai, N., Seino, T., Aiba, S., Takyu, M., Titin, J., Kitayama, K., 2012. Effects of selective logging on tree species diversity and composition of Bornean tropical rain forests at different spatial scales. Plant Ecol. 213, 1413-1424. https://doi.org/10.1007/s11258-012-0100-y.

 

IPCC, 2007. The Physical Science Basis: Working Group I - Intergovernmental Panel on Climate Change. Cambridge University Press, New York, p. 104.

 

Janzen, D.H., 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501-528. https://doi.org/10.1086/282687.

 

Joys, A.C., Fuller, R.J., Dolman, P.M., 2004. Influences of deer browsing, coppice history, and standard trees on the growth and development of vegetation structure in coppiced woods in lowland England. For. Ecol. Manag. 202, 23-37. https://doi.org/10.1016/J.FORECO.2004.06.035.

 
Kadavý, J., Kneifl, M., Knott, R., 2011. Establishment and Selected Characteristics of the Hády Coppice and Coppice-With-Standards Research Plot (TARMAG I) FRAMEADAPT-Frameworks and Possibilities of Forest Adaptation Measures and Strategies Connected with Climate Change View Project, vol. 57, pp. 451–458. https://doi.org/10.17221/3233-JFS.
 

Kammesheidt, L., 1998. The role of tree sprouts in the restoration of stand structure and species diversity in tropical moist forest after slash-and-burn agriculture in Eastern Paraguay. Plant Ecol. 139(2), 155-165.

 

Kennard, D.K., Gould, K., Putz, F.E., Fredericksen, T.S., Morales, F., 2002. Effect of disturbance intensity on regeneration mechanisms in a tropical dry forest. For. Ecol. Manag. 162, 197-208. https://doi.org/10.1016/S0378-1127(01)00506-0.

 
Kitajima, K., Fenner, M., 2009. Ecology of seedling regeneration. In: Fenner, M. (Ed.), Seeds: the Ecology of Regeneration in Plant Communities. CAB International, UK, pp. 331–359. https://doi.org/10.1079/9780851994321.0331.
 

Knapp, B.O., Olson, M.G., Dey, D.C., 2017. Early stump sprout development after two levels of harvest in a midwestern bottomland hardwood forest. For. Sci. 63, 377-387. https://doi.org/10.5849/fs-2016-029r2.

 

Kroschel, W.A., King, S.L., Keim, R.F., 2016. Tree regeneration by seed in bottomland hardwood forests: A review. SE. Nat. 15, 42-60. https://doi.org/10.1656/058.015.sp907.

 

Kuehne, C., Pyttel, P., Modrow, T., Kohnle, U., Bauhus, J., 2020. Seedling development and regeneration success after 10 years following group selection harvesting in a sessile oak (Quercus petraea [Mattuschka] Liebl.) stand. Ann. For. Sci. 77, 71. https://doi.org/10.1007/s13595-020-00972-y.

 

Kvasnica, J., Matula, R., Rejžek, M., Ewers, R.M., Riutta, T., Turner, E.C., Nilus, R., Svátek, M., 2023. Multi-stemming enhances tree survival and growth in Borneo's logged forests. For. Ecol. Manag. 544, 121140. https://doi.org/10.1016/j.foreco.2023.121140.

 

Ky-Dembele, C., Tigabu, M., Bayala, J., Ouédraogo, S.J., Odén, P.C., 2007. The relative importance of different regeneration mechanisms in a selectively cut savanna-woodland in Burkina Faso, West Africa. For. Ecol. Manag. 243, 28-38. https://doi.org/10.1016/j.foreco.2007.01.091.

 

Langley, J.A., Drake, B.G., Hungate, B.A., 2002. Extensive belowground carbon storage supports roots and mycorrhizae in regenerating scrub oaks. Oecologia 131, 542-548. https://doi.org/10.1007/S00442-002-0932-6.

 

Leuschner, C., Meier, I.C., 2018. The ecology of Central European tree species: Trait spectra, functional trade-offs, and ecological classification of adult trees. Perspect. Plant Ecol. Evol. Syst. 33, 89-103. https://doi.org/10.1016/j.ppees.2018.05.003.

 

Li, R., Yan, Q., Xie, J., Wang, J., Zhang, T., Zhu, J., 2022. Effects of logging on the trade-off between seed and sprout regeneration of dominant woody species in secondary forests of the Natural Forest Protection Project of China. Ecol. Process. 11, 16. https://doi.org/10.1186/S13717-022-00363-3.

 

Matoušková, M., Urban, J., Volařík, D., Hájíčková, M., Matula, R., 2022. Coppicing modulates physiological responses of sessile oak (Quercus petraea Matt. Lieb.) to drought. For. Ecol. Manag. 517, 120253. https://doi.org/10.1016/J.FORECO.2022.120253.

 

Matula, R., Svátek, M., Kůrová, J., Úradníček, L., Kadavý, J., Kneifl, M., 2012. The sprouting ability of the main tree species in Central European coppices: Implications for coppice restoration. Eur. J. For. Res. 131, 1501-1511. https://doi.org/10.1007/s10342-012-0618-5.

 

Matula, R., Damborská, L., Nečasová, M., Geršl, M., Šrámek, M., 2015. Measuring biomass and carbon stock in resprouting woody plants. PLoS One 10, 12-15. https://doi.org/10.1371/journal.pone.0118388.

 

Matula, R., Řepka, R., Šebesta, J., Pettit, J.L., Chamagne, J., Šrámek, M., Horgan, K., Maděra, P., 2020. Resprouting trees drive understory vegetation dynamics following logging in a temperate forest. Sci Rep 10, 1–10. https://doi.org/10.1038/s41598-020-65367-5.

 

Matula, R., Šrámek, M., Kvasnica, J., Uherková, B., Slepička, J., Matoušková, M., Kutchartt, E., Svátek, M., 2019. Pre-disturbance tree size, sprouting vigour and competition drive the survival and growth of resprouting trees. For. Ecol. Manag. 446, 71-79. https://doi.org/10.1016/j.foreco.2019.05.012.

 

McEuen, A.B., Curran, L.M., 2004. Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85, 507-518. https://doi.org/10.1890/03-4006.

 

Mejstřík, M., Šrámek, M., Matula, R., 2022. The effects of stand density, standards and species composition on biomass production in traditional coppices. For. Ecol. Manag. 504, 119860. https://doi.org/10.1016/j.foreco.2021.119860.

 

Midgley, J.J., 1996. Why the world's vegetation is not totally dominated by resprouting plants; because resprouters are shorter than reseeders. Ecography 19, 92-95.

 

Miller, A., Reilly, D., Bauman, S., Shea, K., 2012. Interactions between frequency and size of disturbance affect competitive outcomes. Ecol. Res. 27, 783-791. https://doi.org/10.1007/S11284-012-0954-4.

 

Myers, J.A., Harms, K.E., 2009. Seed arrival, ecological filters, and plant species richness: A meta-analysis. Ecol. Lett. 12, 1250-1260. https://doi.org/10.1111/j.1461-0248.2009.01373.x.

 

Norden, N., Chazdon, R.L., Chao, A., Jiang, Y., Vílches-Alvarado, B., 2009. Resilience of tropical rain forests: Tree community reassembly in secondary forests. Ecol. Lett. 12, 385-394. https://doi.org/10.1111/j.1461-0248.2009.01292.x.

 

Ojeda, F., 1998. Biogeography of seeder and resprouter Erica species in the Cape Floristic Region-Where are the resprouters? Biol. J. Linn. Soc. 63, 331-347. https://doi.org/10.1111/J.1095-8312.1998.TB01521.X.

 

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2016. Vegan: Community Ecology Package. R Package Version 2, 3-5.

 

Peñuelas, J., Filella, I., 2003. Deuterium labelling of roots provides evidence of deep water access and hydraulic lift by Pinus nigra in a Mediterranean forest of NE Spain. Environ. Exp. Bot. 49, 201-208. https://doi.org/10.1139/y75-101.

 

Pietras, J., Stojanović, M., Knott, R., Pokorný, R., 2016. Oak sprouts grow better than seedlings under drought stress. iForest 9, 529-535. https://doi.org/10.3832/IFOR1823-009.

 

Premoli, A.C., Steinke, L., 2008. Genetics of sprouting: Effects of long-term persistence in fire-prone ecosystems. Mol. Ecol. 17, 3827-3835. https://doi.org/10.1111/j.1365-294X.2008.03889.x.

 
R Core Team, 2022. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, p. 4.2.0. https://www.r-project.org/. (Accessed 13 January 2024).
 

Shiferaw, W., Demissew, S., Bekele, T., 2018. Ecology of soil seed banks: Implications for conservation and restoration of natural vegetation: A review. Int. J. Biodivers. Conserv. 10, 380-393. https://doi.org/10.5897/ijbc2018.1226.

 

Silva Pedro, M., Rammer, W., Seidl, R., 2016. A disturbance-induced increase in tree species diversity facilitates forest productivity. Landsc. Ecol. 31, 989-1004. https://doi.org/10.1007/s10980-015-0317-y.

 

Šrámek, M., Matoušková, M., Lengálová, K., Kruttova, M., Zlatanov, T., Úradníček, L., Ehrenbergerová, L., Matula, R., 2020. Effective determination of biomass in oak coppices. Trees 34, 1335-1345. https://doi.org/10.1007/s00468-020-01987-8.

 

Šrámek, M., Weger, J., Bubeník, J., Matoušková, M., Lengálová, K., Matula, R., 2023. Effective woody biomass estimation in poplar short-rotation coppices - Populus nigra × P. maximowiczii. iForest 16, 202-209. https://doi.org/10.3832/ifor4200-016.

 

Stevens-Rumann, C.S., Kemp, K.B., Higuera, P.E., Harvey, B.J., Rother, M.T., Donato, D.C., Morgan, P., Veblen, T.T., 2018. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243-252. https://doi.org/10.1111/ele.12889.

 

Stojanović, M., Szatniewska, J., Kyselová, I., Pokorný, R., Čater, M., 2017. Transpiration and water potential of young Quercus petraea (M.) Liebl. coppice sprouts and seedlings during favourable and drought conditions. J. For. Sci. 63, 313-323. https://doi.org/10.17221/36/2017-JFS.

 

Svátek, M., Rejžek, M., Kvasnica, J., Řepka, R., Matula, R., 2018. Frequent fires control tree spatial pattern, mortality and regeneration in Argentine open woodlands. For. Ecol. Manag. 408, 129-136. https://doi.org/10.1016/j.foreco.2017.10.048.

 

Swaim, J.T., Dey, D.C., Saunders, M.R., Weigel, D.R., Thornton, Ch. D., Kabrick, J.M., Jenkins, M.A., 2016. Predicting the height growth of oak species (Quercus) reproduction over a 23-year period following clearcutting. For. Ecol. Manag. 364, 101-112. https://doi.org/10.1016/J.FORECO.2016.01.005.

 

Tiebel, K., Huth, F., Wagner, S., 2018. Soil seed banks of pioneer tree species in European temperate forests: A review. iForest 11, 48-57. https://doi.org/10.3832/ifor2400-011.

 

Török, P., Helm, A., Kiehl, K., Buisson, E., Valkó, O., 2018. Beyond the species pool: modification of species dispersal, establishment, and assembly by habitat restoration. Restor. Ecol. 26, S65-S72. https://doi.org/10.1111/rec.12825.

 

Vesk, P.A., Westoby, M., 2004. Sprouting ability across diverse disturbances and vegetation types worldwide. J. Ecol. 92, 310-320.

 

Weil, R., Brady, N., 2017. The Nature and Properties of Soils, fifteenth ed. Pearson Education, USA.

 

Wyckoff, P.H., Clark, J.S., 2005. Tree growth prediction using size and exposed crown area. Can. J. For. Res. 35, 13-20. https://doi.org/10.1139/x04-142.

 

Xue, Y., Zhang, W., Ma, C., Ma, L., Zhou, J., 2014. Relative importance of various regeneration recruits in different recovery stages of Quercus variabilis forest after selective logging. For. Syst. 23, 199-208. https://doi.org/10.5424/fs/2014232-03263.

 

Yan, Q.L., Zhu, J.J., Yu, L.Z., 2012. Seed regeneration potential of canopy gaps at early formation stage in temperate secondary forests, Northeast China. PLoS One 7, e39502. https://doi.org/10.1371/JOURNAL.PONE.0039502.

 

Zapater, M., Hossann, C., Bréda, N., Bréchet, C., Bonal, D., Granier, A., 2011. Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees 25, 885-894. https://doi.org/10.1007/s00468-011-0563-9.

 

Zhang, T., Yan, Q., Wang, J., Zhu, J., 2018. Restoring temperate secondary forests by promoting sprout regeneration: Effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance. For. Ecol. Manag. 429, 267-277. https://doi.org/10.1016/j.foreco.2018.07.025.

Forest Ecosystems
Article number: 100198

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Mejstřík M, Svátek M, Pollastrini M, et al. Differential roles of seed and sprout regeneration in forest diversity and productivity after disturbance. Forest Ecosystems, 2024, 11(3): 100198. https://doi.org/10.1016/j.fecs.2024.100198

152

Views

4

Downloads

2

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 02 October 2023
Revised: 12 April 2024
Accepted: 12 April 2024
Published: 20 April 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).