AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Tree species identity and interaction determine vertical forest structure in young planted forests measured by terrestrial laser scanning

Mengxi Wanga( )Lander BaetenbFrieke Van CoillieaKim CaldersaKris VerheyenbQuentin PonettecHaben BlondeelbBart MuysdJohn ArmstoneHans Verbeecka
Q-ForestLab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Belgium
Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Belgium
Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
Department of Earth & Environmental Sciences, KU Leuven, Belgium
Department of Geographical Sciences, University of Maryland, College Park, MD, USA
Show Author Information

Abstract

Vertical forest structure is closely linked to multiple ecosystem characteristics, such as biodiversity, habitat, and productivity. Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species. However, the relative importance of species richness, species identity and species interactions for the variation in vertical forest structure remains unclear, mainly because traditional forest inventories do not observe vertical stand structure in detail. Terrestrial laser scanning (TLS), however, allows to study vertical forest structure in an unprecedented way. Therefore, we used TLS single scan data from 126 plots across three experimental planted forests of a large-scale tree diversity experiment in Belgium to study the drivers of vertical forest structure. These plots were 9–11 years old young pure and mixed forests, characterized by four levels of tree species richness ranging from monocultures to four-species mixtures, across twenty composition levels. We generated vertical plant profiles from the TLS data and derived six stand structural variables. Linear mixed models were used to test the effect of species richness on structural variables. Employing a hierarchical diversity interaction modelling framework, we further assessed species identity effect and various species interaction effects on the six stand structural variables. Our results showed that species richness did not significantly influence most of the stand structure variables, except for canopy height and foliage height diversity. Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites. Species interaction effects were observed to be site-dependent due to varying site conditions and species pools, and rapidly growing tree species tend to dominate these interactions. Overall, our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.

References

 

Ali, A., 2019. Forest stand structure and functioning: current knowledge and future challenges. Ecol. Indic. 98, 665-677.

 

Ampoorter, E., Barbaro, L., Jactel, H., Baeten, L., Boberg, J., Carnol, M., Castagneyrol, B., Charbonnier, Y., Dawud, S.M., Deconchat, M., Smedt, P.D., Wandeler, H.D., Guyot, V., Hättenschwiler, S., Joly, F. -X., Koricheva, J., Milligan, H., Muys, B., Nguyen, D., Ratcliffe, S., Raulund-Rasmussen, K., Scherer-Lorenzen, M., van der Plas, F., Keer, J.V., Verheyen, K., Vesterdal, L., Allan, E., 2020. Tree diversity is key for promoting the diversity and abundance of forest-associated taxa in Europe. Oikos 129, 133-146.

 

Baeten, L., Bruelheide, H., van der Plas, F., Kambach, S., Ratcliffe, S., Jucker, T., Allan, E., Ampoorter, E., Barbaro, L., Bastias, C.C., Bauhus, J., Benavides, R., Bonal, D., Bouriaud, O., Bussotti, F., Carnol, M., Castagneyrol, B., Charbonnier, Y., Chećko, E., Coomes, D.A., Dahlgren, J., Dawud, S.M., De Wandeler, H., Domisch, T., Finér, L., Fischer, M., Fotelli, M., Gessler, A., Grossiord, C., Guyot, V., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F. -X., Koricheva, J., Lehtonen, A., Müller, S., Muys, B., Nguyen, D., Pollastrini, M., Radoglou, K., Raulund-Rasmussen, K., Ruiz-Benito, P., Selvi, F., Stenlid, J., Valladares, F., Vesterdal, L., Verheyen, K., Wirth, C., Zavala, M.A., Scherer-Lorenzen, M., 2019. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733-744.

 

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1-48.

 

Bravo-Oviedo, A., Condés, S., del Río, M., Pretzsch, H., Ducey, M.J., 2018. Maximum stand density strongly depends on species-specific wood stability, shade and drought tolerance. Forestry 91(4), 459-469.

 

Bruelheide, H., Nadrowski, K., Assmann, T., Bauhus, J., Both, S., Buscot, F., Chen, X. -Y., Ding, B., Durka, W., Erfmeier, A., Gutknecht, J., Guo, D., Guo, L. -D., Haerdtle, W., He, J. -S., Klein, A., Kühn, P., Liang, Y., Liu, X., Schmid, B., 2014. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74-89.

 

Calders, K., Armston, J., Newnham, G., Herold, M., Goodwin, N., 2014. Implications of sensor configuration and topography on vertical plant profiles derived from terrestrial LiDAR. Agric. For. Meteorol. 194, 104-117.

 

Calders, K., Schenkels, T., Bartholomeus, H., Armston, J., Verbesselt, J., Herold, M., 2015. Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements. Agric. For. Meteorol. 203, 158-168.

 

Con, T.V., Thang, N.T., Ha, D.T.T., Khiem, C.C., Quy, T.H., Lam, V.T., Van Do, T., Sato, T., 2013. Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam. For. Ecol. Manag. 310, 213-218.

 

Drössler, L., Nilsson, U., Lundqvist, L., 2014. Simulated transformation of even-aged Norway spruce stands to multi-layered forests: an experiment to explore the potential of tree size differentiation. Forestry 87, 239-248.

 

Ehbrecht, M., Schall, P., Ammer, C., Seidel, D., 2017. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric. For. Meteorol. 242, 1-9.

 

Forrester, D.I., Kohnle, U., Albrecht, A.T., Bauhus, J., 2013. Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For. Ecol. Manag. 304, 233-242.

 

Fotis, A.T., Morin, T.H., Fahey, R.T., Hardiman, B.S., Bohrer, G., Curtis, P.S., 2018. Forest structure in space and time: biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agric. For. Meteorol. 250–251, 181-191.

 

Gao, T., Hedblom, M., Emilsson, T., Nielsen, A.B., 2014. The role of forest stand structure as biodiversity indicator. For. Ecol. Manag. 330, 82-93.

 

Huang, Y., Chen, Y., Castro-Izaguirre, N., Baruffol, M., Brezzi, M., Lang, A., Li, Y., Härdtle, W., von Oheimb, G., Yang, X., Liu, X., Pei, K., Both, S., Yang, B., Eichenberg, D., Assmann, T., Bauhus, J., Behrens, T., Buscot, F., Chen, X.Y., Chesters, D., Ding, B.Y., Durka, W., Erfmeier, A., Fang, J.Y., Fischer, M., Guo, L.D., Guo, D.L., Gutknecht, J.L.M., He, J.S., He, C.L., Hector, A., Hoenig, L., Hu, R.Y., Klein, A.M., Kuehn, P., Liang, Y., Li, S., Michalski, S., Scherer-Lorenzen, M., Schmidt, K., Scholten, T., Schuldt, A., Shi, X., Tan, M.Z., Tang, Z., Trogisch, S., Wang, Z., Welk, E., Wirth, C., Wubet, T., Xiang, W., Yu, M., Yu, X.D., Zhang, J.Y., Zhang, S., Zhang, N., Zhou, H.Z., Zhu, C.D., Zhu, L., Bruelheide, H., Ma, K.P., Niklaus, P.A., Schmid, B., 2018. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science. 362(6410), 80-83.

 

Hui, G., Zhang, G., Zhao, Z., Yang, A., 2019. Methods of forest structure research: a review. Curr. For. Rep. 5, 142-154.

 

Huuskonen, S., Domisch, T., Finér, L., Hantula, J., Hynynen, J., Matala, J., Miina, J., Neuvonen, S., Nevalainen, S., Niemistö, P., Nikula, A., Piri, T., Siitonen, J., Smolander, A., Tonteri, T., Uotila, K., Viiri, H., 2021. What is the potential for replacing monocultures with mixed-species stands to enhance ecosystem services in boreal forests in Fennoscandia? For. Ecol. Manag. 479, 118558.

 

Juchheim, J., Ehbrecht, M., Schall, P., Ammer, C., Seidel, D., 2020. Effect of tree species mixing on stand structural complexity. Forestry 93, 75-83.

 

Jupp, D.L.B., Culvenor, D.S., Lovell, J.L., Newnham, G.J., Strahler, A.H., Woodcock, C.E., 2009. Estimating forest LAI profiles and structural parameters using a ground-based laser called 'Echidna'. Tree. Physiol. 29, 171-181.

 
Kelty, M.J., 1992. Comparative productivity of monocultures and mixed-species stands. In: Kelty, M.J., Larson, B.C., Oliver, C.D. (Eds.), The Ecology and Silviculture of Mixed-Species Forests. Springer, Dordrecht, pp. 125–141.
 

Keren, S., Svoboda, M., Janda, P., Nagel, T.A., 2020. Relationships between structural indices and conventional stand attributes in an old-growth forest in southeast Europe. Forests 11, 4.

 

Kirwan, L., Connolly, J., Finn, J.A., Brophy, C., Lüscher, A., Nyfeler, D., Sebastià, M.T., 2009. Diversity–interaction modeling: estimating contributions of species identities and interactions to ecosystem function. Ecology 90, 2032-2038.

 

Kuznetsova, T., Mandre, M., Klõšeiko, J., Pärn, H., 2010. A comparison of the growth of Scots pine (Pinus sylvestris L.) in a reclaimed oil shale post-mining area and in a Calluna site in Estonia. Environ. Monit. Access. 166, 257-265.

 

Laurans, M., Hérault, B., Vieilledent, G., Vincent, G., 2014. Vertical stratification reduces competition for light in dense tropical forests. For. Ecol. Manag. 329, 79-88.

 

Lelli, C., Bruun, H.H., Chiarucci, A., Donati, D., Frascaroli, F., Fritz, Ö., Goldberg, I., Nascimbene, J., Tøttrup, A.P., Rahbek, C., Heilmann-Clausen, J., 2019. Biodiversity response to forest structure and management: comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manag. 432, 707-717.

 

Lian, Z., Wang, J., Fan, C., Gadow, K. v., 2022. Structure complexity is the primary driver of functional diversity in the temperate forests of northeastern China. For. Ecosyst. 9, 100048.

 

Lindenmayer, D.B., Mackey, B.G., Mullen, I.C., McCarthy, M.A., Gill, A.M., Cunningham, R.B., Donnelly, C.F., 1999. Factors affecting stand structure in forests–are there climatic and topographic determinants? For. Ecol. Manag. 123, 55-63.

 

Meeussen, C., Govaert, S., Vanneste, T., Calders, K., Bollmann, K., Brunet, J., Cousins, S. A. O., Diekmann, M., Graae, B. J., Hedwall, P. -O., Krishna Moorthy, S. M., Iacopetti, G., Lenoir, J., Lindmo, S., Orczewska, A., Ponette, Q., Plue, J., Selvi, F., Spicher, F., Tolosano, M., Verbeeck, H., Verheyen, K., Vangansbeke, P., De Frenne, P., 2020. Structural variation of forest edges across Europe. For. Ecol. Manag. 462, 117929.

 

Mina, M., Huber, M.O., Forrester, D.I., Thürig, E., Rohner, B., 2018. Multiple factors modulate tree growth complementarity in Central European mixed forests. J. Ecol. 106, 1106-1119.

 

Morin, X., Fahse, L., Scherer-Lorenzen, M., Bugmann, H., 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211-1219.

 

Mura, M., McRoberts, R.E., Chirici, G., Marchetti, M., 2015. Estimating and mapping forest structural diversity using airborne laser scanning data. Remote Sens. Environ. 170, 133-142.

 

Newnham, G.J., Armston, J.D., Calders, K., Disney, M.I., Lovell, J.L., Schaaf, C.B., Strahler, A.H., Danson, F.M., 2015. Terrestrial laser scanning for plot-scale forest measurement. Curr. For. Rep. 1, 239-251.

 

Nguyen, V. -T., Fournier, R.A., Côté, J. -F., Pimont, F., 2022. Estimation of vertical plant area density from single return terrestrial laser scanning point clouds acquired in forest environments. Remote Sens. Environ. 279, 113115.

 

Ouyang, S., Xiang, W., Wang, X., Xiao, W., Chen, L., Li, S., Sun, H., Deng, X., Forrester, D.I., Zeng, L., Lei, P., Lei, X., Gou, M., Peng, C., 2019. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 107(5), 2266-2277.

 

Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., Bruford, M.W., Brummitt, N., Butchart, S.H.M., Cardoso, A.C., Coops, N.C., Dulloo, E., Faith, D.P., Freyhof, J., Gregory, R.D., Heip, C., Höft, R., Hurtt, G., Jetz, W., Karp, D.S., McGeoch, M.A., Obura, D., Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., Scharlemann, J.P.W., Stuart, S.N., Turak, E., Walpole, M., Wegmann, M., 2013. Essential biodiversity variables. Science. 339, 277-278.

 

Perles-Garcia, M.D., Kunz, M., Fichtner, A., Haerdtle, W., Oheimb, G., 2021. Tree species richness promotes an early increase of stand structural complexity in young subtropical plantations. J. Appl. Ecol. 58, 2305-2314.

 

Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M.C., Kommareddy, A., Pickens, A., Turubanova, S., Tang, H., Silva, C.E., Armston, J., Dubayah, R., Blair, J.B., Hofton, M., 2021. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165.

 
Pretzsch, H., Forrester, D., Bauhus, J., 2017. Mixed-Species Forests: Ecology and Management. Springer, Berlin.
 

Pretzsch, H., del Río, M., Biber, P., Arcangeli, C., Bielak, K., Brang, P., Dudzinska, M., Forrester, D. I., Klädtke, J., Kohnle, U., Ledermann, T., Matthews, R., Nagel, J., Nagel, R., Nilsson, U., Ningre, F., Nord-Larsen, T., Wernsdörfer, H., Sycheva, E., 2019. Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: review and perspectives. Eur. J. For. Res. 138(1), 165-185.

 
R Core Team, 2022. R: a language and environment for statistical computing Vienna, Austria. https://www.R-project.org/. (Accessed 10 January 2024).
 

Sercu, B., Baeten, L., Van Coillie, F., Martel, A., Lens, L., Verheyen, K., Bonte, D., 2017. How tree species identity and diversity affect light transmittance to the understory in mature temperate forests. Ecol. Evol. 7, 10861-10870.

 

Skidmore, A.K., Coops, N.C., Neinavaz, E., Ali, A., Schaepman, M.E., Paganini, M., Kissling, W.D., Vihervaara, P., Darvishzadeh, R., Feilhauer, H., Fernandez, M., Fernández, N., Gorelick, N., Geijzendorffer, I., Heiden, U., Heurich, M., Hobern, D., Holzwarth, S., Muller-Karger, F.E., Van De Kerchove, R., Lausch, A., Leitão, P.J., Lock, M.C., Mücher, C.A., O'Connor, B., Rocchini, D., Roeoesli, C., Turner, W., Vis, J.K., Wang, T., Wegmann, M., Wingate, V., 2021. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896-906.

 

Storch, F., Dormann, C.F., Bauhus, J., 2018. Quantifying forest structural diversity based on large-scale inventory data: a new approach to support biodiversity monitoring. For. Ecosyst. 5, 34.

 

Tang, H., Armston, J., Hancock, S., Marselis, S., Goetz, S., Dubayah, R., 2019. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens. Environ. 231, 111262.

 

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., Siemann, E., 1997. The influence of functional diversity and composition on ecosystem processes. Science 277(5330), 1300-1302.

 

Verheyen, K., Ceunen, K., Ampoorter, E., Baeten, L., Bosman, B., Branquart, E., Carnol, M., De Wandeler, H., Grégoire, J. -C., Lhoir, P., Muys, B., Setiawan, N., Vanhellemont, M., Ponette, Q., 2013. Assessment of the functional role of tree diversity, the example of the multi-site FORBIO-experiment. Plant. Ecol. Evol. 146, 1-10.

 

Walter, J.A., Stovall, A.E.L., Atkins, J.W., 2021. Vegetation structural complexity and biodiversity in the great smoky mountains. Ecosphere. 12, e03390.

 

Wang, M., Calders, K., Verbeeck, H., Verheyen, K., Baeten, L., Blondeel, H., Muys, B., Ponette, Q., Armston, J., & Van Coillie, F., 2024. Exploring the influence of tree species richness on vertical structure variability in young plantations using terrestrial laser scanning. For. Ecol. Manag. 554, 121662.

 

Yépez-Rincón, F.D., Luna-Mendoza, L., Ramírez-Serrato, N.L., Hinojosa-Corona, A., Ferriño-Fierro, A.L., 2021. Assessing vertical structure of an endemic forest in succession using terrestrial laser scanning (TLS). Case study: guadalupe Island. Remote Sens. Environ. 263, 112563.

 

Zenner, E.K., Hibbs, D.E., 2000. A new method for modeling the heterogeneity of forest structure. For. Ecol. Manag. 129, 75-87.

Forest Ecosystems
Article number: 100196

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Wang M, Baeten L, Van Coillie F, et al. Tree species identity and interaction determine vertical forest structure in young planted forests measured by terrestrial laser scanning. Forest Ecosystems, 2024, 11(3): 100196. https://doi.org/10.1016/j.fecs.2024.100196

301

Views

30

Downloads

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 11 December 2023
Revised: 08 April 2024
Accepted: 08 April 2024
Published: 15 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).