AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

The rate of deadwood decomposition processes in tree stand gaps resulting from bark beetle infestation spots in mountain forests

Ewa Błońska( )Adam GórskiJarosław Lasota
Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425, Kraków, Poland
Show Author Information

Abstract

Decaying wood is an essential element of forest ecosystems and it affects its other components. The aim of our research was to determine the decomposition rate of deadwood in various humidity and thermal conditions in the gaps formed in the montane forest stands. The research was carried out in the Babiogórski National Park. The research plots were marked out in the gaps of the stands, which were formed as a result of bark beetle gradation. Control plots were located in undisturbed stands. The research covered wood of two species – spruce and beech in the form of cubes with dimensions of 50 ​mm × ​50 ​mm × ​22 ​mm. Wood samples were placed directly on the soil surface and subjected to laboratory analysis after 36 months. A significant influence of the wood species and the study plot type on the physicochemical properties of the tested wood samples was found. Wood characteristics strongly correlated with soil moisture. A significantly higher mass decline of wood samples was recorded on the reference study plots, which were characterized by more stable moisture conditions. Poorer decomposition of wood in the gaps regardless of the species is related to lower moisture. The wood species covered by the study differed in the decomposition rate. Spruce wood samples were characterized by a significantly higher decomposition rate compared to beech wood samples. Our research has confirmed that disturbances that lead to the formation of gaps have a direct impact on the decomposition process of deadwood.

References

 

Allen, C.D., Macalady, A.K., Chenchoni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D., Hog, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Gastro, J., Demidova, N., Lim, J.H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684.

 

Allison, V.J., Condron, L.M., Peltzer, D.A., Richardson, S.J., Turner, B.L., 2007. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol. Biochem. 39 (7), 1770–1781.

 

Antczak, A., Michaluszko, A., Klosinska, T., Drozdzek, M., 2013. Determination of the structural substances content in the field maple wood (Acer campestre L.)- comparsion of the classical methods with instrumental. Ann. Warsaw Univ. Life Sci. -SGGW For. Wood Technol. 82, 11–17.

 

Asplund, J., Kauserud, H., Ohlson, M., Nybakken, L., 2019. Spruce and beech as local determinants of forest fungal community structure in litter, humus and mineral soil. FEMS Microbiol. Ecol. 95, fiy232.

 

Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., Tonon, G., Brusetti, L., 2018. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil Ecol. 126, 75–84.

 

Błońska, E., Lasota, J., 2017. Soil organic matter accumulation and carbon fractions along a moisture gradient of forest soils. Forests 8 (11), 448.

 

Błońska, E., Piaszczyk, W., Staszel, K., Lasota, J., 2021. Enzymatic activity of soils and soil organic matter stabilization as an effect of components released from the decomposition of litter. Appl. Soil Ecol. 157, 103723.

 

Błońska, E., Prażuch, W., Lasota, J., 2023. Deadwood affects the soil organic matter fractions and enzyme activity of soils in altitude gradient of temperate forests. For. Ecosyst. 10, 100115.

 

Brzostek, E.R., Finzi, A.C., 2012. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. J. Geophys. Res. 117, G01018.

 

Cantin, G., Delahaye, B., Funatsu, B.M., 2023. On the degradation of forest ecosystems by extreme events: Statistical Model Checking of a hybrid model. Ecol. Complex. 53, 101039.

 

Chen, Y., Ma, S., Jiang, H., Hu, Y., Lu, X., 2020. Influences of litter diversity and soil moisture on soil microbial communities in decomposing mixed litter of alpine steppe species. Geoderma 377, 114577.

 

Dufour-Pelletier, S., Tremblay, J.A., Hébert, C., Lachat, T., Ibarzabal, J., 2020. Testing the effect of snag and cavity supply on deadwood associated species in a managed boreal forest. Forests 11, 424.

 

Feldamnn, E., Drößler, L., Hauck, M., Kucbel, S., Pichler, V., Leuschner, C., 2018. Canopy gap dynamics and tree understory release in a virgin beech forest, Slovakian Carpathians. For. Ecol. Manag. 415, 38–46.

 

Flinn, K.M., Dolnicek, M.N., Cox, A.L., 2022. Gap dynamics and disease – causing invasive species drive the development of an old-growth forest over 250 years. For. Ecol. Manag. 508, 120045.

 

Fravolini, G., Tognetti, R., Lombardi, F., Egli, M., Ascher-Jenull, J., Arfaidi, P., Bardelli, T., Cherubini, P., Marchetti, M., 2018. Quantifying decay progression of deadwood in Mediterranean mountain forests. For. Ecol. Manag. 408, 228–237.

 

Gulis, V., Suberkropp, K., 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw. Biol. 48, 123–134.

 

Harmon, M.E., Franklin, J.F., Swanson, F.J., Sollins, P., Gregory, S.V., Lattin, J.D., Anderson, N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaemper, G.W., Cromack Jr, K., Cummins, K.W., 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 15, 133–302.

 

Herrmann, S., Kahl, T., Bauhus, J., 2015. Decomposition dynamics of coarse woody debris of three important central European tree species. For. Ecosyst. 2, 27.

 

Kameniar, O., Vostarek, O., Mikolás, M., Svitok, M., Frankovic, M., Morrissey, R.C., Kozák, D., Nagel, T.A., Dusátko, M., Pavlin, J., Ferencík, M., Keeton, W.S., Spînu, A.P., Petritan, I.C., Majdanová, L., Markuljaková, K., Roibu, C.C., Gloor, R., Bace, R., Buechling, A., Synek, M., Rydval, M., Málek, J., Begovic, K., Hofmeister, J., Rodrigo, R., Pettit, J.L., Fodor, E., Janda, P., Svoboda, M., 2023. Synchronised disturbance in spruce- and beech-dominated forests across the largest primary mountain forest landscape in temperate Europe. For. Ecol. Manag. 537, 120906.

 

Karhu, K., Auffret, M.D., Dungait, J.A.J., Hopkins, D.W., Prosser, J.I., Singh, B.K., Subke, J.A., Wookey, P.A., Agren, G.I., Sebastià, M.T., Gouriveau, F., Bregkvist, G., Meir, P., Nottingham, A.T., Salinas, N., Hartley, I.P., 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84.

 
Krzysik, F., 1974. Nauka O Drewnie. PWN, Warszawa, pp. 1–653.
 

Lin, L., Webster, J.R., 2014. Detritus decomposition and nutrient dynamics in a forested headwater stream. Ecol. Model. 293, 58–68.

 

Lombardi, F., Cherubini, P., Cocozza, R., Tognetti, C., Lasserre, B., Marchetti, M., 2012. Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean mountain forests. Ann. For. Sci 70, 101.

 

Mackensen, J., Bauhus, J., Webber, E., 2003. Decomposition rates of coarse woody debris – a review with particular emphasis on Australian tree species. Aust. J. Bot. 51, 27–37.

 

Mäki, M., Mali, T., Hellén, H., Heinonsolo, J., Lundell, T., Bäck, J., 2021. Deadwood substrate and species-species interactions determine the release of volatile organic compounds by wood-decaying fungi. Fungal Ecol 54, 101106.

 

Müller, J., Bütler, R., 2010. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur. J. For. Res. 129, 981–992.

 

Muscolo, A., Sidari, M., Mercurio, R., 2007. Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands. For. Ecol. Manag. 242, 412–418.

 

Netherer, S., Kandasamy, D., Jirosová, A., Kalinova, B., Schebeck, M., Schlyter, F., 2021. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest. Sci. 94, 591–614.

 

Obladen, N., Dechering, P., Skiadaresis, G., Tegel, W., Keßler, J., Höllerl, S., Kaps, S., Hertel, M., Dulamsuren, C., Seifert, T., Hirsch, M., Seim, A., 2021. Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany. Agric. For. Meteorol. 307, 108482.

 

Perreault, L., Forester, J.A., Lindner, D.L., Jusino, M.A., Fraver, S., Banik, M.T., Mladenoff, D.J., 2023. Linking wood-decay fungal communities to decay rates: Using a long-term experimental manipulation of deadwood and canopy gaps. Fungal Ecol. 62, 101220.

 

Piaszczyk, W., Lasota, J., Błońska, E., Foremnik, K., 2022. How habitat moisture condition affects the decomposition of fine woody debris from different species. Catena 208, 105765.

 

Pritsch, K., Raidl, S., Marksteiner, E., Agerer, R., Scholter, H., Hartmann, H., 2004. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microbiol. Methods 58 (2), 233–241.

 

Przepióra, F., Loch, J., Ciach, M., 2020. Bark beetle infestation spots as biodiversity hotspots: Canopy gaps resulting from insect outbreaks enhance the species richness, diversity and abundance of birds breeding in coniferous forests. For. Ecol. Manag. 473, 118280.

 

Rodrigues, J., Faix, O., Pereira, H., 1999. Improvement of the acetylbromide method for lignin determination within large scale screening programmes. Holz als Roh-und Werkstoff 57 (5), 341–345.

 

Romeiro, J.M.N., Eid, T., Fernandez, C.A., Kangos, A., Tromborg, E., 2022. Natural disturbenaces risks in European Boreal and Temperate forests and their links to climate change – a review of modeling approaches. For. Ecol. Manag. 509, 120071.

 

Russell, M.B., Fraver, S., Aakala, T., Gove, J.H., Woodall, C.W., D'Amato, A.W., Ducey, M.J., 2015. Quantifying carbon stores and decomposition in dead wood: a review. For. Ecol. Manag. 350, 107–128.

 

Sanaullah, M., Razavi, B.S., Blagodatskaya, E., Kuzyakov, Y., 2016. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fertil. Soils 52, 505–514.

 

Sinsabaugh, R.L., Hill, B.H., Shah, J.J.F., 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798.

 

Staszel, K., Błońska, E., Lasota, J., 2022. Fine root morphology and soil properties under influence of different tree stands along an altitudinal climosequence in the Carpathian mountains. For. Ecosyst. 9, 100066.

 
Stevens, V., 1997. The ecological role of coarse woody debris: an overview of the ecological importance of CWD in B.C. forests. B.C. Ministry of Forests, Victoria, B.C.
 

Stienen, T., Schmidt, O., Huckfeldt, T., 2014. Wood decay by indoor basidiomycetes at different moisture and temperature. Holzforschung 68 (1), 9–15.

 

Stockland, J.N., Siitonen, J., Jonsson, B.G., 2012. Biodiversity in DeadWood. Cambridge University Press, Cambridge.

 

Szwagrzyk, J., 2014. Zamieranie i rozkład drzew jako procesy ekologiczne. Studia i Materiały CEPL 41 (4), 9–14.

 

Tedersoo, L., Kõljalg, U., Hallenberg, N., Larsson, K.-H., 2003. Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol. 159, 153–165.

 

Thom, D., Sommerfeld, A., Sebald, J., Hagge, J., Muller, J., Seidl, R., 2020. Effects of disturbance patterns and deadwood on the microclimate in European beech forests. For. Ecol. Manag. 291, 108066.

 

Tong, S., Cao, G., Zhang, Z., Zhang, J., Yan, X., 2023. Soil microbial community diversity and distribution characteristics under three vegetation types in the Qilian Mountains, China. J. Arid Land 15, 359–376.

 

Turner, B.L., 2010. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 19, 6485.

 

Vacek, Z., Prokupkova, A., Vacek, S., Bulusek, D., Šimunek, V., Hajek, V., Kralicek, I., 2021. Mixed vs. Monospecific mountain forests in response to climate change: structural and growth perspectives of Norway spruce and European beech. For. Ecol. Manag. 488, 119019.

 

Wang, Y., Li, F.Y., Song, X., Wang, X., Suri, G., Baoyin, T., 2020. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role. Agric. Ecosyst. Environ. 303, 107119.

 

Wang, S., Mori, T., Zou, S., Zheng, H., Hedenec, P., Zhu, Y., Wang, W., Li, A., Liu, N., Jian, S., Liu, Z., Tan, X., Mo, J., Zhang, W., 2022. Changes in vegetation types affect soil microbial communities in tropical islands of southern China. Glob. Ecol. Conserv. 37, e02162.

 

Yoshitake, S., Fujiyoshi, M., Watanabe, K., Masuzawa, T., Nakatsubo, T., Koizumi, H., 2012. Successional changes in the soil microbial community along a vegetation development sequence in a subalpine volcanic desert on Mount Fuji, Japan. Plant Soil 364 (1–2), 261–272.

 

Zang, C., Pretzsch, H., Rothe, A., 2011. Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees (Berl.) 26, 557–569.

Forest Ecosystems
Article number: 100195

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Błońska E, Górski A, Lasota J. The rate of deadwood decomposition processes in tree stand gaps resulting from bark beetle infestation spots in mountain forests. Forest Ecosystems, 2024, 11(3): 100195. https://doi.org/10.1016/j.fecs.2024.100195

160

Views

7

Downloads

1

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 09 January 2024
Revised: 02 April 2024
Accepted: 02 April 2024
Published: 08 April 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).