Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Litter decomposition is key to ecosystem carbon (C) and nutrient cycling, but this process is anticipated to weaken due to projected more extensive and prolonged drought. Yet how litter quality and decomposer community complexity regulate decomposition in response to drought is less understood. Here, in a five-year manipulative drought experiment in a Masson pine forest, leaf litter from four subtropical tree species (Quercus griffithii Hook.f. & Thomson ex Miq., Acacia mangium Willd., Pinus massoniana Lamb., Castanopsis hystrix Miq.) representing different qualities was decomposed for 350 d in litterbags of three different mesh sizes (i.e., 0.05, 1, and 5 mm), respectively, under natural conditions and a 50% throughfall rain exclusion treatment. Litterbags of increasing mesh sizes discriminate decomposer communities (i.e., microorganisms, microorganisms and mesofauna, microorganisms and meso- and macrofauna) that access the litter and represent an increasing complexity. The amount of litter C and nitrogen (N) loss, and changes in their ratio (C/Nloss), as well as small and medium-sized decomposers including microorganisms, nematodes, and arthropods, were investigated. We found that drought did not affect C and N loss but decreased C/Nloss (i.e., decomposer N use efficiency) of leaf litter irrespective of litter quality and decomposer complexity. However, changes in the C/Nloss and the drought effect on C loss were both dependent on litter quality, while drought and decomposer complexity interactively affected litter C and N loss. Increasing decomposer community complexity enhanced litter decomposition and allowing additional access of meso- and macro-fauna to litterbags mitigated the negative drought effect on the microbial-driven decomposition. Furthermore, both the increased diversity and altered trophic structure of nematode due to drought contributed to the mitigation effects via cascading interactions. Our results show that litter quality and soil decomposer community complexity co-drive the effect of drought on litter decomposition. This experimental finding provides a new insight into the mechanisms controlling forest floor C and nutrient cycling under future global change scenarios.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001.
Allison, S.D., Lu, Y., Weihe, C., Goulden, M.L., Martiny, A.C., Treseder, K.K., Martiny, J.B.H., 2013. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94, 714–725. https://doi.org/10.1890/12-1243.1.
Ashton, L.A., Griffiths, H.M., Parr, C.L., Evans, T.A., Didham, R.K., Hasan, F., Teh, Y.A., Tin, H.S., Vairappan, C.S., Eggleton, P., 2019. Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177. https://doi.org/10.1126/science.aau9565.
Behan-Pelletier, V.M., 1999. Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric. Ecosyst. Environ. 74, 411–423. https://doi.org/10.1016/S0167-8809(99)00046-8.
Bongers, T., Ferris, H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 14, 224–228. https://doi.org/10.1016/S0169-5347(98)01583-3.
Bossio, D.A., Scow, K.M., 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35, 265–278. https://doi.org/10.1007/s002489900082.
Bradford, M.A., Berg, B., Maynard, D.S., Wieder, W.R., Wood, S.A., 2016. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238. https://doi.org/10.1111/1365-2745.12507.
Bradford, M.A., Tordoff, G.M., Eggers, T., Jones, T.H., Newington, J.E., 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99, 317–323. https://doi.org/10.1034/j.1600-0706.2002.990212.x.
Castro-Díez, P., Godoy, O., Alonso, A., Gallardo, A., Saldaña, A., 2014. What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecol. Lett. 17, 1–12. https://doi.org/10.1111/ele.12197.
Chen, L., Wen, Y., Zeng, J., Wang, H., Wang, J., Dell, B., Liu, S., 2019. Differential responses of net N mineralization and nitrification to throughfall reduction in a Castanopsis hystrix plantation in southern China. For. Ecosyst. 6, 14. https://doi.org/10.1186/s40663-019-0174-2.
Coq, S., Souquet, J.-M., Meudec, E., Cheynier, V., Hättenschwiler, S., 2010. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91, 2080–2091. https://doi.org/10.1890/09-1076.1.
Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O., Hobbie, S.E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H.M., Santiago, L.S., Wardle, D.A., Wright, I.J., Aerts, R., Allison, S.D., Van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T.V., Díaz, S., Garnier, E., Gurvich, D.E., Kazakou, E., Klein, J.A., Read, J., Reich, P.B., Soudzilovskaia, N.A., Vaieretti, M.V., Westoby, M., 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x.
David, J.F., 2014. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol. Biochem. 76, 109–118. https://doi.org/10.1016/j.soilbio.2014.05.009.
Elliott, E.T., Anderson, R.V., Coleman, D.C., Cole, C.V., 1980. Habitable pore space and microbial trophic interactions. Oikos 35, 327. https://doi.org/10.2307/3544648.
Ferris, H., Bongers, T., De Goede, R.G.M., 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18, 13–29. https://doi.org/10.1016/S0929-1393(01)00152-4.
Frostegård, Å., Bååth, E., Tunlio, A., 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 25, 723–730. https://doi.org/10.1016/0038-0717(93)90113-P.
Frostegård, Å., Bååth, E., 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65. https://doi.org/10.1007/BF00384433.
Frouz, J., 2018. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161–172. https://doi.org/10.1016/j.geoderma.2017.08.039.
Fujii, S., Cornelissen, J.H.C., Berg, M.P., Mori, A.S., 2018. Tree leaf and root traits mediate soil faunal contribution to litter decomposition across an elevational gradient. Funct. Ecol. 32, 840–852. https://doi.org/10.1111/1365-2435.13027.
Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H., Hättenschwiler, S., 2010. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380. https://doi.org/10.1016/j.tree.2010.01.010.
Guo, X., Liu, S., Wang, H., Chen, Z., Zhang, J., Chen, L., Nie, X., Zheng, L., Cai, D., Jia, H., Niu, B., 2022. Divergent allocations of nonstructural carbohydrates shape growth response to rainfall reduction in two subtropical plantations. For. Ecosyst. 9, 100021. https://doi.org/10.1016/j.fecs.2022.100021.
Handa, I.T., Aerts, R., Berendse, F., Berg, M.P., Bruder, A., Butenschoen, O., Chauvet, E., Gessner, M.O., Jabiol, J., Makkonen, M., McKie, B.G., Malmqvist, B., Peeters, E.T.H.M., Scheu, S., Schmid, B., van Ruijven, J., Vos, V.C.A., Hättenschwiler, S., 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221. https://doi.org/10.1038/nature13247.
Hättenschwiler, S., Gasser, P., 2005. Soil animals alter plant litter diversity effects on decomposition. PNAS 102, 1519–1524. https://doi.org/10.1073/pnas.0404977102.
Hättenschwiler, S., Jørgensen, H.B., 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest: decomposition in a tropical rain forest. J. Ecol. 98, 754–763. https://doi.org/10.1111/j.1365-2745.2010.01671.x.
Hobbie, S.E., Reich, P.B., Oleksyn, J., Ogdahl, M., Zytkowiak, R., Hale, C., Karolewski, P., 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87, 2288–2297. https://doi.org/10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2.
Hobbie, S.E., Vitousek, P.M., 2000. Nutrient limitation of decompositon in Hawaiian forests. Ecology 81, 1867–1877. https://doi.org/10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2.
Homet, P., Gómez-Aparicio, L., Matías, L., Godoy, O., 2021. Soil fauna modulates the effect of experimental drought on litter decomposition in forests invaded by an exotic pathogen. J. Ecol. 109, 2963–2980. https://doi.org/10.1111/1365-2745.13711.
Jo, I., Fridley, J.D., Frank, D.A., 2016. More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species. New Phytol. 209, 115–122. https://doi.org/10.1111/nph.13619.
Joly, F., Coq, S., Coulis, M., Nahmani, J., Hättenschwiler, S., 2018. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. 32, 2605–2614. https://doi.org/10.1111/1365-2435.13178.
Joly, F., 2020. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 3, 660. https://doi.org/10.1038/s42003-020-01392-4.
Kardol, P., Cregger, M.A., Campany, C.E., Classen, A.T., 2010. Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91, 767–781. https://doi.org/10.1890/09-0135.1.
Liu, S., Chen, J., Gan, W., Fu, S., Schaefer, D., Gan, J., Yang, X., 2016. Cascading effects of spiders on a forest-floor food web in the face of environmental change. Basic. Appl. Ecol. 17, 527–534. https://doi.org/10.1016/j.baae.2016.03.004.
Luan, J., Li, S., Liu, S., Wang, Y., Ding, L., Lu, H., Chen, L., Zhang, J., Zhou, W., Han, S., Zhang, Y., Hättenschwiler, S., 2024. Biodiversity mitigates drought effects in the decomposer system across biomes. PNAS 121, e2313334121. https://doi.org/10.1073/pnas.2313334121.
Luan, J., Li, S., Wang, Y., Ding, L., Cai, C., Liu, S., 2022. Decomposition of diverse litter mixtures affected by drought depends on nitrogen and soil fauna in a bamboo forest. Soil Biol. Biochem. 173, 108783. https://doi.org/10.1016/j.soilbio.2022.108783.
Ma, J., Luan, J., Wang, H., Wu, P., Ye, X., Wang, Y., Ming, A., Liu, S., 2023. Nitrogen-fixing tree species rather than tree species diversity shape soil nematode communities in subtropical plantations. Geoderma 436, 116561. https://doi.org/10.1016/j.geoderma.2023.116561.
Melillo, J.M., Aber, J.D., Muratore, J.F., 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63, 621–626. https://doi.org/10.2307/1936780.
Moser, G., Schuldt, B., Hertel, D., Horna, V., Coners, H., Barus, H., Leuschner, C., 2014. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Global Change Biol. 20, 1481–1497. https://doi.org/10.1111/gcb.12424.
Neher, D.A., 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annu. Rev. Phytopathol. 48, 371–394. https://doi.org/10.1146/annurev-phyto-073009-114439.
Pereira, S., Burešová, A., Kopecky, J., Mádrová, P., Aupic-Samain, A., Fernandez, C., Baldy, V., Sagova-Mareckova, M., 2019. Litter traits and rainfall reduction alter microbial litter decomposers: the evidence from three Mediterranean forests. FEMS Microb. Ecol. fiz168. https://doi.org/10.1093/femsec/fiz168.
Pflug, A., Wolters, V., 2001. Influence of drought and litter age on Collembola communities. Eur. J. Soil Biol. 37, 305–308. https://doi.org/10.1016/S1164-5563(01)01101-3.
Prieto, I., Almagro, M., Bastida, F., Querejeta, J.I., 2019. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 107, 2364–2382. https://doi.org/10.1111/1365-2745.13168.
Sanaullah, M., Rumpel, C., Charrier, X., Chabbi, A., 2012. How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? Plant Soil 352, 277–288. https://doi.org/10.1007/s11104-011-0995-4.
Santonja, M., Fernandez, C., Proffit, M., Gers, C., Gauquelin, T., Reiter, I.M., Cramer, W., Baldy, V., 2017. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815. https://doi.org/10.1111/1365-2745.12711.
Santonja, M., Milcu, A., Fromin, N., Rancon, A., Shihan, A., Fernandez, C., Baldy, V., Hättenschwiler, S., 2019. Temporal shifts in plant diversity effects on carbon and nitrogen dynamics during litter decomposition in a Mediterranean shrubland exposed to reduced precipitation. Ecosystems 22, 939–954. https://doi.org/10.1007/s10021-018-0315-4.
Taylor, B.R., Prescott, C.E., Parsons, W.J.F., Parkinson, D., 1991. Substrate control of litter decomposition in four Rocky Mountain coniferous forests. Can. J. Bot. 69, 2242–2250. https://doi.org/10.1139/b91-281.
van Kleunen, M., Weber, E., Fischer, M., 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245. https://doi.org/10.1111/j.1461-0248.2009.01418.x.
Vestergård, M., Dyrnum, K., Michelsen, A., Damgaard, C., Holmstrup, M., 2015. Long-term multifactorial climate change impacts on mesofaunal biomass and nitrogen content. Appl. Soil Ecol. 92, 54–63. https://doi.org/10.1016/j.apsoil.2015.03.002.
Vogel, A., Eisenhauer, N., Weigelt, A., Scherer-Lorenzen, M., 2013. Plant diversity does not buffer drought effects on early-stage litter mass loss rates and microbial properties. Global Change Biol. 19, 2795–2803. https://doi.org/10.1111/gcb.12225.
Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., van der Putten, W.H., Wall, D.H., 2004. Ecological linkages between aboveground and belowground biota. Science 304, 1627–1633. https://doi.org/10.1126/science.1094875.
Wardle, D., Yeates, G., Barker, G., Bonner, K., 2006. The influence of plant litter diversity on decomposer abundance and diversity. Soil Bio. Biochem. 38, 1052–1062. https://doi.org/10.1016/j.soilbio.2005.09.003.
Wieder, W.R., Cleveland, C.C., Townsend, A.R., 2009. Controls over leaf litter decomposition in wet tropical forests. Ecology 90, 3333–3341. https://doi.org/10.1890/08-2294.1.
Yang, Y.J., Liu, S.R., Wang, H., Chen, L., Lu, L.H., Cai, D.X., 2019. Reduction in throughfall reduces soil aggregate stability in two subtropical plantations. Eur. J. Soil Sci. 70, 301–310. https://doi.org/10.1111/ejss.12734.
Yeates, G.W., Bongers, T., 1999. Nematode diversity in agroecosystems. Agric. Ecosyst. Enviorn. 74, 113–135. https://doi.org/10.1016/S0167-8809(99)00033-X.
Yeates, G.W., Bongers, T., De Goede, R.G.M., Freckman, D.W., Georgieva, S.S., 1993. Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 25, 315–331.
Zhao, J., Wang, K., 2022. Methods for cleaning turbid nematode suspensions collected from different land-use types and soil types. Soil Ecol. Lett. 4, 429–434. https://doi.org/10.1007/s42832-021-0115-1.
Zheng, J., Guo, R., Li, D., Zhang, J., Han, S., 2017. Nitrogen addition, drought and mixture effects on litter decomposition and nitrogen immobilization in a temperate forest. Plant Soil 416, 165–179. https://doi.org/10.1007/s11104-017-3202-4.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Comments on this article