AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Atmospheric nitrogen deposition affects forest plant and soil system carbon:nitrogen:phosphorus stoichiometric flexibility: A meta-analysis

Xiyan JiangaXiaojing WangaYaqi QiaoaYi CaoaYan JiaoaAn YangaMengzhou LiuaLei MaaMengya Songa,b,c( )Shenglei Fua,b,c
Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Henan University, Zhengzhou, 450046, China
Show Author Information

Abstract

Background

Nitrogen (N) deposition affects forest stoichiometric flexibility through changing soil nutrient availability to influence plant uptake. However, the effect of N deposition on the flexibility of carbon (C), N, and phosphorus (P) in forest plant-soil-microbe systems remains unclear.

Methods

We conducted a meta-analysis based on 751 pairs of observations to evaluate the responses of plant, soil and microbial biomass C, N and P nutrients and stoichiometry to N addition in different N intensity (0–50, 50–100, >100 ​kg·ha−1·year−1 of N), duration (0–5, >5 year), method (understory, canopy), and matter (ammonium N, nitrate N, organic N, mixed N).

Results

N addition significantly increased plant N:P (leaf: 14.98%, root: 13.29%), plant C:P (leaf: 6.8%, root: 25.44%), soil N:P (13.94%), soil C:P (10.86%), microbial biomass N:P (23.58%), microbial biomass C:P (12.62%), but reduced plant C:N (leaf: 6.49%, root: 9.02%). Furthermore, plant C:N:P stoichiometry changed significantly under short-term N inputs, while soil and microorganisms changed drastically under high N addition. Canopy N addition primarily affected plant C:N:P stoichiometry through altering plant N content, while understory N inputs altered more by influencing soil C and P content. Organic N significantly influenced plant and soil C:N and C:P, while ammonia N changed plant N:P. Plant C:P and soil C:N were strongly correlated with mean annual precipitation (MAT), and the C:N:P stoichiometric flexibility in soil and plant under N addition connected with soil depth. Besides, N addition decoupled the correlations between soil microorganisms and the plant.

Conclusions

N addition significantly increased the C:P and N:P in soil, plant, and microbial biomass, reducing plant C:N, and aggravated forest P limitations. Significantly, these impacts were contingent on climate types, soil layers, and N input forms. The findings enhance our comprehension of the plant-soil system nutrient cycling mechanisms in forest ecosystems and plant strategy responses to N deposition.

References

 

Bai, X.J., Wang, B.R., An, S.S., Zeng, Q.C., Zhang, H.X., 2019. Response of forest species to C:N:P in the plant-litter-soil system and stoichiometric homeostasis of plant tissues during afforestation on the Loess Plateau, China. Catena 183, 104186. https://doi.org/10.1016/j.catena.2019.104186.

 

Chen, D.M., Lan, Z.C., Hu, S.J., Bai, Y.F., 2015. Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification. Soil Biol. Biochem. 89, 99–108. https://doi.org/10.1016/j.soilbio.2015.06.028.

 

Chen, G.T., Tu, L.H., Peng, Y., Hu, H.L., Hu, T.X., Xu, Z.F., Liu, L., Tang, Y., 2017. Effect of nitrogen additions on root morphology and chemistry in a subtropical bamboo forest. Plant Soil 412, 441–451. https://doi.org/10.1007/s11104-016-3074-z.

 

Chen, J., Seven, J., Zilla, T., Dippold, M.A., Blagodatskaya, E., Kuzyakov, Y., 2019. Microbial C:N:P stoichiometry and turnover depend on nutrients availability in soil: a 14C, 15N and 33P triple labelling study. Soil Biol. Biochem. 131, 206–216. https://doi.org/10.1016/j.soilbio.2019.01.017.

 

Cleveland, C.C., Liptzin, D., 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252. https://doi.org/10.1007/S10533-007-9132-0.

 

de Souza, L.F.T., Billings, S.A., 2022. Temperature and pH mediate stoichiometric constraints of organically derived soil nutrients. Glob. Chang. Biol. 28, 1630–1642. https://doi.org/10.1111/gcb.15985.

 

Delgado-Baquerizo, M., Maestre, F.T., Gallardo, A., Bowker, M.A., Wallenstein, M.D., Quero, J.L., 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676. https://doi.org/10.1038/nature12670.

 

Delgado-Baquerizo, M., Reich, P.B., Khachane, A.N., Campbell, C.D., Thomas, N., 2017. It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environ. Microbiol. 19, 1176–1188. https://doi.org/10.1111/1462-2920.13642.

 

Dong, C.C., Wang, W., Liu, H.Y., Xu, X.T., Zeng, H., 2019. Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: evidence from soil extracellular enzyme stoichiometry. Ecol. Indicat. 101, 453–464. https://doi.org/10.1016/j.ecolind.2019.01.046.

 

Dueck, T.A., Dorèl, F.G., Ter Horst, R., 1991. Effect of ammonia, ammonium sulphate and sulpher dioxide on the frost sensitivity of Scots pine (Pinus sylvestris L.). Water Air Soil Pollut. 54, 35–49. https://doi.org/10.1007/978-94-011-3252-7_3.

 

Elser, J.J., Dobberfuhl, D.R., MacKay, N.A., Schampel, J.H., 1996. Organism size, life history, and N:P stoichiometry. BioScience 46, 674–684. https://doi.org/10.2307/1312897.

 

Elser, J.J., Fagan, W.F., Kerkhof, A.J., Swenson, N.G., Enquist, B.J., 2010. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 186, 593–608. https://doi.org/10.1111/j.1469-8137.2010.03214.x.

 

Fan, H.B., Wu, J.P., Liu, W.F., Yuan, Y.H., Hu, L., Cai, Q.K., 2015. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 392, 127–138. https://doi.org/10.1007/s11104-015-2444-2.

 

Fan, Y.X., Yang, L.M., Zhong, X.J., Yang, Z.J., Lin, Y.Y., Guo, J.F., Chen, G.S., Yang, Y.S., 2020. N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest. Geoderma 375, 114470. https://doi.org/10.1016/j.geoderma.2020.114470.

 

Fenn, M.E., Ross, C.S., Schilling, S.L., Baccus, W.D., Larrabee, M.A., Lofgren, R.A., 2013. Atmospheric deposition of nitrogen and sulfur and preferential canopy consumption of nitrate in forests of the Pacific Northwest, USA. For. Ecol. Manag. 302, 240–253. https://doi.org/10.1016/j.foreco.2013.03.042.

 

Fife, D.N., Nambiar, E.K.S., Saur, E., 2008. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment. Tree Physiol. 28, 187–196. https://doi.org/10.1093/treephys/28.2.187.

 

Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., 2013. The global nitrogen cycle in the twenty-first century. Philos. T. R. Soc. B. 368, 20130164. https://doi.org/10.1098/rstb.2013.0164.

 

Galloway, J.N., Townsend, A.R., Erisman, J.W., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892. https://doi.org/10.1126/science.1136674.

 

Gao, J.J., Carmel, Y., 2020. A global meta-analysis of grazing effects on plant richness. Agric. Ecosyst. Environ. 302, 107072. https://doi.org/10.1016/j.agee.2020.107072.

 

Gao, D.C., Bai, E., Yang, Y., Zong, S.W., Hagedorn, F., 2021. A global meta-analysis on freeze-thaw effects on soil carbon and phosphorus cycling. Soil Biol. Biochem. 159, 108283. https://doi.org/10.1016/j.soilbio.2021.108283.

 

Génard, M., Dauzat, J., Franck, N., Lescourre, F., Moitrier, N., Vaast, P., Vercambre, G., 2008. Carbon allocation in fruit trees: from theory to modelling. Trees (Berl.) 22, 269–282. https://doi.org/10.1007/s00468-007-0176-5.

 

Güsewell, S., 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytol. 164, 243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x.

 

Güsewell, S., 2005. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Funct. Ecol. 19, 344–354. https://doi.org/10.1111/j.0269-8463.2005.00967.x.

 

Hagedorn, F., Spinnler, D., Siegwolf, R., 2003. Increased N deposition retards mineralization of old soil organic matter. Soil Biol. Biochem. 35, 1683–1692. https://doi.org/10.1016/j.soilbio.2003.08.015.

 

Han, W.X., Fang, J.Y., Reich, P.B., Ian Woodward, F., Wang, Z.H., 2011. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. 14, 788–796. https://doi.org/10.1111/j.1461-0248.2011.01641.x.

 

Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156. https://doi.org/10.1890/0012-9658.

 

Högberg, M.N., Högberg, P., Myrold, D.D., 2007. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150, 590–601. https://doi.org/10.1007/s00442-006-0562-5.

 

Hou, E.Q., Luo, Y.Q., Kuang, Y.W., Chen, C.R., Lu, X.K., Jiang, L.F., Luo, X.Z., Wen, D.Z., 2020. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637. https://doi.org/10.1038/s41467-020-14492-w.

 

Hou, S.L., Dijkstra, F.A., Lü, X.T., Han, X.G., 2023. Increases in the dominance of species with higher N:P flexibility exacerbate community N-P imbalances following N inputs. Biogeochemistry 163, 279–288. https://doi.org/10.1007/s10533-023-01033-y.

 

Huang, J.Y., Yu, H.L., Liu, J.L., Luo, C.K., Sun, Z.J., Ma, K.B., Du, Y.X., 2018. Phosphorus addition changes belowground biomass and C:N:P stoichiometry of two desert steppe plants under simulated N deposition. Sci. Rep. 8, 3400. https://doi.org/10.1038/s41598-018-21565-w.

 

Huang, X.L., Chen, J.Z., Wang, D., 2021. Simulated atmospheric nitrogen deposition inhibited the leaf litter decomposition of Cinnamomum migao H. W. Li in Southwest China. Sci. Rep. 11, 1748. https://doi.org/10.1038/s41598-021-81458-3.

 
IPCC, 2014. Climate change 2014: synthesis report. In: Pachauri, R.K., Meyer, L.A. (Eds.), Contribution of Working Groups Ⅰ, Ⅱ, and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.
 

Jiang, J., Wang, Y.P., Yang, Y.H., 2019. Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type. Plant Soil 440, 523–537. https://doi.org/10.1007/s11104-019-04119-5.

 

Jiang, X.Y., Song, M.Y., Qiao, Y.Q., Liu, M.Z., Ma, L., Fu, S.L., 2022. Long-term water use efficiency and non-structural carbohydrates of dominant tree species in response to nitrogen and water additions in a warm temperate forest. Front. Plant Sci. 13, 1025162. https://doi.org/10.3389/fpls.2022.1025162.

 

Li, P., Feng, Z.Z., Catalayud, V., Yuan, X.Y., Xu, Y.S., 2017. A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant Cell Environ. 40, 2369–2380. https://doi.org/10.1111/pce.13043.

 

Li, W.B., Jin, C.J., Guan, D.X., Wang, Q.K., Wang, A.Z., Yuan, F.H., Wu, J.B., 2015. The effects of simulated nitrogen deposition on plant root traits: a meta-analysis. Soil Biol. Biochem. 82, 112–118. https://doi.org/10.1016/j.soilbio.2015.01.001.

 

Li, Y., Niu, S.L., Yu, G.R., 2016. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Glob. Chang. Biol. 22, 934–942. https://doi.org/10.1111/gcb.13125.

 

Li, Z.Y., Qiu, X.R., Sun, Y., Liu, S.N., Hu, H.L., Xie, J.L., Tu, L.H., 2021a. C:N:P stoichiometry responses to 10 years of nitrogen addition differ across soil components and plant organs in a subtropical Pleioblastus amarus forest. Sci. Total Environ. 796, 148925. https://doi.org/10.1016/j.scitotenv.2021.148925.

 

Li, J., Sang, C.P., Yang, J.Y., Qu, L.R., Xia, Z.W., Sun, H., Jiang, P., Wang, X., He, H., Wang, C., 2021b. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biol. Biochem. 156, 108207. https://doi.org/10.1016/j.soilbio.2021.108207.

 

Liu, X.Z., Zhou, G.Y., Zhang, D.Q., Liu, S.Z., Chu, G.W., Yan, J.H., 2010. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chin. J. Plan. Ecol. 34, 64–71. https://doi.org/10.3773/j.issn.1005-264x.2010.01.010.

 

Liu, X.J., Duan, L., Mo, J.M., Du, E.Z., Shen, J.L., Lu, X.K., Zhang, Y., Zhou, X., He, C.N., Zhang, F.S., 2011. Nitrogen deposition and its ecological impact in China: an overview. Environ. Pollut. 159, 2251–2264. https://doi.org/10.1016/j.envpol.2010.08.002.

 

Marklein, A.R., Houlton, B.Z., 2012. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704. https://doi.org/10.1111/j.1469-8137.2011.03967.x.

 

Mao, Q.G., Lu, X.K., Mo, H., Gundersen, P., Mo, J.M., 2018. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Sci. Total Environ. 610, 555–562. https://doi.org/10.1016/j.scitotenv.2017.08.087.

 

McCormack, M.L., Adams, T.S., Smithwick, E.A., Eissenstat, D.M., 2012. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol. 195, 823–831. https://doi.org/10.1111/j.1469-8137.2012.04198.x.

 

McGroddy, M.E., Daufresne, T., Hedin, L.O., 2004. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85, 2390–2401. https://doi.org/10.1890/03-0351.

 

Mo, Q.F., Zou, B., Li, Y.W., Chen, Y., Zhang, W.X., Mao, R., Wang, F.M., 2015. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest. Sci. Rep. 5, 14605. https://doi.org/10.1038/srep14605.

 

Ni, Y.Y., Yang, T., Ma, Y.Y., Zhang, K.P., Soltis, P.S., Soltis, D.E., Gilbert, J.A., Zhao, Y.P., Fu, C.X., Chu, H.Y., 2021. Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China. Glob. Ecol. Biogeogr. 30, 2164–2177. https://doi.org/10.1111/geb.13373.

 

Payne, R.J., Dise, N.B., Field, C., Dore, A., Caporn, S.J., Stevens, C.J., 2017. Nitrogen deposition and plant biodiversity: past, present, and future. Front. Ecol. Environ. 15, 431–436. https://doi.org/10.1002/fee.1528.

 

Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Janssens, I.A., 2013. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934. https://doi.org/10.1038/ncomms3934.

 

Ramirez, K.S., Craine, J.M., Fierer, N., 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Chang. Biol. 18, 1918–1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x.

 

Reay, D., Dentener, F., Smith, P., 2008. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437. https://doi.org/10.1038/ngeo230.

 

Reich, P.B., Oleksyn, J., 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 101, 11001–11006. https://doi.org/10.1073/pnas.0403588101.

 
R Development Core Team, 2020. R: a language and environment for statistical computing. http://www.Rproject.org/. (Accessed 1 January 2024).
 

Rose, M.T., Patti, A.F., Little, K.R., Brown, A.L., Jackson, W.R., Cavagnaro, T.R., 2014. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv. Agron. 124, 37–89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4.

 

Schade, J.D., Kyle, M., Hobbie, S.E., Fagan, W.F., Elser, J.J., 2003. Stoichiometric tracking of soil nutrients by a desert insect herbivore. Ecol. Lett. 6, 96–101. https://doi.org/10.1046/j.1461-0248.2003.00409.x.

 

Shen, F.F., Wu, J.P., Fan, H.B., Liu, W.F., Guo, X.M., Duan, H.L., Wei, X.H., 2018. Soil N/P and C/P ratio regulate the responses of soil microbial community composition and enzyme activities in a long-term nitrogen loaded Chinese fir forest. Plant Soil 436, 91–107. https://doi.org/10.1007/s11104-018-03912-y.

 

Shen, Y.F., Cheng, R.M., Xiao, W.F., Zeng, L.X., Wang, L.J., Sun, P.F., Chen, T., 2022. Temporal dynamics of soil nutrients in the riparian zone: Effects of water fluctuations after construction of the Three Gorges Dam. Ecol. Indicat. 139, 108865. https://doi.org/10.1016/j.ecolind.2022.108865.

 

Sistla, S.A., Schimel, J.P., 2012. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol. 196, 68–78. https://doi.org/10.1111/j.1469-8137.2012.04234.x.

 

Song, F., Eastwood, A., Gilbody, S., Duley, L., Sutton, A.J., 2000. Publication and related biases: a review. Health Technol. Assess. 4, 10. https://doi.org/10.3310/HTA4100.

 

Spiecker, H., Mielikäinen, K., Köhl, M., Skovsgaard, J.P., 1996. Growth Trends in European Forests. Springer, Berlin, Heidelberg, pp. 149–165.

 

Spohn, M., Klaus, K., Wanek, W., Richter, A., 2016. Microbial carbon use efficiency and biomass turnover times depending on soil depth – Implications for carbon cycling. Soil Biol. Biochem. 96, 74–81. https://doi.org/10.1016/j.soilbio.2016.01.016.

 

Sterner, R.W., Elser, J.J., 2002. Ecological Stoichiometry: Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ. https://doi.org/10.1093/plankt/25.9.1183.

 

Staelens, J., Houle, D., De Schrijver, A., Neirynck, J., Verheyen, K., 2008. Calculating dry deposition and canopy exchange with the canopy budget model: Review of assumptions and application to two deciduous forests. Water Air Soil Pollut. 191, 149–169. https://doi.org/10.1007/s11270-008-9614-2.

 

Sun, Y., Wang, C.T., Chen, H.Y.H., Ruan, H.H., 2020. Responses of C:N stoichiometry in plants, soil, and microorganisms to nitrogen addition. Plant Soil 456, 277–287. https://doi.org/10.1007/s11104-020-04717-8.

 

Sun, Y., Wang, C., Chen, H.Y.H., Luo, X., Qiu, N., Ruan, H., 2021. Asymmetric responses of terrestrial C:N:P stoichiometry to precipitation change. Glob. Ecol. Biogeogr. 30, 1724–1735. https://doi.org/10.1111/geb.13343.

 

Tischer, A., Werisch, M., Döbbelin, F., Camenzind, T., Rillig, M.C., Potthast, K., Hamer, U., 2015. Above- and belowground linkages of a nitrogen and phosphorus co-limited tropical mountain pasture system responses to nutrient enrichment. Plant Soil 391, 333–352. https://doi.org/10.1007/s11104-015-2431-7.

 

Thomas, R.Q., Canham, C.D., Weathers, K.C., Goodale, C.L., 2010. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17. https://doi.org/10.1038/ngeo721.

 

Vanguelova, E.I., Pitman, R.M., 2019. Nutrient and carbon cycling along nitrogen deposition gradients in broadleaf and conifer forest stands in the east of England. For. Ecol. Manag. 447, 180–194. https://doi.org/10.1016/j.foreco.2019.05.040.

 

Vendramini, F., Diaz, S., Gurvich, D.E., Wilson, P.J., Thompson, K., Hodgson, J.G., 2002. Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol. 154, 147–157. https://doi.org/10.1046/j.1469-8137.2002.00357.x.

 

Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F., Jackson, R.B., 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220. https://doi.org/10.1890/11-0416.1.

 

Veroniki, A.A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., 2016. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res. Synth. Methods 7, 55–79. https://doi.org/10.1002/jrsm.1164.

 

Viechtbauer, W., 2010. Conducting meta-analyses in R with the meta for package. J. Stat. Software 36, 1–48. https://doi.org/10.18637/jss.v036.i03.

 

Vogt, K.A., Vogt, D.J., Palmiotto, P.A., Boon, P., O'Hara, J., Asbjornsen, H., 1995. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159–219. https://doi.org/10.1007/BF00017088.

 

Waldrop, M.P., Zak, D.R., Sinsabaugh, R.L., 2004. Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol. Biochem. 36, 1443–1451. https://doi.org/10.1016/j.soilbio.2004.04.023.

 

Wang, S.Q., Yu, G.R., 2008. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecol. Sin. 28, 3937–3947. https://doi.org/10.1007/s11368-013-0693-3.

 

Wang, Z.Z., Lu, J.Y., Yang, M., Yang, H.M., Zhang, Q.P., 2015. Stoichiometric characteristics of Carbon, Nitrogen, and Phosphorus in leaves of differently aged lucerne (Medicago sativa) stands. Front. Plant Sci. 6, 1062. https://doi.org/10.3389/fpls.2015.01062.

 

Wang, H.Y., Wang, Z.W., Ding, R., Hou, S.L., Yang, G.J., Lü, X.T., Han, X.G., 2018. The impacts of nitrogen deposition on community N:P stoichiometry do not depend on phosphorus availability in a temperate meadow steppe. Environ. Pollut. 242, 82–89. https://doi.org/10.1016/j.envpol.2018.06.088.

 

Wei, W., Yang, M., Liu, Y.X., Huang, H.C., Ye, C., Zheng, J.F., Guo, C.W., Hao, M.W., He, X.H., Zhu, S.S., 2018. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system. Sci. Total Environ. 633, 796–807. https://doi.org/10.1016/j.scitotenv.2018.03.219.

 

Wu, N.N., Filley, T.R., Bai, E., Han, S.J., Jiang, P., 2015. Incipient changes of lignin and substituted fatty acids under N addition in a Chinese forest soil. Org. Geochem. 79, 14–20. https://doi.org/10.1016/j.orggeochem.2014.12.001.

 

Xiong, D.C., Huang, J.X., Yang, Z.J., Cai, Y.Y., Lin, T.C., Liu, X.F., Xu, C., Chen, S.D., Chen, G.S., Xie, J.S., Li, Y.Q., Yang, Y.S., 2020. The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand. For. Ecol. Manag. 458, 117793. https://doi.org/10.1016/j.foreco.2019.117793.

 

Xie, T.T., Shan, L.S., Zhang, W.T., 2022. N addition alters growth, non-structural carbohydrates, and C:N:P stoichiometry of Reaumuria soongorica seedlings in Northwest China. Sci. Rep. 12, 15390. https://doi.org/10.1038/s41598-022-19280-8.

 

Xu, S., Sardans, J., Zhang, J.L., 2020. Variations in foliar carbon:nitrogen and nitrogen: phosphorus ratios under global change: a meta-analysis of experimental field studies. Sci. Rep. 10, 12156. https://doi.org/10.1038/s41598-020-68487-0.

 

Xu, H.W., Qu, Q., Li, G.W., Liu, G.B., Geissen, V., Ritsema, C.J., Xue, S., 2022. Impact of nitrogen addition on plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation. Soil Biol. Biochem. 844, 157111. https://doi.org/10.1016/j.soilbio.2022.108714.

 

Yang, Y., Liu, B.R., An, S.S., 2018. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena 166, 328–338. https://doi.org/10.1016/j.catena.2018.04.018.

 

You, C.M., Wu, F.Z., Yang, W.Q., Xu, Z.F., Tan, B., Yue, K., Ni, X.Y., 2018. Nutrient-limited conditions determine the responses of foliar nitrogen and phosphorus stoichiometry to nitrogen addition: a global meta-analysis. Environ. Pollut. 241, 740–749. https://doi.org/10.1016/j.envpol.2018.06.018.

 

Yu, Z.P., Wang, M.H., Huang, Z.Q., Lin, T.C., Vadeboncoeur, M.A., Searle, E.B., 2017. Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China. Glob. Chang. Biol. 24, 1308–1320. https://doi.org/10.1111/gcb.13939.

 

Yu, J.S., Song, Z.P., Hou, J.H., 2023. Life form-dependent nitrogen-phosphorous allocation strategies of leaf and fine root in a temperate natural forest under long-term nitrogen addition. J. Plant Ecol. 16, rtad013. https://doi.org/10.1093/jpe/rtad013.

 

Yuan, Z.Y., Chen, H.Y.H., Reich, P.B., 2011. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nat. Commun. 2, 344. https://doi.org/10.1038/ncomms1346.

 

Yuan, Z.Y., Chen, H.Y.H., 2015. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Change 5, 465–469. https://doi.org/10.1038/nclimate2549.

 

Yue, K., Peng, Y., Peng, C.H., Yang, W.Q., 2016. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Sci. Rep. 6, 19895. https://doi.org/10.1038/srep19895.

 

Zhao, X.D., Zeng, Q.C., An, S.S., Fang, Y., Ma, R.T., 2016. Ecological stoichiometric characteristics of grassland soils and plant roots relative to enclosure history on the Loess Plateau. Acta Pedol. Sin. 53, 1541–1551. https://doi.org/10.11766/trxb201603140545.

 

Zhang, Q.F., Xie, J.S., Lyu, M.K., Xiong, D.C., Wang, J., Chen, Y.M., Li, Y.Q., Wang, M.K., Yang, Y.S., 2017. Short-term effects of soil warming and nitrogen addition on the N:P stoichiometry of Cunninghamia lanceolata in subtropical regions. Plant Soil 411, 395–407. https://doi.org/10.1007/s11104-016-3037-4.

 

Zhang, J.H., Zhao, N., Liu, C.C., Yang, H., Li, M.L., Yu, G.R., Wilcox, K., Yu, Q., He, N.P., 2018a. C:N:P stoichiometry in China's forests: from organs to ecosystems. Funct. Ecol. 32, 50–60. https://doi.org/10.1111/1365-2435.12979.

 

Zhang, T.A., Chen, H.Y.H., Ruan, H.H., 2018b. Global negative effects of nitrogen deposition on soil microbes. ISME J. 12, 1817–1825. https://doi.org/10.1038/s41396-018-0096-y.

 

Zechmeister-Boltenstern, S., Keiblinger, K.M., Mooshammer, M., Peñuelas, J., Richter, A., Sardans, J., 2015. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol. Monogr. 85, 133–155. https://doi.org/10.1890/14-0777.1.

 

Zeng, Q.C., Lal, R., Chen, Y.N., An, S.S., 2017. Soil, leaf and root ecological stoichiometry of Caragana korshinskii on the Loess plateau of China in relation to plantation age. PLoS One 12, e0168890. https://doi.org/10.1371/journal.pone.0168890.

 

Zhou, Z.H., Wang, C.K., Jin, Y., 2017. Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils. Biol. Fertil. Soils 53, 397–406. https://doi.org/10.1007/s00374-017-1188-y.

Forest Ecosystems
Article number: 100192

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Jiang X, Wang X, Qiao Y, et al. Atmospheric nitrogen deposition affects forest plant and soil system carbon:nitrogen:phosphorus stoichiometric flexibility: A meta-analysis. Forest Ecosystems, 2024, 11(3): 100192. https://doi.org/10.1016/j.fecs.2024.100192

320

Views

15

Downloads

7

Crossref

7

Web of Science

7

Scopus

1

CSCD

Altmetrics

Received: 08 January 2024
Revised: 29 March 2024
Accepted: 31 March 2024
Published: 09 April 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).