Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Identifying how leaf habit subdivisions link to the fast–slow and avoidance–tolerance trait tradeoffs can provide new insight into divergence in ecophysiological strategies among plant functional groups. Here, we tested a hypothesis that the differentiation across deciduous, semi-deciduous and evergreen woody species contributes to physiological trait tradeoffs in a dry-hot valley savanna. We investigated 11 photosynthetic, morphological and hydraulic traits of 24 species including 8 deciduous, 10 semi-deciduous and 6 evergreen species. Deciduous species were grouped in the fast and avoidance side associated with high values of maximum photosynthetic rates, stomatal conductance and leaf size, while evergreen species were grouped in the slow and tolerance side associated with high photosynthetic water use efficiency, leaf mass per area, sapwood density, Huber value, leaf water potential at turgor loss point and water potential causing 50% loss of stem hydraulic conductance. Semi-deciduous species generally had intermediate trait values and represented different physiological characteristics when compared to deciduous and evergreen species. The physiological trait tradeoffs showed a close linkage to the differentiation of these three leaf habits. Our findings clearly reveal trait tradeoffs related to fast–slow and avoidance–tolerance strategies among diverse savanna plants, suggesting a syndrome in multiple ecophysiology strategies across different leaf habits.
Alonso-Forn, D., Sancho-Knapik, D., Ferrio, J.P., Peguero-Pina, J.J., Bueno, A., Onoda, Y., Cavender-Bares, J., Niinemets, Ü., Jansen, S., Riederer, M., Cornelissen, J.H.C., Chai, Y.F., Gil-Pelegrín, E., 2020. Revisiting the functional basis of sclerophylly within the leaf economics spectrum of oaks: different roads to Rome. Curr. For. Rep. 6(4), 260-281. https://doi.org/10.1007/s40725-020-00122-7.
Baird, A.S., Anderegg, L.D.L., Lacey, M.E., HilleRisLambers, J., van Volkenburgh, E., 2017. Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. Tree Physiol. 37(9), 1140-1150. https://doi.org/10.1093/treephys/tpx035.
Bartlett, M.K., Scoffoni, C., Sack, L., 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol. Lett. 15(5), 393-405. https://doi.org/10.1111/j.1461-0248.2012.01751.x.
Borchert, R., Rivera G., Hagnauer, W., 2002. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34(1), 27-39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.x.
Brodribb, T.J., Field, T.S., 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant Cell Environ. 23(12), 1381-1388. https://doi.org/10.1046/j.1365-3040.2000.00647.x.
Brodribb, T.J., Holbrook, N.M., Zwieniecki, M.A., Palma., B., 2005. Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytol. 165(3), 839-846. https://doi.org/10.1111/j.1469-8137.2004.01259.x.
Bucci, S.J., Goldstein, G., Meinzer, F.C., Scholz, F.G., Franco, A.C., Bustamante, M., 2004. Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol. 24(8), 891-899. https://doi.org/10.1093/treephys/24.8.891.
Cavender-Bares, J., Holbrook, N., 2001. Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant Cell Environ. 24(12), 1243-1256. https://doi.org/10.1046/j.1365-3040.2001.00797.x.
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12(4), 351-366. https://doi.org/10.1111/j.1461-0248.2009.01285.x.
Chen, Y.J., Choat, B., Sterck, F., Maenpuen, P., Katabuchi, M., Zhang, S.B., Tomlinson, K.W., Oliveira, R.S., Zhang, Y.J., Shen, J.X., Cao, K.F., Jansen, S., 2021. Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecol. Lett. 24(11), 2350-2363. https://doi.org/10.1111/ele.13856.
Delzon, S., 2015. New insight into leaf drought tolerance. Funct. Ecol. 29(10), 1247-1249. https://doi.org/10.1111/1365-2435.12500.
Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Prentice, I.C., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P.B., Moles, A.T., Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., Wright, S.J., Sheremet'ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J.S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M.D., Gorné, L.D., 2016. The global spectrum of plant form and function. Nature 529(7585), 167-171. https://doi.org/10.1038/nature16489.
de la Riva, E.G., Olmo, M., Poorter, H., Ubera, J.L., Villar, R., 2016. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PLoS One 11(2), e0148788. https://doi.org/10.1371/journal.pone.0148788.
di Francescantonio, D., Villagra, M., Goldstein, G., Campanello, P.I., 2020. Drought and frost resistance vary between evergreen and deciduous Atlantic Forest canopy trees. Funct. Plant Biol. 47(9), 779-791. https://doi.org/10.1071/FP19282.
Flexas, J., Niinemets, U., Gallé, A., Barbour, M.M., Centritto, M., Diaz-Espejo, A., Douthe, C., Galmés, J., Ribas-Carbo, M., Rodriguez, P.L., Rosselló, F., Soolanayakanahally, R., Tomas, M., Wright, I.J., Farquhar, G.D., Medrano, H., 2013. Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth. Res. 117(1–3), 45-59. https://doi.org/10.1007/s11120-013-9844-z.
Franco, A.C., Bustamante, M., Caldas, L.S., Goldstein, G., Meinzer, F.C., Kozovits, A.R., Rundel, P., Coradin, V.T.R., 2005. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees (Berl.) 19(3), 326-335. https://doi.org/10.1007/s00468-004-0394-z.
Fu, P.L., Jiang, Y.J., Wang, A.Y., Brodribb, T.J., Zhang, J.L., Zhu, S.D., Cao, K.F., 2012. Stem hydraulic traits and leaf water-stress tolerance are coordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Ann. Bot. 110(1), 189-199. https://doi.org/10.1093/aob/mcs092.
Gleason, S.M., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., Bhaskar, R., Brodribb, T.J., Bucci, S.J., Cao, K.F., Cochard, H., Delzon, S., Domec, J.C., Fan, Z.X., Field, T.S., Jacobsen, A.L., Johnson, D.M., Lens, F., Maherali, H., Martínez-Vilalta, J., Mayr, S., McCulloh, K.A., Mencuccini, M., Mitchell, P.J., Morris, H., Nardini, A., Pittermann, J., Plavcová, L., Schreiber, S.G., Sperry, J.S., Wright, I.J., Zanne, A.E., 2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytol. 209(1), 123-136. https://doi.org/10.1111/nph.13646.
Guillemot, J., Martin-StPaul, N.K., Bulascoschi, L., Poorter, L., Morin, X., Pinho, B.X., le Maire, G., Bittencourt, P.R.L., Oliveira, R.S., Bongers, F., Brouwer, R., Pereira, L., Melo, G.A.G., Boonman, C.C.F., Brown, K.A., Cerabolini, B.E.L., Niinemets, Ü., Onoda, Y., Schneider, J.V., Sheremetiev, S., Brancalion, P.H.S., 2022. Small and slow is safe: on the drought tolerance of tropical tree species. Glob. Chang. Biol. 28(8), 2622-2638. https://doi.org/10.1111/gcb.16082.
Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A., 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126(4), 457-461. https://doi.org/10.1007/s004420100628.
He, N.P., Liu, C.C., Piao, S.L., Sack, L., Xu, L., Luo, Y.Q., He, J.S., Han, X.G., Zhou, G.S., Zhou, X.H., Lin, Y., Yu, Q., Liu, S.R., Sun, W., Niu, S.L., Li, S.G., Zhang, J.H., Yu, G.R., 2019. Ecosystem traits linking functional traits to macroecology. Trends Ecol. Evol. 34(3), 200-210. https://doi.org/10.1016/j.tree.2018.11.004.
He, P.C., Gleason, S.M., Wright, I.J., Weng, E.S., Liu, H., Zhu, S.D., Lu, M.Z., Luo, Q., Li, R.H., Wu, G., Yan, E.R., Song, Y.J., Mi, X.C., Hao, G.Y., Reich, P.B., Wang, Y.P., Ellsworth, D.S., Ye, Q., 2020. Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob. Chang. Biol. 26(3), 1833-1841. https://doi.org/10.1111/gcb.14929.
Iio, A., Fukasawa, H., Nose, Y., Kakubari, Y., 2004. Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy top of Fagus crenata Blume on Naeba mountain in Japan. Trees 18, 510-517. https://doi.org/10.1007/s00468-004-0327-x.
Jacobsen, A.L., Pratt, R.B., Davis, S.D., Ewers, F.W., 2007. Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant Cell Environ. 30(12), 1599-1609. https://doi.org/10.1111/j.1365-3040.2007.01729.x.
John, G.P., Scoffoni, C., Buckley, T.N., Villar, R., Poorter, H., Sack, L., 2017. The anatomical and compositional basis of leaf mass per area. Ecol. Lett. 20(4), 412-425. https://doi.org/10.1111/ele.12739.
Kerkhoff, A.J., Enquist, B.J., 2009. Multiplicative by nature: why logarithmic transformation is necessary in allometry. J. Theor. Biol. 257(3), 519-521. https://doi.org/10.1016/j.jtbi.2008.12.026.
Kunstler, G., Falster, D., Coomes, D.A., Hui, F., Kooyman, R.M., Laughlin, D.C., Poorter, L., Vanderwel, M., Vieilledent, G., Wright, S.J., Aiba, M., Baraloto, C., Caspersen, J., Cornelissen, J.H., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., Kurokawa, H., Onoda, Y., Peñuelas, J., Poorter, H., Uriarte, M., Richardson, S., Ruiz-Benito, P., Sun, I.F., Ståhl, G., Swenson, N.G., Thompson, J., Westerlund, B., Wirth, C., Zavala, M.A., Zeng, H., Zimmerman, J.K., Zimmermann, N.E., Westoby M., 2016. Plant functional traits have globally consistent effects on competition. Nature 529(7585), 204-207. https://doi.org/10.1038/nature16476.
Lê, S., Josse, J., Husson, F., 2008. FactoMineR: an R package for multivariate analysis. J. Stat. Software 25(1), 1-18. https://doi.org/10.18637/jss.v025.i01.
Li, J.L., Chen, X.P., Niklas, K.J., Sun, J., Wang, Z.Y., Zhong, Q.L., Hu, D.D., Cheng, D.L., 2022. A whole-plant economics spectrum including bark functional traits for 59 subtropical woody plant species. J. Ecol. 110(1), 248-261. https://doi.org/10.1111/1365-2745.13800.
Liang, X., Ye, Q., Liu, H., Brodribb, T.J., 2021. Wood density predicts mortality threshold for diverse trees. New Phytol. 229(6), 3053-3057. https://doi.org/10.1111/nph.17117.
Liu, H., Ye, Q., Gleason, S.M., He, P.C., Yin, D.Y., 2021. Weak tradeoff between xylem hydraulic efficiency and safety: climatic seasonality matters. New Phytol. 229(3), 1440-1452. https://doi.org/10.1111/nph.16940.
Markesteijn, L., Poorter, L., Bongers, F., Paz, H., Sack, L., 2011. Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance. New Phytol. 19(12), 480-495. https://doi.org/10.1111/j.1469-8137.2011.03708.x.
Martin-StPaul, N., Delzon, S., Cochard, H., 2017. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 20(11), 1437-1447. https://doi.org/10.1111/ele.12851.
McDowell, N.G., Michaletz, S.T., Bennett, K.E., Solander, K.C., Xu, C., Maxwell, R.M., Middleton, R.S., 2018. Predicting chronic climate-driven disturbances and their mitigation. Trends Ecol. Evol. 33(1), 15-27. https://doi.org/10.1016/j.tree.2017.10.002.
Medeiros, C.D., Scoffoni, C., John, G.P., Bartlett, M.K., Inman-Narahari, F., Ostertag, R., Cordell, S., Giardina, C., Sack, L., 2018. An extensive suite of functional traits distinguishes Hawaiian wet and dry forests and enables prediction of species vital rates. Funct. Ecol. 33(4), 712-734. https://doi.org/10.1111/1365-2435.13229.
Niinemets, Ü., Díaz-Espejo, A., Flexas, J., Galmés, J., Warren, C.R., 2009. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J. Exp. Bot. 60(8), 2249-2270. https://doi.org/10.1093/jxb/erp036.
Nguyen, H.T., Meir, P., Sack, L., Evans, J.R., Oliveira, R.S., Ball, M.C., 2017. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources. Plant Cell Environ. 40(8), 1576-1591. https://doi.org/10.1111/pce.12962.
Oliveira, R.S., Eller, C.B., Barros, F.V., Hirota, M., Brum, M., Bittencourt, P., 2021. Linking plant hydraulics and the fast—slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230(3), 904-923. https://doi.org/10.1111/nph.17266.
Onoda, Y., Wright, I.J., Evans, J.R., Hikosaka, K., Kitajima, K., Niinemets, Ü., Poorter, H., Tosens, T., Westoby, M., 2017. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol. 214(4), 1447-1463. https://doi.org/10.1111/nph.
Peguero-Pina, J.J., Sisó, S., Flexas, J., Galmés, J., Niinemets, Ü., Sancho-Knapik, D., Gil-Pelegrín, E., 2017. Coordinated modifications in mesophyll conductance, photosynthetic potentials and leaf nitrogen contribute to explain the large variation in foliage net assimilation rates across Quercus ilex provenances. Tree Physiol. 37(8), 1084-1094. https://doi.org/10.1093/treephys/tpx057.
Powers, J.S., Tiffin, P., 2010. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct. Ecol. 24(4), 927-936. https://doi.org/10.1093/treephys/tpaa131.
Qi, J.H., Fan, Z.X., Fu, P.L., Zhang, Y.J., Sterck, F., 2021. Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees: carbon gain, hydraulics and nutrient-use efficiencies. Tree Physiol. 41(1), 12-23. https://doi.org/10.1093/treephys/tpaa131.
Reich, P.B., 2014. The world-wide 'fast–slow' plant economics spectrum: a traits manifesto. J. Ecol. 102(2), 275-301. https://doi.org/10.1111/1365-2745.12211.
Sack, L., Cowan, P.D., Jaikumar, N., Holbrook, N.M., 2003. The 'hydrology' of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ. 26(8), 1343-1356. https://doi.org/10.1046/j.0016-8025.2003.01058.x.
Schulze, E.D., Lange, O.L., Evenari, M., Kappen, L., Buschbom, U., 1974. The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of daily course of stomatal resistance. Oecologia 17(2), 159-170. https://doi.org/10.1007/BF00346278.
Silva, J.L.A., Souza, A.F., Caliman, A., Voigt, E.L., Lichston, J.E., 2017. Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecol. Evol. 8(1), 4-12. https://doi.org/10.1002/ece3.3547.
Sobral, M., 2021. All traits are functional: an evolutionary viewpoint. Trends Plant Sci. 26(7), 674-676. https://doi.org/10.1016/j.tplants.2021.04.004.
Vargas, G.G., Brodribb, T.J., Dupuy, J.M., González-M, R., Hulshof, C.M., Medvigy, D., Allerton, T.A.P., Pizano, C., Salgado-Negret, B., Schwartz, N.B., Van Bloem, S.J., Waring, B.G., Powers, J.S., 2021. Beyond leaf habit: generalities in plant function across 97 tropical dry forest tree species. New Phytol. 232(1), 148-161. https://doi.org/10.1111/nph.17584.
Vargas, G.G., Kunert, N., Hammond, W.M., Berry, Z.C., Werden, L.K., Smith-Martin, C.M., Wolfe, B.T., Toro, L., Mondragón-Botero, A., Pinto-Ledezma, J.N., Schwartz, N.B., Uriarte, M., Sack, L., Anderson-Teixeira, K.J., Powers, J.S., 2022. Leaf habit affects the distribution of drought sensitivity but not water transport efficiency in the tropics. Ecol. Lett. 25(12), 2637-2650. https://doi.org/10.1111/ele.14128.
Williams, R.J., Myers, B.A., Eamus, D., Duff, G.A., 1999. Reproductive phenology of woody species in a north Australian tropical savanna. Biotropica 31(4), 626-636. https://doi.org/10.1111/j.1744-7429.1999.tb00411.x.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428(6985), 821-827. https://doi.org/10.1038/nature02403.
Xu, X.T., Medvigy, D., Powers, J.S., Becknell, J.M., Guan, K.Y., 2016. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 212(1), 80-95. https://doi.org/10.1016/j.scitotenv.2023.161711.
Yang, D., Zhang, Y.J., Song, J., Niu, C.U., Hao, G.Y., 2019. Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China. Tree Physiol. 39(5), 729-739. https://doi.org/10.1093/treephys/tpy147.
Yang, D., Wang, Y.S.D., Wang, Q., Ke, Y., Zhang, Y.B., Zhang, S.B., Zhang, Y.J., McDowell, N.G., Zhang, J.L., 2023. Physiological response and photosynthetic recovery to an extreme drought: evidence from plants in a dry-hot valley savanna of Southwest China. Sci. Total Environ. 868, 161711. https://doi.org/10.1016/j.scitotenv.2023.161711.
Ye, Y.H., Kitayama, K., Onoda, Y., 2022. A cost–benefit analysis of leaf carbon economy with consideration of seasonal changes in leaf traits for sympatric deciduous and evergreen congeners: implications for their coexistence. New Phytol. 234(3), 1047-1058. https://doi.org/10.1111/nph.18022.
Yin, J.J., Bauerle, T.L, 2017. A global analysis of plant recovery performance from water stress. Oikos 126(10), 1377-1388. https://doi.org/10.1111/oik.04534.
Zhao, Y.T., Ali, A., Yan, E.R., 2017. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species. Tree Physiol. 37(2), 173-185. https://doi.org/10.1093/treephys/tpw098.
Zhang, J.L., Zhu, J.J., Cao, K.F., 2007. Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China. Trees 21(6), 631-643. https://doi.org/10.1007/s00468-007-0156-9.
Zhang, J.L., Cao, K.F., 2009. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species. Funct. Ecol. 23(4), 658-667. https://doi.org/10.1111/j.1365-2435.2009.01552.x.
Zhang, J.L., Poorter, L., Cao, K.F., 2012. Productive leaf functional traits of Chinese savanna species. Plant Ecol. 213(9), 1449-1460. https://doi.org/10.1007/s11258-012-0103-8.
Zhang, S.B., Zhang, J.L., Cao, K.F., 2017. Divergent hydraulic safety strategies in three co-occurring Anacardiaceae tree species in a Chinese savanna. Front. Plant Sci. 7, 2075. https://doi.org/10.3389/fpls.2016.02075.
Zhang, Y.J., Meinzer, F.C., Qi, J.H., Goldstein, G., Cao, K.F., 2013. Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees. Plant Cell Environ. 36(1), 149-158. https://doi.org/10.1111/j.1365-3040.2012.02563.x.
Zhu, L.W., Zhao, P., 2023. Climate-driven sapwood-specific hydraulic conductivity and the Huber value but not leaf-specific hydraulic conductivity on a global scale. Sci. Total Environ. 857, 159334. https://doi.org/10.1016/j.scitotenv.2022.159334.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Comments on this article