AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Predicting carbon storage of mixed broadleaf forests based on the finite mixture model incorporating stand factors, site quality, and aridity index

College of Forestry, Hebei Agricultural University, Baoding, 071001, China
College of Economics and Management, Hebei Agricultural University, Baoding, 071001, China
Show Author Information

Abstract

The diameter distribution function (DDF) is a crucial tool for accurately predicting stand carbon storage (CS). The current key issue, however, is how to construct a high-precision DDF based on stand factors, site quality, and aridity index to predict stand CS in multi-species mixed forests with complex structures. This study used data from 70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest, Hebei Province, China, to construct the DDF based on maximum likelihood estimation and finite mixture model (FMM). Ordinary least squares (OLS), linear seemingly unrelated regression (LSUR), and back propagation neural network (BPNN) were used to investigate the influences of stand factors, site quality, and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests. The results showed that FMM accurately described the stand-level diameter distribution of the mixed P. davidiana and B. platyphylla forests; whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution. The combined variable of quadratic mean diameter (Dq), stand basal area (BA), and site quality improved the accuracy of the shape parameter models of FMM; the combined variable of Dq, BA, and De Martonne aridity index improved the accuracy of the scale parameter models. Compared to OLS and LSUR, the BPNN had higher accuracy in the re-parameterization process of FMM. OLS, LSUR, and BPNN overestimated the CS of P. davidiana but underestimated the CS of B. platyphylla in the large diameter classes (DBH ≥18 ​cm). BPNN accurately estimated stand- and species-level CS, but it was more suitable for estimating stand-level CS compared to species-level CS, thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests.

References

 

Abino, A.C., Kim, S.Y., Lumbres, R.I.C., Jang, M.N., Youn, H.J., Park, K.H., Lee, Y.J., 2016. Performance of Weibull function as a diameter distribution model for Pinus thunbergii stands in the eastern coast of South Korea. J. Mountain Sci. 13, 822-830. https://doi.org/10.1007/s11629-014-3243-5.

 

Ali, A., Yan, E.R., Chen, H.Y.H., Chang, S.X., Zhao, Y.T., Yang, X.D., Xu, M.S., 2016. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences 13, 4627-4635. https://doi.org/10.5194/bg-13-4627-2016.

 

Bayat, M., Bettinger, P., Heidari, S., Henareh, K.A., Jourgholami, M., Hamidi, K., 2020. Estimation of tree heights in an uneven-aged, mixed forest in Northern Iran using artificial intelligence and empirical models. Forests 11, 324. https://doi.org/10.3390/f11030324.

 

Cao, Q.V., 2022. Predicting future diameter distributions given current stand attributes. Can. J. For. Res. 52, 561-567. https://doi.org/10.1139/cjfr-2021-0216.

 

Che, S., Tan, X., Xiang, C., Sun, J., Hu, X., Zhang, X., Duan, A., Zhang, J., 2019. Stand basal area modelling for Chinese fir plantations using an artificial neural network model. J. For. Res. 30, 1641-1649. https://doi.org/10.1007/s11676-018-0711-9.

 

Condés, S., del Río, M., Forrester, D.I., Avdagić, A., Bielak, K., Bončina, A., Bosela, M., Hilmers, T., Ibrahimspahić, A., Drozdowski, S., Jaworski, A., Nagel, T.A., Sitková, Z., Skrzyszewski, J., Tognetti, R., Tonon, G., Zlatanov, T., Pretzsch, H., 2022. Temperature effect on size distributions in spruce-fir-beech mixed stands across Europe. For. Ecol. Manag. 504, 119819. https://doi.org/10.1016/j.foreco.2021.119819.

 

De Lima, R.A.F., Ferreira, R.A., Batista, Ferreira J.L. Prado, Inacio P., 2015. Modeling tree diameter distributions in natural forests: an evaluation of 10 statistical models. For. Sci. 61, 320-327. https://doi.org/10.5849/forsci.14-070.

 

De Lima, R.B., Bufalino, L., Alves Júnior, F.T., Da Silva, J.A.A., Ferreira R.L.C., 2017. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species. An. Acad. Bras. Ciênc. 89, 1189-1203. https://doi.org/10.1590/0001-3765201720160331.

 

Diamantopoulou, M.J., Özçelik, R., Crecente-Campo, F., Eler, Ü., 2015. Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods. Biosyst. Eng. 133, 33-45. https://doi.org/10.1016/j.biosystemseng.2015.02.013.

 

Ding, S., Su, C., Yu, J., 2011. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 36, 153-162. https://doi.org/10.1007/s10462-011-9208-z.

 

Fonseca, T.F., Marques, C.P., Parresol, B.R., 2009. Describing maritime pine diameter distributions with Johnson's SB distribution using a new all-parameter recovery approach. For. Sci. 55, 367-373. https://doi.org/10.1093/forestscience/55.4.367.

 

Fu, L., Lei, Y., Wang, G., Bi, H., Tang, S., Song, X., 2016. Comparison of seemingly unrelated regressions with error-in-variable models for developing a system of nonlinear additive biomass equations. Trees (Berl.) 30, 839-857. https://doi.org/10.1007/s00468-015-1325-x.

 

Fu, L., Sharma, R.P., Wang, G., Tang, S., 2017. Modelling a system of nonlinear additive crown width models applying seemingly unrelated regression for Prince Rupprecht larch in northern China. For. Ecol. Manag. 386, 71-80. https://doi.org/10.1016/j.foreco.2016.11.038.

 

Gül, A.U., Misir, M., Misir, N., Yavuz, H., 2005. Calculation of uneven-aged stand structures with the negative exponential diameter distribution and Sterba's modified competition density rule. For. Ecol. Manag. 214, 212-220. https://doi.org/10.1016/j.foreco.2005.04.012.

 

Günther, F., Fritsch, S., 2010. neuralnet: training of neural networks. R J. 2, 30-38. https://doi.org/10.32614/RJ-2010-006.

 

Guo, H., Lei, Y.C., 2016. Method comparison of Weibull function for estimating and predicting diameter distribution of Quercus mongolica stands. Sci. Silvae Sin. 52, 64-71. https://doi.org/10.11707/j.1001-7488.20161008. (in Chinese).

 

Guo, H., Lei, X.D., Lei, Y., Zeng, W.S., Lang, P.M., Lei, Y.C., 2022. Climate-sensitive diameter distribution models of larch plantations in north and northeast China. For. Ecol. Manag. 506, 119947. https://doi.org/10.1016/j.foreco.2021.119947.

 

Henningsen, A., Hamann, J.D., 2008. systemfit: a package for estimating systems of simultaneous equations in R. J. Stat. Software 23, 1-40. https://doi.org/10.18637/JSS.V023.I04.

 

Hussain, M., Lin, Z.R., Yen, T.M., Lin, C.C., 2021. Application of models to predict stand volume, aboveground biomass accumulation, and carbon storage capacity for a Konishii fir (Cunninghamia konishii Hayata) plantation in central Taiwan. Forests 12, 1406. https://doi.org/10.3390/f12101406.

 

Jahangir, M.H., Danehkar, S., 2022. A comparative drought assessment in Gilan, Iran using Pálfai drought index, de Martonne aridity index, and Pinna combinative index. Arabian J. Geosci. 15, 90. https://doi.org/10.1007/s12517-021-09107-7.

 

Janowiak, M.K., Nagel, L.M., Webster, C.R., 2008. Spatial scale and stand structure in northern hardwood forests: implications for quantifying diameter distributions. For. Sci. 54, 497-506. https://doi.org/10.1093/forestscience/54.5.497.

 

Jaworski, A.P., Podlaski, R., 2012. Modelling irregular and multimodal tree diameter distributions by finite mixture models: an approach to stand structure characterisation. J. For. Res. 17, 79-88. https://doi.org/10.1007/s10310-011-0254-9.

 

Jiang, P., Zhang, S.X., Ren, J.J., Wang, X.P., Meng, J.H., Gu, J.C., Lu, G.Q., 2015. Biomass and carbon fixation ability of typical larch-poplar and betula mixed forest in Mulanweichang. Acta Ecol. Sin. 35, 2937-2945. https://doi.org/10.5846/stxb201309122253. (in Chinese).

 

Lee, Y.J., Coble, D.W., 2006. A new diameter distribution model for unmanaged loblolly pine plantations in East Texas. South. J. Appl. Finance 30, 13-20. https://doi.org/10.1093/sjaf/30.1.13.

 

Liu, C.M., Zhang, L.J., Davis, C.J., Solomon, D.S., Gove, J.H., 2002. A finite mixture model for characterizing the diameter distributions of mixed-species forest stands. For. Sci. 48, 653-661. https://doi.org/10.1093/forestscience/48.4.653.

 

Liu, C.M., Zhang, S.Y., Lei, Y., Newton, P., Zhang, L.J., 2011. Evaluation of three methods for predicting diameter distributions of black spruce (Picea mariana) plantations in central Canada. Can. J. For. Res. 34, 2424-2432. https://doi.org/10.1139/x04-117.

 

Liu, F.X., Li, F.R., Zhang, L.J., Jin, X.J., 2014. Modeling diameter distributions of mixed-species forest stands. Scand. J. For. Res. 29, 653-663. https://doi.org/10.1080/02827581.2014.960891.

 

Liu, Y., Wang, D., Zhang, Z., Liu, Q., Zhang, D., Xu, Z., 2023. Modeling free branch growth with the competition index for a Larix principis-rupprechtii Plantation. Forests 14, 1495. https://doi.org/10.3390/f14071495.

 

Long, S., Zeng, S., Wang, G., 2021. Developing a new model for predicting the diameter distribution of oak forests using an artificial neural network. Ann. For. Res. 64, 3-20. https://doi.org/10.15287/afr.2020.2060.

 

Lumbres, R.I.C., Lee, Y.J., 2014. Percentile-based Weibull diameter distribution model for Pinus kesiya stands in Benguet province, Philippines. South. For. 76. 117-123. https://doi.org/10.2989/20702620.2014.918689.

 

Manso, R., Morneau, F., Ningre, F., Fortin, M., 2015. Effect of climate and intra- and inter-specific competition on diameter increment in beech and oak stands. Forestry 88, 540-551. https://doi.org/10.1093/forestry/cpv020.

 

Mayrinck, R.C., Filho, A.C.F., Ribeiro, A., De Oliveira, X.M., De Lima, R.R., 2018. A comparison of diameter distribution models for Khaya ivorensis A. Chev. plantations in Brazil. South. For. 80, 373-380. https://doi.org/10.2989/20702620.2018.1463189.

 

Miranda, R., Fiorentin, L., Netto, S., Juvanhol, R., Corte, A., 2018. Prediction system for diameter distribution and wood production of eucalyptus. Floresta e Ambiente 25, e20160548. https://doi.org/10.1590/2179-8087.054816.

 

Moral, F.J., Rebollo, F.J., Paniagua, L.L., García-Martín, A., Honorio, F., 2016. Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain. Theor. Appl. Climatol. 126, 801-814. https://doi.org/10.1007/s00704-015-1615-7.

 

Newton, P.F., Lei, Y., Zhang, S.Y., 2005. Stand-level diameter distribution yield model for black spruce plantations. For. Ecol. Manag. 209, 181-192. https://doi.org/10.1016/j.foreco.2005.01.020.

 

Novák, J., Slodičák, M., Kacálek, D., Dušek, D., 2010. The effect of different stand density on diameter growth response in Scots pine stands in relation to climate situations. J. For. Sci. 56, 461-473. https://doi.org/10.17221/14/2010-JFS.

 

Ogana, F.N., 2018. Application of finite mixture to characterise degraded Gmelina arborea Roxb plantation in Omo forest reserve, Nigeria. J. For. Environ. Sci. 34, 451-456. https://doi.org/10.7747/JFES.2018.34.6.451.

 

Özçelik, R., Fidalgo Fonseca, T.J., Parresol, B.R., Eler, Ü., 2016. Modeling the diameter distributions of Brutian pine stands using Johnson's SB distribution. For. Sci. 62, 587-593. https://doi.org/10.5849/forsci.15-089.

 

Özçelik, R., Cao, Q.V., Trincado, G., Göçer, N., 2018. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. For. Ecol. Manag. 419–420, 240-248. https://doi.org/10.1016/j.foreco.2018.03.051.

 

Palahí, M., Pukkala, T., Blasco, E., Trasobares, A., 2007. Comparison of beta, Johnson's SB, Weibull and truncated Weibull functions for modeling the diameter distribution of forest stands in Catalonia (north-east of Spain). Eur. J. For. Res. 126, 563-571. https://doi.org/10.1007/s10342-007-0177-3.

 

Pan, Y., Wang, Y., Zhou, P., Yan, Y., Guo, D., 2020. Activation functions selection for BP neural network model of ground surface roughness. J. Intell. Manuf. 31, 1825-1836. https://doi.org/10.1007/s10845-020-01538-5.

 

Pekin, B.K., Boer, M.M., Macfarlane, C., Grierson, P.F., 2009. Impacts of increased fire frequency and aridity on eucalypt forest structure, biomass and composition in southwest Australia. For. Ecol. Manag. 258, 2136-2142. https://doi.org/10.1016/j.foreco.2009.08.013.

 

Podlaski, R., 2006. Suitability of the selected statistical distributions for fitting diameter data in distinguished development stages and phases of near-natural mixed forests in the Świętokrzyski National Park (Poland). For. Ecol. Manag. 236, 393-402. https://doi.org/10.1016/j.foreco.2006.09.032.

 

Podlaski, R., Zasada, M., 2008. Comparison of selected statistical distributions for modelling the diameter distributions in near-natural Abies–Fagus forests in the Świętokrzyski National Park (Poland). Eur. J. For. Res. 127, 455-463. https://doi.org/10.1007/s10342-008-0229-3.

 

Podlaski, R., 2010a. Diversity of patch structure in Central European forests: are tree diameter distributions in near-natural multilayered Abies–Fagus stands heterogeneous? Ecol. Res. 25, 599-608. https://doi.org/10.1016/j.mbs.2014.01.007.

 

Podlaski, R., 2010b. Two-component mixture models for diameter distributions in mixed-species, two-age cohort stands. For. Sci. 56, 379-390. https://doi.org/10.1093/forestscience/56.4.379.

 

Podlaski, R., Roesch, F.A., 2014. Modelling diameter distributions of two-cohort forest stands with various proportions of dominant species: a two-component mixture model approach. Math. Biosci. 249, 60-74. https://doi.org/10.1016/j.mbs.2014.01.007.

 

Poudel, K.P., Cao, Q.V., 2013. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. For. Sci. 59, 243-252. https://doi.org/10.5849/forsci.12-001.

 

Qi, L., Liu, X., Jiang, Z., Yue, X., Li, Z., Fu, J., Liu, G., Guo, B., Shi, L., 2016. Combining diameter-distribution function with allometric equation in biomass estimates: a case study of Phyllostachys edulis forests in South Anhui, China. Agrofor. Syst. 90, 1113-1121. https://doi.org/10.1007/s10457-015-9887-6.

 

Qin, H., Zhou, W., Yao, Y., Wang, W., 2021. Estimating aboveground carbon stock at the scale of individual trees in subtropical forests using UAV LiDAR and hyperspectral data. Remote Sens. 13, 4969. https://doi.org/10.3390/rs13244969.

 

Rose, C.E., Lynch, T.B., 2001. Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions. For. Ecol. Manag. 148, 51-61. https://doi.org/10.1016/S0378-1127(00)00524-7.

 

Şahin, A., Ercanli, I., 2023. An evaluation of various probability density functions for predicting diameter distributions in pure and mixed-species stands in Türkiye. For. Syst. 32, e016. https://doi.org/10.5424/fs/2023323-20130.

 

Sanquetta, C.R., Behling, A., Corte, A.P.D., Netto, S.P., Rodrigues, A.L., Simon, A.A., 2014. A model based on environmental factors for diameter distribution in black wattle in Brazil. PLoS One 9, e100093. https://doi.org/10.1371/journal.pone.0100093.

 

Şarlak, N., Mahmood Agha, O.M.A., 2018. Spatial and temporal variations of aridity indices in Iraq. Theor. Appl. Climatol. 133, 89-99. https://doi.org/10.1007/s00704-017-2163-0.

 

Schmidt, L.N., Machado, S.D.A., Pelissari, A.L., De Silva, G.F., 2019. Dynamics of eucalyptus diameter distribution in the state of Minas Gerais. Floresta e Ambiente 26, e20170156. https://doi.org/10.1590/2179-8087.015617.

 

Schmidt, L.N., Sanquetta, M.N.I., McTague, J.P., da Silva, G.F., Filho, C.V.F., Sanquetta, C.R., Scolforo, J.R.S., 2020. On the use of the Weibull distribution in modeling and describing diameter distributions of clonal eucalypt stands. Can. J. For. Res. 50, 1050-1063. https://doi.org/10.1139/cjfr-2020-0051.

 

Sun, S., Cao, Q.V., Cao, T., 2019. Characterizing diameter distributions for uneven-aged pine-oak mixed forests in the Qinling Mountains of China. Forests 10, 596. https://doi.org/10.3390/f10070596.

 

Tabari, H., Talaee, P.H., Nadoushani, M.S.S., Willems, P., Marchetto, A., 2014. A survey of temperature and precipitation based aridity indices in Iran. Quat. Int. 345, 158-166. https://doi.org/10.1016/j.quaint.2014.03.061.

 

Tetemke, B.A., Birhane, E., Rannestad, M.M., Eid, T., 2021. Species diversity and stand structural diversity of woody plants predominantly determine aboveground carbon stock of a dry Afromontane forest in Northern Ethiopia. For. Ecol. Manag. 500, 119634. https://doi.org/10.1016/j.foreco.2021.119634.

 

Tijerín-Triviño, J., Moreno-Fernández, D., Zavala, M.A., Astigarraga, J., García, M., 2022. Identifying forest Structural types along an aridity gradient in Peninsular Spain: integrating low-density LiDAR, forest inventory, and aridity index. Rem. Sens. 14, 235. https://doi.org/10.3390/rs14010235.

 

Trifković, V., Bončina, A., Ficko, A., 2022. Analyzing asymmetries in the response of European beech to precipitation anomalies in various stand and site conditions using decadal diameter censuses. Agric. For. Meteorol. 327, 109195. https://doi.org/10.1016/j.agrformet.2022.109195.

 

Wang, S., Dai, L., Liu, G., Yuan, J., Zhang, H., Wang, Q., 2006. Modeling diameter distribution of the broadleaved-Korean pine mixed forest on Changbai Mountains of China. Sci. China, Ser. E: Technol. Sci. 49, 177-188. https://doi.org/10.1007/s11431-006-8119-8.

 

Wang, J.J., He, T., Xu, G.M., Xu, H.L., Li, B.W., 2023b. Effects of selective cutting on the structure of natural forest in Burqin Mountainous Land. J. Agric. Sci. Technol. 25, 217-226. https://doi.org/10.13304/j.nykjdb.2022.0251.

 

Wang, D., Zhang, Z., Zhang, D., Huang, X., 2023a. Biomass allometric models for Larix rupprechtii based on Kosak's taper curve equations and nonlinear seemingly unrelated regression. Front. Plant Sci. 13, 1056837. https://doi.org/10.3389/fpls.2022.1056837.

 

Wang, W., Zhou, W., Wang, H., Ji, C., Han, S., 2017. Organic carbon and nitrogen dynamics in different soil fractions between broad-leaved Korean pine forests and aspen–birch forests in northeastern China. J. Soils Sediments 17, 2257-2273. https://doi.org/10.1007/s11368-016-1438-x.

 

Wu, D.Y., Dou, X.W., Tang, M.P., 2023a. Relationship between carbon stock and the structure of coniferous and broad-leaved mixed forest in Tian-mu Mountain, China. Chin. J. Appl. Ecol. 34, 2029-2038. https://doi.org/10.13287/j.1001-9332.202308.015. (in Chinese).

 

Wu, W., Wang, D., Zhang, D., 2023b. Aridity index and quantile regression influences on the maximum size-density relationship for coniferous and broad-leaved mixed forests. For. Ecol. Manag. 543, 121148. https://doi.org/10.1016/j.foreco.2023.121148.

 

Wu, W.J., Xu, H., Huang, M.Q., Li, C., Lv, Y.Y., Wei, A.C., Xiong, H.X., Ou, G.L., 2018. Stand diameter structure and environmental explanation for Pinus kesiya var. langbianensis natural mature forests. J. Cent. South Univ. For. Technol. 38, 41-49. https://doi.org/10.14067/j.cnki.1673-923x.2018.06.006. (in Chinese).

 

Xu, Q.G., Lei, X.D., Zhang, H.R., 2022. A novel method for approaching the compatibility of tree biomass estimation by multi-task neural networks. For. Ecol. Manag. 508, 120011. https://doi.org/10.1016/j.foreco.2022.120011.

 

Xu, Q.G., Lei, X.D., Zheng, Y., Hu, X.G., Lei, Y.C., He, X., 2023. A new activation function based on Richards equation for tree height-diameter deep neural network model of Abies nephrolepis. Sci. Silv. Sin. 59, 50-56. https://doi.org/10.11707/j.1001-7488.LYKX20220076. (in Chinese).

 

Yang, S.I., Cao, Q.V., Shoch, D.T., Johnson, T., 2022. Characterizing stand and biomass tables from diameter distribution models: a case study for mixed-hardwood forests in Eastern Tennessee, USA. For. Sci. 68, 8-16. https://doi.org/10.1093/forsci/fxab051.

 

Yen, T.M., Ai, L.M., Li, C.L., Lee, J.S., Huang, K.L., 2009. Aboveground carbon contents and storage of three major Taiwanese conifer species. Taiwan J. For. Sci. 24, 91-102. https://doi.org/10.7075/TJFS.200906.0091. (in Chinese).

 

Yen, T.M., Ji, Y.J., Lee, J.S., 2010. Estimating biomass production and carbon storage for a fast-growing Makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339-344. https://doi.org/10.1016/j.foreco.2010.04.021.

 

Yen, T.M., 2023. Predicting aboveground biomass yield for Moso bamboo (Phyllostachys pubescens) plantations based on the diameter distribution model. Eur. J. For. Res. 142, 1341-1351. https://doi.org/10.1007/s10342-023-01596-3.

 

Yu, Y., 2022. mixR: an R package for finite mixture modeling for both raw and binned data. J. Open Source Softw. 7, 4031. https://doi.org/10.21105/joss.04031.

 

Zasada, M., Cieszewski, C.J., 2005. A finite mixture distribution approach for characterizing tree diameter distributions by natural social class in pure even-aged Scots pine stands in Poland. For. Ecol. Manag. 204, 145-158. https://doi.org/10.1016/j.foreco.2003.12.023.

 

Zeide, B., 2005. How to measure stand density. Trees (Berl.) 19, 1-14. https://doi.org/10.1007/s00468-004-0343-x.

 

Zeng, W.S., 2015. Using nonlinear mixed model and dummy variable model approaches to develop origin-based individual tree biomass equations. Trees (Berl.) 29, 275-283. https://doi.org/10.1007/s00468-014-1112-0.

 

Zhang, H., Zhuang, S., Sun, B., Ji, H., Li, C., Zhou, S., 2014. Estimation of biomass and carbon storage of Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) in southern China using a diameter–age bivariate distribution model. Forestry 87, 674-682. https://doi.org/10.1093/forestry/cpu028.

 

Zhang, L.Z., Gove, J.H., Liu, C.M., Leak, W.B., 2001. A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands. Can. J. For. Res. 31, 1654-1659. https://doi.org/10.1139/x01-086.

 

Zhang, L.Z., Liu, C.M., 2006. Fitting irregular diameter distributions of forest stands by Weibull, modified Weibull, and mixture Weibull models. J. For. Res. 11, 369-372. https://doi.org/10.1007/s10310-006-0218-7.

 
Zhou, G.Y., Yin, G.C., Tang, X.L., 2018. Carbon Storage in Chinese Forest Ecosystems-Biomass Equation, 1st edn. Science Press, Beijing.
Forest Ecosystems
Article number: 100189

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Wang Y, Wang D, Zhang D, et al. Predicting carbon storage of mixed broadleaf forests based on the finite mixture model incorporating stand factors, site quality, and aridity index. Forest Ecosystems, 2024, 11(3): 100189. https://doi.org/10.1016/j.fecs.2024.100189

206

Views

16

Downloads

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 01 January 2024
Revised: 17 March 2024
Accepted: 17 March 2024
Published: 23 March 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).