AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Carbon allocation in Picea jezoensis: Adaptation strategies of a non-treeline species at its upper elevation limit

Renkai DongaNa LiaMai-He Lia,c,eYu CongdHaibo DuaDecai GaoaHong S. Heb( )
Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, 130102, China
School of Life Science, Hebei University, Baoding, 071002, China
Show Author Information

Abstract

Understanding the physiological adaptations of non-treeline trees to environmental stress is important to understand future shifts in species composition and distribution of current treeline ecotone. The aim of the present study was to elucidate the mechanisms of the formation of the upper elevation limit of non-treeline tree species, Picea jezoensis, and the carbon allocation strategies of the species on Changbai Mountain. We employed the 13C in situ pulse labeling technique to trace the distribution of photosynthetically assimilated carbon in Picea jezoensis at different elevational positions (tree species at its upper elevation limit (TSAUE, 1,700 ​m a.s.l.) under treeline ecotone; tree species at a lower elevation position (TSALE, 1,400 ​m a.s.l.). We analyzed 13C and the non-structural carbohydrate (NSC) concentrations in various tissues following labeling. Our findings revealed a significant shift in carbon allocation in TSAUE compared to TSALE. There was a pronounced increase in δ13C allocation to belowground components (roots, soil, soil respiration) in TSAUE compared to TSALE. Furthermore, the C flow rate within the plant-soil-atmosphere system was faster, and the C residence time in the plant was shorter in TSAUE. The trends indicate enhanced C sink activity in belowground tissues in TSAUE, with newly assimilated C being preferentially directed there, suggesting a more conservative C allocation strategy by P. jezoensis at higher elevations under harsher environments. Such a strategy, prioritizing C storage in roots, likely aids in withstanding winter cold stress at the expense of aboveground growth during the growing season, leading to reduced growth of TSAUE compared to TSALE. The results of the present study shed light on the adaptive mechanisms governing the upper elevation limits of non-treeline trees, and enhances our understanding of how non-treeline species might respond to ongoing climate change.

References

 

Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., Genschik, P., 2008. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20, 2117-2129.

 

An, T., Schaeffer, S., Li, S., Fu, S., Pei, J., Li, H., Zhuang, J., Radosevich, M., Wang, J., 2015. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biol. Biochem. 80, 53-61.

 

Anadon-Rosell, A., Hasibeder, R., Palacio, S., Mayr, S., Ingrisch, J., Ninot, J.M., Nogués, S., Bahn, M., 2017. Short-term carbon allocation dynamics in subalpine dwarf shrubs and their responses to experimental summer drought. Environ. Exp. Bot. 141, 92-102.

 

Bai, X., Huang, Y., Wang, B., Kuzyakov, Y., An, S., 2021. Belowground allocation and fate of tree assimilates in plant–soil–microorganisms system: 13C labeling and tracing under field conditions. Geoderma 404, 115296.

 

Boutton, T.W., 1991. Stable carbon isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis. Carbon Isotope Tech. 155-171.

 

Bréda, N., Huc, R., Granier, A., Dreyer, E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625-644.

 

Brunner, I., Herzog, C., Galiano, L., Gessler, A., 2019. Plasticity of fine-root traits under long-term irrigation of a water-limited Scots pine forest. Front. Plant Sci. 10, 701.

 

Chang, Q., Xu, W., Peng, B., Jiang, P., Li, S., Wang, C., Bai, E., 2022. Dynamic and allocation of recently assimilated carbon in Korean pine (Pinus koraiensis) and birch (Betula platyphylla) in a temperate forest. Biogeochemistry 160, 395-407.

 

Charrier, G., Cochard, H., Améglio, T., 2013. Evaluation of the impact of frost resistances on potential altitudinal limit of trees. Tree Physiol. 33, 891-902.

 

Cong, Y., Saurer, M., Bai, E., Siegwolf, R., Gessler, A., Liu, K., Han, H., Dang, Y., Xu, W., He, H.S., Li, M.-H., 2022. In situ 13CO2 labeling reveals that alpine treeline trees allocate less photoassimilates to roots compared with low-elevation trees. Tree Physiol. 42, 1943-1956.

 

Dannoura, M., Maillard, P., Fresneau, C., Plain, C., Berveiller, D., Gerant, D., Chipeaux, C., Bosc, A., Ngao, J., Damesin, C., Loustau, D., Epron, D., 2011. In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO2 efflux after pulse labelling: variations among tree species and seasons. New Phytol. 190, 181-192.

 

Desalme, D., Priault, P., Gérant, D., Dannoura, M., Maillard, P., Plain, C., Epron, D., 2017. Seasonal variations drive short-term dynamics and partitioning of recently assimilated carbon in the foliage of adult beech and pine. New Phytol. 213, 140-153.

 

Drake, J.E., Furze, M.E., Tjoelker, M.G., Carrillo, Y., Barton, C.V., Pendall, E., 2019a. Climate warming and tree carbon use efficiency in a whole-tree 13CO2 tracer study. New Phytol. 222, 1313-1324.

 

Drake, J.E., Tjoelker, M.G., Aspinwall, M.J., Reich, P.B., Pfautsch, S., Barton, C.V., 2019b. The partitioning of gross primary production for young Eucalyptus tereticornis trees under experimental warming and altered water availability. New Phytol. 222, 1298-1312.

 

Du, H., Li, M.-H., Rixen, C., Zong, S., Stambaugh, M., Huang, L., He, H.S., Wu, Z., 2021. Sensitivity of recruitment and growth of alpine treeline birch to elevated temperature. Agr. Forest Meteorol. 304, 108403.

 

Du, H., Liu, J., Li, M.-H., Büntgen, U., Yang, Y., Wang, L., Wu, Z., He, H.S., 2018. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Glob. Change Biol. 24, 1256-1266.

 

Du, H., Stambaugh, M.C., Camarero, J.J., Li, M.-H., Yu, D., Zong, S., He, H.S., Wu, Z., 2022. A comparison of pre-millennium eruption (946 CE) and modern temperatures from tree rings in Changbai Mountain, Northeast Asia. Clim. Past 19, 1295-1304.

 

Dunn, J.P., Kimmerer, T.W., Potter, D.A., 1987. Winter starch reserves of white oak as a predictor of attack by the twolined chestnut borer, Agrilus bilineatus (Weber)(Coleoptera: Buprestidae). Oecologia 74, 352-355.

 

Epron, D., Cabral, O.M.R., Laclau, J.-P., Dannoura, M., Packer, A.P., Plain, C., Battie-Laclau, P., Moreira, M.Z., Trivelin, P.C.O., Bouillet, J.-P., Gérant, D., Nouvellon, Y., 2016. In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon. Tree physiol. 36, 6-21.

 

Epron, D., Ngao, J., Dannoura, M., Bakker, M., Zeller, B., Bazot, S., Bosc, A., Plain, C., Lata, J.-C., Priault, P., Barthes, L., Loustau, D., 2011. Seasonal variations of belowground carbon transfer assessed by in situ 13CO2 pulse labelling of trees. Biogeosciences 8, 1153-1168.

 

Ferrari, A., Hagedorn, F., Niklaus, P.A., 2016. Experimental soil warming and cooling alters the partitioning of recent assimilates: evidence from a 14C labelling study at the alpine treeline. Oecologia 181, 25-37.

 

Furze, M.E., Drake, J.E., Wiesenbauer, J., Richter, A., Pendall, E., 2019. Carbon isotopic tracing of sugars throughout whole-trees exposed to climate warming. Plant Cell Environ. 42, 3253-3263.

 

Gao, D., Joseph, J., Werner, R.A., Brunner, I., Zürcher, A., Hug, C., Wang, A., Zhao, C., Bai, E., Meusburger, K., Gessler, A., Hagedorn, F., 2021. Drought alters the carbon footprint of trees in soils-tracking the spatio-temporal fate of 13C-labelled assimilates in the soil of an old-growth pine forest. Glob. Change Biol. 27, 2491-2506.

 

Genet, M., Li, M., Luo, T., Fourcaud, T., Clément-Vidal, A., Stokes, A., 2011. Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei. Ann. Bot. 107, 311-320.

 

Gibon, Y., Pyl, E.-T., Sulpice, R., Lunn, J.E., Hoehne, M., Guenther, M., Stitt, M., 2009. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ. 32, 859-874.

 

Hafner, S., Unteregelsbacher, S., Seeber, E., Lena, B., Xu, X., Li, X., Guggenberger, G., Miehe, G., Kuzyakov, Y., 2012. Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob. Change Biol. 18, 528-538.

 

Hagedorn, F., Joseph, J., Peter, M., Luster, J., Pritsch, K., Geppert, U., Kerner, R., Molinier, V., Egli, S., Schaub, M., Liu, J.-F., Li, M., Sever, K., Weiler, M., Siegwolf, R.T.W., Gessler, A., Arend, M., 2016. Recovery of trees from drought depends on belowground sink control. Nat. Plants 2, 16111.

 

Hansen, J., Beck, E., 1994. Seasonal changes in the utilization and turnover of assimilation products in 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees (Berl.) 8, 172-182.

 

Hoch, G., Körner, C., 2009. Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J. Ecol. 97, 57-66.

 

Huang, J., Hammerbacher, A., Gershenzon, J., Van Dam, N.M., Sala, A., McDowell, N.G., Chowdhury, S., Gleixner, G., Trumbore, S., Hartmann, H., 2021. Storage of carbon reserves in spruce trees is prioritized over growth in the face of carbon limitation. PNAS 118, e2023297118.

 

Huntley, B., Bartlein, P., Prentice, I., 1989. Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. J. Biogeogr. 551-560.

 

Joseph, J., Gao, D., Backes, B., Bloch, C., Brunner, I., Gleixner, G., Haeni, M., Hartmann, H., Hoch, G., Hug, C., Kahmen, A., Lehmann, M.M., Li, M.-H., Luster, J., Peter, M., Poll, C., Rigling, A., Rissanen, K.A., Ruehr, N.K., Saurer, M., Schaub, M., Schonbeck, L., Stern, B., Thomas, F.M., Werner, R.A., Werner, W., Wohlgemuth, T., Hagedorn, F., Gessler, A., 2020. Rhizosphere activity in an old-growth forest reacts rapidly to changes in soil moisture and shapes whole-tree carbon allocation. PNAS 117, 24885-24892.

 

Kagawa, A., Sugimoto, A., Maximov, T.C., 2006. Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytol. 171, 793-804.

 

Keel, S.G., Schädel, C., 2010. Expanding leaves of mature deciduous forest trees rapidly become autotrophic. Tree Physiol. 30, 1253-1259.

 

Körner, C., 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445-459.

 

Körner, C., 2021. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin, Heidelberg.

 

Körner, C., Basler, D., Hoch, G., Kollas, C., Lenz, A., Randin, C.F., Vitasse, Y., Zimmermann, N.E., 2016. Where, why and how? Explaining the low-temperature range limits of temperate tree species. J. Ecol. 104, 1076-1088.

 

Körner, C., Paulsen, J., 2004. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713-732.

 

Lellei-Kovács, E., Kovács-Láng, E., Botta-Dukát, Z., Kalapos, T., Emmett, B., Beier, C., 2011. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. Eur. J. Soil Biol. 47, 247-255.

 

Li, M.-H., Jiang, Y., Wang, A., Li, X., Zhu, W., Yan, C.-F., Du, Z., Shi, Z., Lei, J., Schönbeck, L., He, P., Yu, F.H., Wang, X., 2018. Active summer carbon storage for winter persistence in trees at the cold alpine treeline. Tree Physiol. 38, 1345-1355.

 

Li, M.H., Xiao, W.F., Shi, P., Wang, S.G., Zhong, Y.D., Liu, X.L., Wang, X.D., Cai, X.H., Shi, Z.M., 2008a. Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations. Plant Cell Environ. 31, 1377-1387.

 

Li, M.-H., Xiao, W.F., Wang, S.-G., Cheng, G.-W., Cherubini, P., Cai, X.-.H., Liu, X.-L., Wang, X.-D., Zhu, W.-Z., 2008b. Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiol. 28, 1287-1296.

 

Li, N., Du, H., Li, M.-H., Na, R., Dong, R., He, H.S., Zong, S., Huang, L., Wu, Z., 2023. Deyeuxia angustifolia upward migration and nitrogen deposition change soil microbial community structure in an alpine tundra. Soil Biol. Biochem. 180, 109009.

 

Meng, B., Li, J., Yao, Y., Nippert, J.B., Williams, D.G., Chai, H., Collins, S.L., Sun, W., 2022. Soil N enrichment mediates carbon allocation through respiration in a dominant grass during drought. Funct. Ecol. 36, 1204-1215.

 

Osaki, M., Shinano, T., Tadano, T., 1991. Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops. Soil Sci. Plant Nutrit. 37, 117–128.

 

Peuke, A.D., Windt, C., Van As, H., 2006. Effects of cold-girdling on flows in the transport phloem in Ricinus communis: is mass flow inhibited? Plant Cell Environ. 29, 15-25.

 

Piper, F.I., Reyes-Díaz, M., Corcuera, L.J., Lusk, C., 2009. Carbohydrate storage, survival, and growth of two evergreen Nothofagus species in two contrasting light environments. Ecol. Res. 24, 1233-1241.

 

Rog, I., Jakoby, G., Klein, T., 2021. Carbon allocation dynamics in conifers and broadleaved tree species revealed by pulse labeling and mass balance. For. Ecol. Manage. 493, 119258.

 

Ruehr, N.K., Offermann, C.A., Gessler, A., Winkler, J.B., Ferrio, J.P., Buchmann, N., Barnard, R.L., 2009. Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol. 184, 950-961.

 

Sala, A., Woodruff, D.R., Meinzer, F.C., 2012. Carbon dynamics in trees: feast or famine? Tree Physiol. 32, 764-775.

 

Scherrer, D., Vitasse, Y., Guisan, A., Wohlgemuth, T., Lischke, H., 2020. Competition and demography rather than dispersal limitation slow down upward shifts of trees' upper elevation limits in the Alps. J. Ecol. 108, 2416-2430.

 

Seifter, S., Dayton, B., Novic, B., 1950. The estimation of glycogen with the anthrone reagent. Arch Biochem 25, 191–200.

 

Simard, S.W., Durall, D.M., Jones, M.D., 1997. Carbon allocation and carbon transfer between Betula papyrifera and Pseudotsuga menziesii seedlings using a 13C pulselabeling method. Plant Soil 191, 41–55.

 

Smith, A.M., Stitt, M., 2007. Coordination of carbon supply and plant growth. Plant Cell Environ. 30, 1126-1149.

 

Streit, K., Rinne, K.T., Hagedorn, F., Dawes, M.A., Saurer, M., Hoch, G., Werner, R.A., Buchmann, N., Siegwolf, R.T.W., 2013. Tracing fresh assimilates through Larix decidua exposed to elevated CO2 and soil warming at the alpine treeline using compound-specific stable isotope analysis. New Phytol. 197, 838-849.

 

Subke, J.-A., Hahn, V., Battipaglia, G., Linder, S., Buchmann, N., Cotrufo, M.F., 2004. Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139, 551-559.

 

Wang, X., Yu, F.-H., Jiang, Y., Li, M.-H., 2021. Carbon and nutrient physiology in shrubs at the upper limits: a multispecies study. J. Plant Ecol. 14, 301-309.

 

Weber, R., Gessler, A., Hoch, G., 2019. High carbon storage in carbon-limited trees. New Phytol. 222, 171-182.

 

Wiley, E., Helliker, B., 2012. A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol. 195, 285-289.

 

Wu, M.M., Zou, X., Liang, Y., Stambaugh, M., Fraser, J.S., Xu, W., He, H.S., 2022. The impact of typhoon on post-volcanic-eruption forest landscape recovery: a study in Changbai mountain through 300 years of historic landscape reconstruction. Lands. Ecol. 37, 1401-1416.

 

Zhang, Z., Gong, J., Shi, J., Li, X., Song, L., Zhang, W., Li, Y., Zhang, S., Dong, J., Liu, Y., 2022. Multiple herbivory pressures lead to different carbon assimilation and allocation strategies: Evidence from a perennial grass in a typical steppe in northern China. Agr. Ecosyst. Environ. 326, 107776.

 

Zhou, Q., Shi, H., He, R., Liu, H., Zhu, W., Yu, D., Zhang, Q., Dang, H., 2021. Prioritized carbon allocation to storage of different functional types of species at the upper range limits is driven by different environmental drivers. Sci. Total Environ. 773, 145581.

 

Zhou, Q., Shi, H., Zhang, Q., Dang, H., 2023. Global patterns of mobile carbon partitioning in mountain trees in response to elevation. Environ. Exp. Bot. 208, 105248.

 

Zhu, W.-Z., Cao, M., Wang, S.-G., Xiao, W.-F., Li, M.-H., 2012. Seasonal dynamics of mobile carbon supply in Quercus aquifolioides at the upper elevational limit. PLoS One. 7, e34213.

Forest Ecosystems
Article number: 100188

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Dong R, Li N, Li M-H, et al. Carbon allocation in Picea jezoensis: Adaptation strategies of a non-treeline species at its upper elevation limit. Forest Ecosystems, 2024, 11(3): 100188. https://doi.org/10.1016/j.fecs.2024.100188

211

Views

22

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 09 January 2024
Revised: 07 March 2024
Accepted: 07 March 2024
Published: 24 March 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).