Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
An improved understanding of biodiversity-productivity relationships (BPRs) along environmental gradients is crucial for effective ecosystem management and biodiversity conservation. The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions. However, there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes. To study how BPRs change with elevation, we harnessed inventory data on 6,431 trees from 152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia. We quantified the relationship between aboveground productivity and different biodiversity measures, including taxonomic, functional, and phylogenetic diversity. To elucidate the processes underlying BPRs, we studied the variation of different functional traits along elevation across landscapes. We found no general pattern of BPRs across landscapes and elevations. Relationships were neutral for all biodiversity measures in temperate forests, and negative for taxonomic and functional diversity in subtropical forests. BPRs were largely congruent between taxonomic, functional and phylogenetic diversity. We found only weak support for the stress-gradient hypothesis, with BPRs turning from negative to positive (effect not significant) close to the tree line in subtropical forests. In temperate forests, however, elevation patterns were strongly modulated by species identity effects as influenced by specific traits. The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes. Our study highlights the context-dependence of BPRs across elevation gradients and landscapes. Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity. Furthermore, our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist, which require more attention in policy and management.
Adler, P.B., Seabloom, E.W., Borer, E.T., Hillebrand, H., Hautier, Y., Hector, A., Harpole, W.S., O'Halloran, L.R., Grace, J.B., Anderson, T.M., Bakker, J.D., Biederman, L.A., Brown, C.S., Buckley, Y.M., Calabrese, L.B., Chu, C.J., Cleland, E.E., Collins, S.L., Cottingham, K.L., Crawley, M.J., Damschen, E.I., Davies, K.F., DeCrappeo, N.M., Fay, P.A., Firn, J., Frater, P., Gasarch, E.I., Gruner, D.S., Hagenah, N., Lambers, J.H.R., Humphries, H., Jin, V.L., Kay, A.D., Kirkman, K.P., Klein, J.A., Knops, J.M.H., La Pierre, K.J., Lambrinos, J.G., Li, W., MacDougall, A.S., McCulley, R.L., Melbourne, B.A., Mitchell, C.E., Moore, J.L., Morgan, J.W., Mortensen, B., Orrock, J.L., Prober, S.M., Pyke, D.A., Risch, A.C., Schuetz, M., Smith, M.D., Stevens, C.J., Sullivan, L.L., Wang, G., Wragg, P.D., Wright, J.P., Yang, L.H., 2011. Productivity is a poor predictor of plant species richness. Science 333, 1750-1753.
Albrecht, J., Peters, M.K., Becker, J.N., Behler, C., Classen, A., Ensslin, A., Ferger, S.W., Gebert, F., Gerschlauer, F., Helbig-Bonitz, M., Kindeketa, W.J., Kühnel, A., Mayr, A.V., Njovu, H.K., Pabst, H., Pommer, U., Röder, J., Rutten, G., Costa, D.S., Sierra-Cornejo, N., Vogeler, A., Vollstädt, M.G.R., Dulle, H.I., Eardley, C.D., Howell, K.M., Keller, A., Peters, R.S., Kakengi, V., Hemp, C., Zhang, J., Manning, P., Mueller, T., Bogner, C., Böhning-Gaese, K., Brandl, R., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Leuschner, C., Kuzyakov, Y., Nauss, T., Tschapka, M., Fischer, M., Hemp, A., Steffan-Dewenter, I., Schleuning, M., 2021. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nat. Ecol. Evol. 5, 1582-1593.
Ammer, C., 2019. Diversity and forest productivity in a changing climate. New Phytol. 221, 50-66.
Bongers, F.J., Schmid, B., Bruelheide, H., Bongers, F., Li, S., von Oheimb, G., Li, Y., Cheng, A.P., Ma, K.P., Liu, X.J., 2021. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5, 1594-1603.
Bordin, K.M., Esquivel-Muelbert, A., Klipel, J., Picolotto, R.C., Bergamin, R.S., da Silva, A.C., Higuchi, P., Capellesso, E.S., Marques, M.C.M., Souza, A.F., Müller, S.C., 2023. No relationship between biodiversity and forest carbon sink across the subtropical Brazilian Atlantic Forest. Perspect. Plant Ecol. Evol. Systemat. 21, 112-120.
Brun, P., Zimmermann, N.E., Graham, C.H., Lavergne, S., Pellissier, L., Münkemüller, T., Thuiller, W., 2019. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691.
Cadotte, M.W., 2017. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989-996.
Cadotte, M.W., Cavender-Bares, J., Tilman, D., Oakley, T.H., 2009. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One, 4, e5695.
Castro-Izaguirre, N., Chi, X., Baruffol, M., Tang, Z., Ma, K., Schmid, B., Niklaus, P.A., 2016. Tree diversity enhances stand carbon storage but not leaf area in a subtropical forest. PLoS One, 11, e0167771.
Cheng, Y., Zhang, C., Zhao, X., von Gadow, K., 2018. Biomass-dominant species shape the productivity-diversity relationship in two temperate forests. Ann. For. Sci. 75, 97.
Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G., Poorter, H., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335.
Dee, L.E., Ferraro, P.J., Severen, C.N., Kimmel, K.A., Borer, E.T., Byrnes, J.E.K., Clark, A.T., Hautier, Y., Hector, A., Raynaud, X., Reich, P.B., Wright, A.J., Arnillas, C.A., Davies, K.F., MacDougall, A., Mori, A.S., Smith, M.D., Adler, P.B., Bakker, J.D., Brauman, K.A., Cowles, J., Komatsu, K., Knops, J.M.H., McCulley, R.L., Moore, J.L., Morgan, J.W., Ohlert, T., Power, S.A., Sullivan, L.L., Stevens, C., Loreau, M., 2023. Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference. Nat. Commun. 14, 2607.
Fahey, C., Parker, W.C., Paquette, A., Messier, C., Antunes, P.M., 2023. Soil fungal communities contribute to the positive diversity–productivity relationship of tree communities under contrasting water availability. J. Ecol. 111, 2023-2037.
Fei, S., Jo, I., Guo, Q., Wardle, D.A., Fang, J., Chen, A., Oswalt, C.M., Brockerhoff, E.G., 2018. Impacts of climate on the biodiversity-productivity relationship in natural forests. Nat. Commun. 9, 5436.
Fichtner, A., Härdtle, W., Bruelheide, H., Kunz, M., Li, Y., von Oheimb, G., 2018. Neighbourhood interactions drive overyielding in mixed-species tree communities. Nat. Commun. 9, 1144.
Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M.S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Velepucha, P.E., Fernandez, F., Licona, J.C., Lorenzo, L., Negret, B.S., Vaz, M., Poorter, L., 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191-201.
Fotis, A.T., Murphy, S.J., Ricart, R.D., Krishnadas, M., Whitacre, J., Wenzel, J.W., Queenborough, S.A., Comita, L.S., 2018. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J. Ecol. 106, 561-570.
Grace, J.B., Anderson, T.M., Seabloom, E.W., Borer, E.T., Adler, P.B., Harpole, W.S., Hautier, Y., Hillebrand, H., Lind, E.M., Pärtel, M., Bakker, J.D., Buckley, Y.M., Crawley, M.J., Damschen, E.I., Davies, K.F., Fay, P.A., Firn, J., Gruner, D.S., Hector, A., Knops, J.M.H., MacDougall, A.S., Melbourne, B.A., Morgan, J.W., Orrock, J.L., Prober, S.M., Smith, M.D., 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390-393.
He, N., Yan, P., Liu, C., Xu, L., Li, M., Van Meerbeek, K., Zhou, G.S., Zhou, G.Y., Liu, S.R., Zhou, X.H., 2023. Predicting ecosystem productivity based on plant community traits. Trends Plant Sci. 28, 43-53.
Huang, M., Liu, X., Cadotte, M.W., Zhou, S., 2020. Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos 129, 1185-1195.
Huang, Y., Chen, Y., Castro-Izaguirre, N., Baruffol, M., Brezzi, M., Lang, A., Li, Y., Härdtle, W., Oheimb, G., Yang, X., Liu, X., Pei, K., Both, S., Yang, B., Eichenberg, D., Assmann, T., Bauhus, J., Behrens, T., Buscot, F., Chen, X.Y., Chesters, D., Ding, B.Y., Durka, W., Erfmeier, A., Fang, J., Fischer, M., Guo, L.D., Guo, D., Gutknecht, J.L.M., He, J.S., He, C.L., Hector, A., Hoenig, L., Hu, R.Y., Klein, A.M., Kuehn, P., Liang, Y., Li, S., Michalski, S., Scherer-Lorenzen, M., Schmidt, K., Scholten, T., Schuldt, A., Shi, X., Tan, M.Z., Tang, Z., Trogisch, S., Wang, Z., Welk, E., Wirth, C., Wubet, T., Xiang, W., Yu, M., Yu, X.D., Zhang, J., Zhang, S., Zhang, N., Zhou, H.Z., Zhu, C.D., Zhu, L., Bruelheide, H., Ma, K., Niklaus, P.A., Schmid, B., 2018. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80-83.
Jactel, H., Gritti, E.S., Drössler, L., Forrester, D.I., Mason, W.L., Morin, X., Pretzsch, H., Castagneyrol, B., 2018. Positive biodiversity–productivity relationships in forests: climate matters. Biol. Lett. 14, 20170747.
Jin, Y., Qian, H., 2022. V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339.
Jost, L., 2006. Entropy and diversity. Oikos 113, 363-375.
Jucker, T., Avăcăriței, D., Bărnoaiea, I., Duduman, G., Bouriaud, O., Coomes, D.A., 2016. Climate modulates the effects of tree diversity on forest productivity. J. Ecol. 104, 388-398.
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., et al., 2020. TRY plant trait database – enhanced coverage and open access. Global Change Biol. 26, 119-188.
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464.
Körner, C., 2007. The use of 'altitude' in ecological research. Trends Ecol. Evol. 22, 569-574.
Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299-305.
Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.D., McGuire, A.D., Bozzato, F., Pretzsch, H., de-Miguel, S., Paquette, A., Herault, B., Scherer-Lorenzen, M., Barrett, C.B., Glick, H.B., Hengeveld, G.M., Nabuurs, G.J., Pfautsch, S., Viana, H., Vibrans, A.C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.V., Chen, H.Y.H., Lei, X.D., Schelhaas, M.J., Lu, H.C., Gianelle, D., Parfenova, E.I., Salas, C., Lee, E., Lee, B., Kim, H.S., Bruelheide, H., Coomes, D.A., Piotto, D., Sunderland, T., Schmid, B., Gourlet-Fleury, S., Sonké, B., Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E.B., Neldner, V.J., Ngugi, M.R., Baraloto, C., Frizzera, L., Balazy, R., Oleksyn, J., Zawila-Niedzwiecki, T., Bouriaud, O., Bussotti, F., Finér, L., Jaroszewicz, B., Jucker, T., Valladares, F., Jagodzinski, A.M., Peri, P.L., Gonmadje, C., Marthy, W., O'Brien, T., Martin, E.H., Marshall, A.R., Rovero, F., Bitariho, R., Niklaus, P.A., Alvarez-Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V., Engone-Obiang, N.L., Ferreira, L.V., Odeke, D.E., Vasquez, R.M., Lewis, S.L., Reich, P.B., 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957.
Liang, M., Liu, X., Parker, I.M., Johnson, D., Zheng, Y., Luo, S., Gilbert, G.S., Yu, S.X., 2019. Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Sci. Adv. 5, eaax5088.
Loreau, M., Hector, A., 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72-76.
Lu, H., Mohren, G.M.J., den Ouden, J., Goudiaby, V., Sterck, F.J., 2016. Overyielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in The Netherlands. For. Ecol. Manag. 376, 321-332.
Luo, Y., Cadotte, M.W., Burgess, K.S., Liu, J., Tan, S., Zou, J., Xu, K., Li, D.Z., Gao, L.M., 2019. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecol. Lett. 22, 1449-1461.
Luo, Y., Cadotte, M.W., Liu, J., Burgess, K.S., Tan, S., Ye, L., Zou, J.Y., Chen, Z.Z., Jiang, X.L., Li, J., Xu, K., Li, D.Z., Gao, L.M., 2022. Multitrophic diversity and biotic associations influence subalpine forest ecosystem multifunctionality. Ecology 103, e3745.
Luo, Y., Liu, J., Tan, S., Cadotte, M.W., Wang, Y., Xu, K., Li, D.Z., Gao, L.M., 2016. Trait-based community assembly along an elevational gradient in subalpine forests: quantifying the roles of environmental factors in inter- and intraspecific variability. PLoS One 11, e0155749.
Luo, Y., Ma, L., Seibold, S., Cadotte, M.W., Burgess, K.S., Tan, S., Ye, L.J., Zheng, W., Zou, J.Y., Chen, Z.F., Liu, D.T., Zhu, G.F., Shi, X.C., Zhao, W., Li, D.Z., Liu, J., Gao, L.M., 2023. The diversity of mycorrhiza-associated fungi and trees shapes subtropical mountain forest ecosystem functioning. J. Biogeogr. 50, 715-729.
Luo, Y., Wang, X., Ouyang, Z., Lu, F., Feng, L., Tao, J., 2020. A review of biomass equations for China's tree species. Earth Syst. Sci. Data 12, 21-40.
Maestre, F.T., Callaway, R.M., Valladares, F., Lortie, C.J., 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199-205.
Martin, A.R., Doraisami, M., Thomas, S.C., 2018. Global patterns in wood carbon concentration across the world's trees and forests. Nat. Geosci. 11, 915-920.
Mayor, J.R., Sanders, N.J., Classen, A.T., Bardgett, R.D., Clément, J. -C., Fajardo, A., Lavorel, S., Sundqvist, M.K., Bahn, M., Chisholm, C., Cieraad, E., Gedalof, Z., Grigulis, K., Kudo, G., Oberski, D.L., Wardle, D.A., 2017. Elevation alters ecosystem properties across temperate treelines globally. Nature 542, 91-95.
Mori, A.S., Dee, L.E., Gonzalez, A., Ohashi, H., Cowles, J., Wright, A.J., Loreau, M., Hautier, Y., Newbold, T., Reich, P.B., Matsui, T., Takeuchi, W., Okada, K., Seidl, R., Isbell, F., 2021. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 11, 543-550.
Morin, X., Fahse, L., Scherer-Lorenzen, M., Bugmann, H., 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211-1219.
Ouyang, S., Xiang, W., Wang, X., Xiao, W., Chen, L., Li, S., Sun, H., Deng, X.W., Forrester, D.I., Zeng, L.X., Lei, P.F., Lei, X.D., Gou, M.M., Peng, C.H., 2019. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 107, 2266-2277.
Pan, Y., Birdsey, R.A., Phillips, O.L., Jackson, R.B., 2013. The structure, distribution, and biomass of the world's forests. Annu. Rev. Ecol. Evol. Syst. 44, 593-622.
Paquette, A., Messier, C., 2011. The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecol. Biogeogr. 20, 170-180.
Peters, M.K., Hemp, A., Appelhans, T., Becker, J.N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S.W., Frederiksen, S.B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig-Bonitz, M., Hemp, C., Kindeketa, W.J., Kühnel, A., Mayr, A.V., Mwangomo, E., Ngereza, C., Njovu, H.K., Otte, I., Pabst, H., Renner, M., Röder, J., Rutten, G., Costa, D.S., Sierra-Cornejo, N., Vollstädt, M.G.R., Dulle, H.I., Eardley, C.D., Howell, K.M., Keller, A., Peters, R.S., Ssymank, A., Kakengi, V., Zhang, J., Bogner, C., Böhning-Gaese, K., Brandl, R., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Kuzyakov, Y., Nauss, T., Schleuning, M., Tschapka, M., Fischer, M., Steffan-Dewenter, I., 2019. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88-92.
van der Plas, F., 2019. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220-1245.
Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Licona, J.C., Martinez-Ramos, M., Mazer, S.J., Muller-Landau, H.C., Pena-Claros, M., Webb, C.O., Wright, I.J., 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908-1920.
Pretzsch, H., Schütze, G., 2009. Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur. J. For. Res. 128, 183-204.
Qiao, X., Zhang, N., Zhang, C., Zhang, Z., Zhao, X., Gadow, K., 2021. Unravelling biodiversity–productivity relationships across a large temperate forest region. Funct. Ecol. 35, 2808-2820.
Roscher, C., Schumacher, J., Gubsch, M., Lipowsky, A., Weigelt, A., Buchmann, N., Schmid, B., Schulze, E.D., 2012. Using plant functional traits to explain diversity–productivity relationships. PLoS One 7, e36760.
Shovon, T.A., Kang, S., Scherer-Lorenzen, M., Nock, C.A., 2022. Changes in the direction of the diversity–productivity relationship over 15 years of stand development in a planted temperate forest. J. Ecol. 110, 1125-1137.
Staples, T.L., Dwyer, J.M., England, J.R., Mayfield, M.M., 2019. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Global Ecol. Biogeogr. 28, 1417-1429.
Thom, D., Seidl, R., 2022. Accelerating mountain forest dynamics in the Alps. Ecosystems 25, 603-617.
Tilman, D., Lehman, C.L., Thomson, K.T., 1997. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl. Acad. Sci. USA 94, 1857-1861.
Tucker, C.M., Cadotte, M.W., Carvalho, S.B., Davies, T.J., Ferrier, S., Fritz, S.A., Grenyer, R., Helmus, M.R., Jin, L.S., Mooers, A.O., Pavoine, S., Purschke, O., Redding, D.W., Rosauer, D.F., Winter, M., Mazel, F., 2017. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698-715.
Yuan, Z., Ali, A., Wang, S., Gazol, A., Freckleton, R., Wang, X., Lin, F., Ye, J., Zhou, L., Hao, Z.Q., Loreau, M., 2018. Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Sci. Total Environ. 630, 422-431.
Zenner, E.K., Peck, J.E., Hobi, M.L., Commarmot, B., 2016. Validation of a classification protocol: meeting the prospect requirement and ensuring distinctiveness when assigning forest development phases. Appl. Veg. Sci. 19, 541-552.
223
Views
12
Downloads
8
Crossref
6
Web of Science
8
Scopus
0
CSCD
Altmetrics
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Comments on this article