AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.7 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

No generality in biodiversity-productivity relationships along elevation in temperate and subtropical forest landscapes

Jiayun Zoua,b,iYahuang Luob,c,dRupert Seidla,eDominik Thoma,fJie Liub,cLisa Geresa,e,gTobias Richtera,eLinjiang YebWei ZhengbLiangliang Mab,hJie Songb,hKun XudDezhu Lic,dLianming Gaob,d( )Sebastian Seibolda,e,i( )
Ecosystem Dynamics and Forest Management Research Group, School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, China
Berchtesgaden National Park, Doktorberg 6, 83471, Germany
Gund Institute for Environment, University of Vermont, 617 Main Street, Burlington, VT 11 05405, USA
Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
University of Chinese Academy of Sciences, Beijing, 10049, China
TUD Dresden University of Technology, Forest Zoology, Pienner Str. 7, 01737, Tharandt, Germany
Show Author Information

Abstract

An improved understanding of biodiversity-productivity relationships (BPRs) along environmental gradients is crucial for effective ecosystem management and biodiversity conservation. The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions. However, there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes. To study how BPRs change with elevation, we harnessed inventory data on 6,431 trees from 152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia. We quantified the relationship between aboveground productivity and different biodiversity measures, including taxonomic, functional, and phylogenetic diversity. To elucidate the processes underlying BPRs, we studied the variation of different functional traits along elevation across landscapes. We found no general pattern of BPRs across landscapes and elevations. Relationships were neutral for all biodiversity measures in temperate forests, and negative for taxonomic and functional diversity in subtropical forests. BPRs were largely congruent between taxonomic, functional and phylogenetic diversity. We found only weak support for the stress-gradient hypothesis, with BPRs turning from negative to positive (effect not significant) close to the tree line in subtropical forests. In temperate forests, however, elevation patterns were strongly modulated by species identity effects as influenced by specific traits. The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes. Our study highlights the context-dependence of BPRs across elevation gradients and landscapes. Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity. Furthermore, our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist, which require more attention in policy and management.

References

 

Adler, P.B., Seabloom, E.W., Borer, E.T., Hillebrand, H., Hautier, Y., Hector, A., Harpole, W.S., O'Halloran, L.R., Grace, J.B., Anderson, T.M., Bakker, J.D., Biederman, L.A., Brown, C.S., Buckley, Y.M., Calabrese, L.B., Chu, C.J., Cleland, E.E., Collins, S.L., Cottingham, K.L., Crawley, M.J., Damschen, E.I., Davies, K.F., DeCrappeo, N.M., Fay, P.A., Firn, J., Frater, P., Gasarch, E.I., Gruner, D.S., Hagenah, N., Lambers, J.H.R., Humphries, H., Jin, V.L., Kay, A.D., Kirkman, K.P., Klein, J.A., Knops, J.M.H., La Pierre, K.J., Lambrinos, J.G., Li, W., MacDougall, A.S., McCulley, R.L., Melbourne, B.A., Mitchell, C.E., Moore, J.L., Morgan, J.W., Mortensen, B., Orrock, J.L., Prober, S.M., Pyke, D.A., Risch, A.C., Schuetz, M., Smith, M.D., Stevens, C.J., Sullivan, L.L., Wang, G., Wragg, P.D., Wright, J.P., Yang, L.H., 2011. Productivity is a poor predictor of plant species richness. Science 333, 1750-1753.

 

Albrecht, J., Peters, M.K., Becker, J.N., Behler, C., Classen, A., Ensslin, A., Ferger, S.W., Gebert, F., Gerschlauer, F., Helbig-Bonitz, M., Kindeketa, W.J., Kühnel, A., Mayr, A.V., Njovu, H.K., Pabst, H., Pommer, U., Röder, J., Rutten, G., Costa, D.S., Sierra-Cornejo, N., Vogeler, A., Vollstädt, M.G.R., Dulle, H.I., Eardley, C.D., Howell, K.M., Keller, A., Peters, R.S., Kakengi, V., Hemp, C., Zhang, J., Manning, P., Mueller, T., Bogner, C., Böhning-Gaese, K., Brandl, R., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Leuschner, C., Kuzyakov, Y., Nauss, T., Tschapka, M., Fischer, M., Hemp, A., Steffan-Dewenter, I., Schleuning, M., 2021. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nat. Ecol. Evol. 5, 1582-1593.

 

Ammer, C., 2019. Diversity and forest productivity in a changing climate. New Phytol. 221, 50-66.

 

Bongers, F.J., Schmid, B., Bruelheide, H., Bongers, F., Li, S., von Oheimb, G., Li, Y., Cheng, A.P., Ma, K.P., Liu, X.J., 2021. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5, 1594-1603.

 

Bordin, K.M., Esquivel-Muelbert, A., Klipel, J., Picolotto, R.C., Bergamin, R.S., da Silva, A.C., Higuchi, P., Capellesso, E.S., Marques, M.C.M., Souza, A.F., Müller, S.C., 2023. No relationship between biodiversity and forest carbon sink across the subtropical Brazilian Atlantic Forest. Perspect. Plant Ecol. Evol. Systemat. 21, 112-120.

 

Brun, P., Zimmermann, N.E., Graham, C.H., Lavergne, S., Pellissier, L., Münkemüller, T., Thuiller, W., 2019. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691.

 

Cadotte, M.W., 2017. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989-996.

 

Cadotte, M.W., Cavender-Bares, J., Tilman, D., Oakley, T.H., 2009. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One, 4, e5695.

 

Castro-Izaguirre, N., Chi, X., Baruffol, M., Tang, Z., Ma, K., Schmid, B., Niklaus, P.A., 2016. Tree diversity enhances stand carbon storage but not leaf area in a subtropical forest. PLoS One, 11, e0167771.

 

Cheng, Y., Zhang, C., Zhao, X., von Gadow, K., 2018. Biomass-dominant species shape the productivity-diversity relationship in two temperate forests. Ann. For. Sci. 75, 97.

 

Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., ter Steege, H., Morgan, H.D., van der Heijden, M.G.A., Pausas, J.G., Poorter, H., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335.

 

Dee, L.E., Ferraro, P.J., Severen, C.N., Kimmel, K.A., Borer, E.T., Byrnes, J.E.K., Clark, A.T., Hautier, Y., Hector, A., Raynaud, X., Reich, P.B., Wright, A.J., Arnillas, C.A., Davies, K.F., MacDougall, A., Mori, A.S., Smith, M.D., Adler, P.B., Bakker, J.D., Brauman, K.A., Cowles, J., Komatsu, K., Knops, J.M.H., McCulley, R.L., Moore, J.L., Morgan, J.W., Ohlert, T., Power, S.A., Sullivan, L.L., Stevens, C., Loreau, M., 2023. Clarifying the effect of biodiversity on productivity in natural ecosystems with longitudinal data and methods for causal inference. Nat. Commun. 14, 2607.

 

Fahey, C., Parker, W.C., Paquette, A., Messier, C., Antunes, P.M., 2023. Soil fungal communities contribute to the positive diversity–productivity relationship of tree communities under contrasting water availability. J. Ecol. 111, 2023-2037.

 

Fei, S., Jo, I., Guo, Q., Wardle, D.A., Fang, J., Chen, A., Oswalt, C.M., Brockerhoff, E.G., 2018. Impacts of climate on the biodiversity-productivity relationship in natural forests. Nat. Commun. 9, 5436.

 

Fichtner, A., Härdtle, W., Bruelheide, H., Kunz, M., Li, Y., von Oheimb, G., 2018. Neighbourhood interactions drive overyielding in mixed-species tree communities. Nat. Commun. 9, 1144.

 

Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M.S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Velepucha, P.E., Fernandez, F., Licona, J.C., Lorenzo, L., Negret, B.S., Vaz, M., Poorter, L., 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191-201.

 

Fotis, A.T., Murphy, S.J., Ricart, R.D., Krishnadas, M., Whitacre, J., Wenzel, J.W., Queenborough, S.A., Comita, L.S., 2018. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. J. Ecol. 106, 561-570.

 

Grace, J.B., Anderson, T.M., Seabloom, E.W., Borer, E.T., Adler, P.B., Harpole, W.S., Hautier, Y., Hillebrand, H., Lind, E.M., Pärtel, M., Bakker, J.D., Buckley, Y.M., Crawley, M.J., Damschen, E.I., Davies, K.F., Fay, P.A., Firn, J., Gruner, D.S., Hector, A., Knops, J.M.H., MacDougall, A.S., Melbourne, B.A., Morgan, J.W., Orrock, J.L., Prober, S.M., Smith, M.D., 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390-393.

 

He, N., Yan, P., Liu, C., Xu, L., Li, M., Van Meerbeek, K., Zhou, G.S., Zhou, G.Y., Liu, S.R., Zhou, X.H., 2023. Predicting ecosystem productivity based on plant community traits. Trends Plant Sci. 28, 43-53.

 

Huang, M., Liu, X., Cadotte, M.W., Zhou, S., 2020. Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos 129, 1185-1195.

 

Huang, Y., Chen, Y., Castro-Izaguirre, N., Baruffol, M., Brezzi, M., Lang, A., Li, Y., Härdtle, W., Oheimb, G., Yang, X., Liu, X., Pei, K., Both, S., Yang, B., Eichenberg, D., Assmann, T., Bauhus, J., Behrens, T., Buscot, F., Chen, X.Y., Chesters, D., Ding, B.Y., Durka, W., Erfmeier, A., Fang, J., Fischer, M., Guo, L.D., Guo, D., Gutknecht, J.L.M., He, J.S., He, C.L., Hector, A., Hoenig, L., Hu, R.Y., Klein, A.M., Kuehn, P., Liang, Y., Li, S., Michalski, S., Scherer-Lorenzen, M., Schmidt, K., Scholten, T., Schuldt, A., Shi, X., Tan, M.Z., Tang, Z., Trogisch, S., Wang, Z., Welk, E., Wirth, C., Wubet, T., Xiang, W., Yu, M., Yu, X.D., Zhang, J., Zhang, S., Zhang, N., Zhou, H.Z., Zhu, C.D., Zhu, L., Bruelheide, H., Ma, K., Niklaus, P.A., Schmid, B., 2018. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80-83.

 

Jactel, H., Gritti, E.S., Drössler, L., Forrester, D.I., Mason, W.L., Morin, X., Pretzsch, H., Castagneyrol, B., 2018. Positive biodiversity–productivity relationships in forests: climate matters. Biol. Lett. 14, 20170747.

 

Jin, Y., Qian, H., 2022. V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335-339.

 

Jost, L., 2006. Entropy and diversity. Oikos 113, 363-375.

 

Jucker, T., Avăcăriței, D., Bărnoaiea, I., Duduman, G., Bouriaud, O., Coomes, D.A., 2016. Climate modulates the effects of tree diversity on forest productivity. J. Ecol. 104, 388-398.

 

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., et al., 2020. TRY plant trait database – enhanced coverage and open access. Global Change Biol. 26, 119-188.

 

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464.

 

Körner, C., 2007. The use of 'altitude' in ecological research. Trends Ecol. Evol. 22, 569-574.

 

Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299-305.

 

Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.D., McGuire, A.D., Bozzato, F., Pretzsch, H., de-Miguel, S., Paquette, A., Herault, B., Scherer-Lorenzen, M., Barrett, C.B., Glick, H.B., Hengeveld, G.M., Nabuurs, G.J., Pfautsch, S., Viana, H., Vibrans, A.C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.V., Chen, H.Y.H., Lei, X.D., Schelhaas, M.J., Lu, H.C., Gianelle, D., Parfenova, E.I., Salas, C., Lee, E., Lee, B., Kim, H.S., Bruelheide, H., Coomes, D.A., Piotto, D., Sunderland, T., Schmid, B., Gourlet-Fleury, S., Sonké, B., Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E.B., Neldner, V.J., Ngugi, M.R., Baraloto, C., Frizzera, L., Balazy, R., Oleksyn, J., Zawila-Niedzwiecki, T., Bouriaud, O., Bussotti, F., Finér, L., Jaroszewicz, B., Jucker, T., Valladares, F., Jagodzinski, A.M., Peri, P.L., Gonmadje, C., Marthy, W., O'Brien, T., Martin, E.H., Marshall, A.R., Rovero, F., Bitariho, R., Niklaus, P.A., Alvarez-Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V., Engone-Obiang, N.L., Ferreira, L.V., Odeke, D.E., Vasquez, R.M., Lewis, S.L., Reich, P.B., 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957.

 

Liang, M., Liu, X., Parker, I.M., Johnson, D., Zheng, Y., Luo, S., Gilbert, G.S., Yu, S.X., 2019. Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Sci. Adv. 5, eaax5088.

 

Loreau, M., Hector, A., 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72-76.

 

Lu, H., Mohren, G.M.J., den Ouden, J., Goudiaby, V., Sterck, F.J., 2016. Overyielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in The Netherlands. For. Ecol. Manag. 376, 321-332.

 

Luo, Y., Cadotte, M.W., Burgess, K.S., Liu, J., Tan, S., Zou, J., Xu, K., Li, D.Z., Gao, L.M., 2019. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecol. Lett. 22, 1449-1461.

 

Luo, Y., Cadotte, M.W., Liu, J., Burgess, K.S., Tan, S., Ye, L., Zou, J.Y., Chen, Z.Z., Jiang, X.L., Li, J., Xu, K., Li, D.Z., Gao, L.M., 2022. Multitrophic diversity and biotic associations influence subalpine forest ecosystem multifunctionality. Ecology 103, e3745.

 

Luo, Y., Liu, J., Tan, S., Cadotte, M.W., Wang, Y., Xu, K., Li, D.Z., Gao, L.M., 2016. Trait-based community assembly along an elevational gradient in subalpine forests: quantifying the roles of environmental factors in inter- and intraspecific variability. PLoS One 11, e0155749.

 

Luo, Y., Ma, L., Seibold, S., Cadotte, M.W., Burgess, K.S., Tan, S., Ye, L.J., Zheng, W., Zou, J.Y., Chen, Z.F., Liu, D.T., Zhu, G.F., Shi, X.C., Zhao, W., Li, D.Z., Liu, J., Gao, L.M., 2023. The diversity of mycorrhiza-associated fungi and trees shapes subtropical mountain forest ecosystem functioning. J. Biogeogr. 50, 715-729.

 

Luo, Y., Wang, X., Ouyang, Z., Lu, F., Feng, L., Tao, J., 2020. A review of biomass equations for China's tree species. Earth Syst. Sci. Data 12, 21-40.

 

Maestre, F.T., Callaway, R.M., Valladares, F., Lortie, C.J., 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199-205.

 

Martin, A.R., Doraisami, M., Thomas, S.C., 2018. Global patterns in wood carbon concentration across the world's trees and forests. Nat. Geosci. 11, 915-920.

 

Mayor, J.R., Sanders, N.J., Classen, A.T., Bardgett, R.D., Clément, J. -C., Fajardo, A., Lavorel, S., Sundqvist, M.K., Bahn, M., Chisholm, C., Cieraad, E., Gedalof, Z., Grigulis, K., Kudo, G., Oberski, D.L., Wardle, D.A., 2017. Elevation alters ecosystem properties across temperate treelines globally. Nature 542, 91-95.

 

Mori, A.S., Dee, L.E., Gonzalez, A., Ohashi, H., Cowles, J., Wright, A.J., Loreau, M., Hautier, Y., Newbold, T., Reich, P.B., Matsui, T., Takeuchi, W., Okada, K., Seidl, R., Isbell, F., 2021. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 11, 543-550.

 

Morin, X., Fahse, L., Scherer-Lorenzen, M., Bugmann, H., 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211-1219.

 

Ouyang, S., Xiang, W., Wang, X., Xiao, W., Chen, L., Li, S., Sun, H., Deng, X.W., Forrester, D.I., Zeng, L.X., Lei, P.F., Lei, X.D., Gou, M.M., Peng, C.H., 2019. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 107, 2266-2277.

 

Pan, Y., Birdsey, R.A., Phillips, O.L., Jackson, R.B., 2013. The structure, distribution, and biomass of the world's forests. Annu. Rev. Ecol. Evol. Syst. 44, 593-622.

 

Paquette, A., Messier, C., 2011. The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecol. Biogeogr. 20, 170-180.

 

Peters, M.K., Hemp, A., Appelhans, T., Becker, J.N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S.W., Frederiksen, S.B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig-Bonitz, M., Hemp, C., Kindeketa, W.J., Kühnel, A., Mayr, A.V., Mwangomo, E., Ngereza, C., Njovu, H.K., Otte, I., Pabst, H., Renner, M., Röder, J., Rutten, G., Costa, D.S., Sierra-Cornejo, N., Vollstädt, M.G.R., Dulle, H.I., Eardley, C.D., Howell, K.M., Keller, A., Peters, R.S., Ssymank, A., Kakengi, V., Zhang, J., Bogner, C., Böhning-Gaese, K., Brandl, R., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Kuzyakov, Y., Nauss, T., Schleuning, M., Tschapka, M., Fischer, M., Steffan-Dewenter, I., 2019. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88-92.

 

van der Plas, F., 2019. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220-1245.

 

Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Licona, J.C., Martinez-Ramos, M., Mazer, S.J., Muller-Landau, H.C., Pena-Claros, M., Webb, C.O., Wright, I.J., 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908-1920.

 

Pretzsch, H., Schütze, G., 2009. Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur. J. For. Res. 128, 183-204.

 

Qiao, X., Zhang, N., Zhang, C., Zhang, Z., Zhao, X., Gadow, K., 2021. Unravelling biodiversity–productivity relationships across a large temperate forest region. Funct. Ecol. 35, 2808-2820.

 
R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
 

Roscher, C., Schumacher, J., Gubsch, M., Lipowsky, A., Weigelt, A., Buchmann, N., Schmid, B., Schulze, E.D., 2012. Using plant functional traits to explain diversity–productivity relationships. PLoS One 7, e36760.

 

Shovon, T.A., Kang, S., Scherer-Lorenzen, M., Nock, C.A., 2022. Changes in the direction of the diversity–productivity relationship over 15 years of stand development in a planted temperate forest. J. Ecol. 110, 1125-1137.

 

Staples, T.L., Dwyer, J.M., England, J.R., Mayfield, M.M., 2019. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Global Ecol. Biogeogr. 28, 1417-1429.

 

Thom, D., Seidl, R., 2022. Accelerating mountain forest dynamics in the Alps. Ecosystems 25, 603-617.

 

Tilman, D., Lehman, C.L., Thomson, K.T., 1997. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl. Acad. Sci. USA 94, 1857-1861.

 

Tucker, C.M., Cadotte, M.W., Carvalho, S.B., Davies, T.J., Ferrier, S., Fritz, S.A., Grenyer, R., Helmus, M.R., Jin, L.S., Mooers, A.O., Pavoine, S., Purschke, O., Redding, D.W., Rosauer, D.F., Winter, M., Mazel, F., 2017. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698-715.

 

Yuan, Z., Ali, A., Wang, S., Gazol, A., Freckleton, R., Wang, X., Lin, F., Ye, J., Zhou, L., Hao, Z.Q., Loreau, M., 2018. Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Sci. Total Environ. 630, 422-431.

 

Zenner, E.K., Peck, J.E., Hobi, M.L., Commarmot, B., 2016. Validation of a classification protocol: meeting the prospect requirement and ensuring distinctiveness when assigning forest development phases. Appl. Veg. Sci. 19, 541-552.

 
Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M., 2005. Biomass and Stem Volume Equations for Tree Species in Europe. Finnish Society of Forest Science. Finnish Forest Research Institute.
Forest Ecosystems
Article number: 100187

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Zou J, Luo Y, Seidl R, et al. No generality in biodiversity-productivity relationships along elevation in temperate and subtropical forest landscapes. Forest Ecosystems, 2024, 11(3): 100187. https://doi.org/10.1016/j.fecs.2024.100187

223

Views

12

Downloads

8

Crossref

6

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 04 January 2024
Revised: 06 March 2024
Accepted: 19 March 2024
Published: 22 March 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).