Journal Home > Volume 9 , Issue 6

Spatial patterns reveal critical features at the individual and community levels. However, how to evaluate changes in spatial characteristics remains largely unexplored. We assess spatial changes in spatial point patterns by augmenting current statistical functions and indices. We fitted functions to describe unmarked and marked (tree size) spatial patterns using data from a large-scale silvicultural experiment in southern Chile. Furthermore, we compute the mingling index to represent spatial tree diversity. We proffer the pair correlation function difference before and after treatment to detect changes in the unmarked-point pattern of trees and the semivariogram-ratio to evaluate changes in the marked-point pattern. Our research provides a quantitative assessment of a critical aspect of forest heterogeneity: changes in spatial unmarked and marked-point patterns. The proposed approach can be a powerful tool for quantifying the impacts of disturbances and silvicultural treatments on spatial patterns in forest ecosystems.


menu
Abstract
Full text
Outline
About this article

Analysing changes in spatial point patterns: A proposal using data from a forest thinning experiment

Show Author's information Christian Salas-Eljatiba,b,c,*( )Joaquín Riquelme-AlarcónaPablo J. DonosodDiego PonceeDaniel P. Sotof
Centro de Modelación y Monitoreo de Ecosistemas, Escuela de Ingeniería Forestal, Universidad Mayor, Santiago, Chile
Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
Instituto de Bosques y Sociedad, Universidad Austral de Chile, Valdivia, Chile
Corporación Nacional Forestal, Valdivia, Chile
Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile

* Corresponding author. Centro de Modelacion y Monitoreo de Ecosistemas, Escuela de Ingeniería Forestal, Universidad Mayor, Santiago, Chile.

Abstract

Spatial patterns reveal critical features at the individual and community levels. However, how to evaluate changes in spatial characteristics remains largely unexplored. We assess spatial changes in spatial point patterns by augmenting current statistical functions and indices. We fitted functions to describe unmarked and marked (tree size) spatial patterns using data from a large-scale silvicultural experiment in southern Chile. Furthermore, we compute the mingling index to represent spatial tree diversity. We proffer the pair correlation function difference before and after treatment to detect changes in the unmarked-point pattern of trees and the semivariogram-ratio to evaluate changes in the marked-point pattern. Our research provides a quantitative assessment of a critical aspect of forest heterogeneity: changes in spatial unmarked and marked-point patterns. The proposed approach can be a powerful tool for quantifying the impacts of disturbances and silvicultural treatments on spatial patterns in forest ecosystems.

Keywords: Spatial heterogeneity, Spatial diversity, Marked-point process, Conspecific, Variable-density thinning, Nothofagus

References(95)

Bauhus, J., Forrester, D.I., Pretzsch, H., Felton, A., Pyttel, P., Benneter, A., 2017. Silvicultural options for mixed-species stands. In: Pretzsch, H., Forrester, D.I., Bauhus, J. (Eds. ), Mixed-species forests: ecology and management. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 433–501.
DOI

Bauhus, J., Puettmann, K., Messier, C., 2009. Silviculture for old-growth attributes. For. Ecol. Manage. 258 (4), 525–537.

Ben-Said, M., 2021. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review. Ecol. Process. 10 (1), 56.

Besag, J., Diggle, P.J., 1977. Simple Monte Carlo test for spatial pattern. Appl. Stat. 26 (3), 327–333.

Breiman, L., 2001. Statistical modeling: the two cultures. Stat. Sci. 16 (3), 199–231.

Brown, C., Illian, J.B., Burslem, D.F.R.P., 2016. Success of spatial statistics in determining underlying process in simulated plant communities. J. Ecol. 104 (1), 160–172.

Bruciamacchie, M., 2006. Le marteloscope, un outil pour apprendre la gestion durable – exemple d'évaluation de différents scénarios au marteloscope de zittersheim (vosges du nord). In: Valauri, D., André, J., Dodelin, B., Rambaud, D. (Eds. ), Bois mort et à cavités – une clé. pour des forêts vivantes, pp. 237–252. Paris, France.

Carey, A.B., 2003. Biocomplexity and restoration of biodiversity in temperate coniferous forest: inducing spatial heterogeneity with variable-density thinning. Forestry 76, 127–136.

Churchill, D.J., Larson, A.J., Dahlgreen, M.C., Franklin, J.F., Hessburg, P.F., Lutz, J.A., 2013. Restoring forest resilience: from reference spatial patterns to silvicultural prescriptions and monitoring. For. Ecol. Manage. 291, 442–457.

Clark, P., Evans, E., 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35 (4), 445–453.

Cressie, N., 1993. Statistics for spatial data. Wiley Interscience, New York, USA, p. 928.
DOI
Diggle, P.J., 1983. Statistical analysis of spatial point patterns. Academic Press, London, England, p. 148.
Donoso, C., 1995. Bosques Templados de Chile y Argentina: Variación, Estructura y Dinámica, third ed. Editorial Universitaria, Santiago, Chile, p. 484.
Donoso, C., 2006. Las especies Arbóreas de los Bosques Templados de Chile y Argentina. Autoecología. Marisa Cuneo Ediciones Valdivia, Chile, p. 678.

Donoso, P.J., Fr. ene, C., Frêne, M., Moorman, M.C., Oyarzún, C.E., Zavaleta, J.C., 2014. Balancing water supply and old-growth forest conservation in the lowlands of southcentral Chile through adaptive co-management. Landsc. Ecol. 29 (2), 245–260.

Donoso, P.J., Puettmann, K.J., Damato, A., Ponce, D.B., Salas-Eljatib, C., Ojeda, P.F., 2020. Short-term effects of variable-density thinning on regeneration in hardwood-dominated temperate rainforests. For. Ecol. Manage. 464, 118058.

Duncan, R.P., 1991. Competition and the coexistence of species in a mixed podocarp stand. J. Ecol. 79 (4), 1073–1084.

Ellison, A.M., Dennis, B., 1996. Paths to statistical fluency for ecologists. Front. Ecol. Environ. 8 (7), 362–370.

Fajardo, A., Goodburn, J.M., Graham, J., 2006. Spatial patterns of regeneration in managed uneven-aged ponderosa pine/Douglas-fir forests of Western Montana, USA. For. Ecol. Manage. 223 (1–3), 255–266.

Fanelli, D., Costand, R., Ioannidis, J.P., 2017. Meta-assessment of bias in science. Proc. Natl. Acad. Sci. USA 114, 3714–3719.

Ferrier, S., Guisan, A., 2006. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 43 (3), 393–404.

Fortin, M., Drapeau, P., Legendre, P., 1989. Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83, 209–222.

Franklin, J.F., Spies, T.A., Van Pelt, R., Carey, A.B., Thornburgh, D.A., Rae berg, D., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., Chen, J., 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manage. 155, 399–423.

Gavrikov, V., Stoyan, D., 1995. The use of marked point processes in ecological and environmental forest studies. Environ. Ecol. Stat. 2 (4), 331–344.

Getzin, S., Wiegand, T., Wiegand, K., He, F., 2008. Heterogeneity influences spatial patterns and demographics in forest stands. J. Ecol. 96 (4), 807–820.

Goodman, S., 2008. A dirty dozen: twelve P-value misconceptions. Semin. Hematol. 45 (3), 135–140.

Goodman, S.N., 2019. Why is getting rid of P-values so hard? Musings on science and statistics. Am. Stat. 73, 26–30.

Gradel, A., Ammer, C., Ganbaatar, B., Nadaldorj, O., Dovdondemberel, B., Wagner, S., 2017. On the effect of thinning on tree growth and stand structure of white birch (Betula platyphylla Sukaczev) and Siberian larch (Larix sibirica Ledeb. ) in Mongolia. Forests 8 (4), 105.

Greig-Smith, P., 1979. Pattern in vegetation. J. Ecol. 67, 755–779.

Grime, J.P., 2002. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86 (6), 902–910.

Gutiérrez, A.G., Armesto, J.J., Aravena, J.C., 2004. Disturbance and regeneration dynamics of an old-growth North Patagonian rain forests in Chiloé Island, Chile. J. Ecol. 92, 598–608.

Haase, P., 1995. Spatial pattern in ecology based on Ripley's K-function: introduction and methods of edge correction. J. Veg. Sci. 6, 575–582.

Haase, P., Pugnaire, F.I., Clark, S.C., Incoll, L.D., 1996. Spatial patterns in a two-tiered semi-arid shrubland in southeastern Spain. J. Veg. Sci. 7, 527–534.

He, F., Duncan, R.P., 2000. Density-dependent effects on tree survival in an old-growth Douglas fir forest. J. Ecol. 88, 676–688.

Hui, G.Y., Zhao, X., Zhao, Z., Gadow, K., 2011. Evaluating tree species spatial diversity based on neighborhood relationships. For. Sci. 57, 292–300.

Ioannidis, J.P.A., 2019. What have we (not) learnt from millions of scientific papers with P values? Am. Stat. 73, 20–25.

Johnson, E.A., Miyanishi, K., 2008. Testing the assumptions of chronosequences in succession. Ecol. Lett. 11 (5), 419–431.

Kuehne, C., Weiskittel, A.R., Fraver, S., Puettmann, K.J., 2015. Effects of thinning-induced changes in structural heterogeneity on growth, ingrowth, and mortality in secondary coastal Douglas-fir forests. Can. J. For. Res. 45 (11), 1448–1461.

Kuehne, C., Weiskittel, A.R., Pommerening, A., Wagner, R.G., 2018. Evaluation of 10-year temporal and spatial variability in structure and growth across contrasting commercial thinning treatments in spruce-fir forests of northern Maine, USA. Ann. For. Sci. 75, 20.

Larson, A.J., Stover, K.C., Keyes, C.R., 2012. Effects of restoration thinning on spatial heterogeneity in mixed-conifer forest. Can. J. For. Res. 42 (8), 1505–1517.

Law, R., Illian, J., Burslem, D.F.R.P., Gratzer, G., Gunatilleke, C.V.S., Gunatilleke, I.A.U.N., 2009. Ecological information from spatial patterns of plants: insights from point process theory. J. Ecol. 97 (4), 616–628.

Ledo, A., Cañellas, I., Barbeito, I., Gordo, F.J., Calama, R.A., Gea-Izquierdo, G., 2014. Species coexistence in a mixed Mediterranean pine forest: spatio-temporal variability in trade-offs between facilitation and competition. For. Ecol. Manage. 322, 89–97.

Legendre, P., Fortin, M., 1989. Spatial pattern and ecological analysis. Vegetatio 80, 107–138.

LeMay, V., Pommerening, A., Marshall, P., 2009. Spatio-temporal structure of multi-storied, multi-aged interior Douglas fir (Pseudotsuga menziesii var. glauca) stands. J. Ecol. 97 (5), 1062–1074.

Lewandowski, A., Pommerening, A., 1997. Zur beschreibung der waldstruktur – erwartete und beobachtete arten-durchmischung. Forstwiss. Cent. blatt 116, 129–139.

Lewandowski, A., Pommerening, A., 2006. Edge-correction needs in estimating indices of spatial forest structure. Can. J. For. Res. 36, 1723–1739.

Long, J., Robertson, C., 2018. Comparing spatial patterns. Geogr. Compass 12 (2), e12356.

Lorimer, C.G., 1983. Test of age-independent competition indices for individual trees in natural hardwood stands. For. Ecol. Manage. 6, 343–360.

Lusk, C., 2003. Tree-species competition and coexistence. Nature 422 (6932), 580–581.

Moeur, M., 1993. Characterizing spatial patterns of trees using stem-mapped data. For. Sci. 39 (4), 756–775.

Moeur, M., 1997. Spatial models of competition and gap dinamics in old-growth Tsuga hterophylla/Thuja plicata forest. For. Ecol. Manage. 94, 175–186.

O'Hara, K.L., Narayan, L., Cahill, K.G., 2015. Twelve-year response of coastal redwood to precommercial thinning treatments. For. Sci. 61 (4), 780–789.

Oliver, C.D., Larson, B.C., 1996. Forest stand dynamics, 2nd edition. Wiley, New York, USA, p. 520.
Palik, B.J., D'Amato, A.W., Franklin, J.F., Johnson, K.N., 2021. Ecological silviculture: foundations and applications. Waveland Press, Long Grove, IL, USA, p. 343.

Pelissier, R., Goreaud, F., 2001. A practical approach to the study of spatial structure in simple cases of heterogeneous vegetation. J. Veg. Sci. 12, 99–108.

Perry, G.L.W., Miller, B.P., Enright, N.J., 2006. A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol. 187 (1), 59–82.

Pielou, E.C., 1959. The use of point to plant distances in the study of the pattern of plant populations. J. Ecol. 47 (3), 607–613.

Pollmann, W., Veblen, T.T., 2004. Nothofagus regeneration dynamics in south-central Chile: a test of a general model. Ecol. Appl. 74, 615–634.

Pommerening, A., 2002. Approaches to quantifying forest structures. Forestry 75 (3), 305–324.

Pommerening, A., Grabarnik, P., 2019. Individual-based methods in forest ecology and management. Springer-Verlag, Cham, Switzerland, p. 411.
DOI

Pommerening, A., Pallarés Ramos, C., Kedziora, W., Haufe, J., Stoyan, D., 2018. Rating experiments in forestry: how much agreement is there in tree marking? PLoS One 13 (3), 1–20.

Pommerening, A., Särkkä, A., 2013. What mark variograms tell about spatial plant interactions. Ecol. Model. 251, 64–72.

Pommerening, A., Svensson, A., Zhao, Z., Wang, H., Myllymäki, M., 2019. Spatial species diversity in temperate species-rich forest ecosystems: revisiting and extending the concept of spatial species mingling. Ecol. Indic. 105, 116–125.

Pretzsch, H., 1997. Analysis and modeling of spatial stand structure. Methological considerations based on mixed beech-larch stands in lower Saxony. For. Ecol. Manage. 95, 237–253.

Puettmann, K.J., Ares, A., Burton, J.I., Dodson, E.K., 2016. Forest restoration using variable density thinning: lessons from Douglas-fir stands in Western Oregon. Forests 7 (12), 310.

Pukkala, T., 1988. Effect of spatial distribution of trees on the volume increment of a young Scots pine stand. Silva Fenn. 22 (1), 1–17.

R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. (accessed 15 November 2022).

Ribeiro, P.J. Jr., Diggle, P.J., 2001. geoR: a package for geostatistical analysis. R News 1 (2), 14–18.

Ripley, B.D., 1977. Modelling spatial patterns (with discussion). J. Roy. Stat. Soc. B 39 (2), 172–212.

Ripley, B.D., 1981. Spatial statistics. John Wiley & Sons, New York, p. 252.
DOI

Salas, C., LeMay, V., Núñez, P., Pacheco, P., Espinosa, A., 2006. Spatial patterns in an old-growth Nothofagus obliqua forest in south-central Chile. For. Ecol. Manage. 231 (1–3), 38–46.

Schabenberger, O., Gotway, C.A., 2005. Statistical methods for spatial data analysis.

Chapman & Hall/CRC, Boca Raton, FL, USA, p. 512. Soto, D.P., Salas, C., Donoso, P.J., Uteau, D., 2010. Heterogeneidad estructural y espacial de un bosque mixto dominado por Nothofagus dombeyi después de un disturbio parcial. Rev. Chil. Hist. Nat. 83 (3), 335–347.

Soucy, M., Adegbidi, H.G., Spinelli, R., Beland, M., 2016. Increasing the effectiveness of knowledge transfer activities and training of the forestry workforce with marteloscopes. For. Chron. 92 (4), 418–427.

Srivathsa, A., Puri, M., Kumar, N.S., Jathanna, D., Karanth, K.U., 2018. Substituting space for time: empirical evaluation of spatial replication as a surrogate for temporal replication in occupancy modelling. J. Appl. Ecol. 55 (2), 754–765.

Staudhammer, C., LeMay, V.M., 2001. Introduction and evaluation of possible indices of stand structural diversity. Can. J. For. Res. 31, 1105–1115.

Stoyan, D., Penttinen, A., 2000. Recent applications of point process methods in forestry statistics. Stat. Sci. 15 (1), 61–78.

Stoyan, D., Rodríguez-Cortés, F.J., Mateu, J., Gille, W., 2017. Mark variograms for spatiotemporal point processes. Spat. Stat. 20, 125–147.

Stoyan, D., Stoyan, H., 1996. Estimating pair correlation functions of planar cluster processes. Biom. J. 38 (3), 259–271.

Vallejos, R., 2012. Testing for the absence of correlation between two spatial or temporal sequences. Pattern Recogn. Lett. 33 (13), 1741–1748.

Vallejos, R., Osorio, F., Bevilacqua, M., 2020. Spatial relationships between two georeferenced variables: with applications in R. Springer, Switzerland, p. 148.
DOI

Veblen, T.T., 1985. Forest development in tree-fall gaps in the temperate rain forests of Chile. Natl. Geogr. Res. 1, 162–183.

Veblen, T.T., 1992. Regeneration dynamics. In: Glenn-Lewin, C., Peet, R.K., Veblen, T.T. (Eds. ), Plant succession: theory and prediction. Chapman and Hall, London, England, pp. 153–187.
Veblen, T.T., 2007. Temperate forests of the southern Andean region. In: Veblen, T.T., Young, K.R., Orme, A.R. (Eds. ), The physical geography of South America. Oxford University Press, New York, USA, pp. 217–231.
DOI

Veblen, T.T., Ashton, D.H., Schlegel, F.M., 1979. Tree regeneration strategies in a lowland Nothofagus-dominated forest in south-central Chile. J. Biogeogr. 6 (4), 329–340.

Veblen, T.T., Schlegel, F.M., Escobar, B., 1980. Structure and dynamics of old-growth Nothofagus forests in the Valdivian Andes, Chile. J. Ecol. 68 (1), 1–31.

Walker, L.R., Wardle, D.A., Bardgett, R.D., Clarkson, B.D., 2010. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98 (4), 725–736.

Wang, H., Peng, H., Hui, G., Hu, Y., Zhao, Z., 2018. Large trees are surrounded by more heterospecific neighboring trees in Korean pine broad-leaved natural forests. Sci. Rep. 8, 9149.

Wang, H., Zhang, X., Hu, Y., Pommerening, A., 2021. Spatial patterns of correlation between conspecific species and size diversity in forest ecosystems. Ecol. Model. 457, 109678.

Ward, J.S., Parker, G.R., Ferrandino, F.J., 1996. Long-term spatial dynamics in an oldgrowth deciduous forest. For. Ecol. Manage. 83, 189–202.

White, P.S., 1979. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 45 (3), 229–299.

Wiegand, T., Moloney, K.A., 2014. Handbook of spatial point-pattern analysis in ecology. Chapman and Hall/CRC, p. 538.
DOI

Willis, J.L., Roberts, S.D., Harrington, C.A., 2018. Variable density thinning promotes variable structural responses 14 years after treatment in the Pacific Northwest. For. Ecol. Manage. 410, 114–125.

Woods, K.D., 2000. Long-term change and spatial pattern in a late-successional hemlock–northern hardwood forest. J. Ecol. 88 (2), 267–282.

Zhang, G., Hui, G., Yang, A., Zhao, Z., 2021. A simple and effective approach to quantitatively characterize structural complexity. Sci. Rep. 11 (1), 1326.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 June 2022
Revised: 22 November 2022
Accepted: 27 November 2022
Published: 16 December 2022
Issue date: December 2022

Copyright

© 2022 The Authors.

Acknowledgements

We thank a large number of research assistants for collaborating in the establishment of the permanent sample plots and ultimately the experiment, as well as to Tomás Riquelme who made Fig. S1. Finally, we thank the anonymous reviewers for providing extremely detailed comments on earlier versions of this paper.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return