Journal Home > Volume 9 , Issue 6
Background

Afforestation is a common and effective approach used for the restoration of degraded ecosystems worldwide. In China, Robinia pseudoacacia (RP) is among the main non-native tree species and has been widely planted in revegetation of the Loess Plateau. However, owing to uncertainties regarding soil water consumption and carbon sequestration, it is necessary to assess the suitability and sustainability of R. pseudoacacia in restoration. In this study, we aimed to analyse the dynamic effects of R. pseudoacacia forest on soil carbon storage (SCS) and soil water storage (SWS). Specifically, we investigated the association between soil water content (SWC) and soil organic carbon (SOC) and underlying factors in the 0–500-cm profile of a 10- to 50-year-old chronosequence.

Results

The results obtained indicated that the dynamics of SWS and SCS on this time scale could be divided into an initial reduction phase (the initial 20 years after afforestation) and subsequent recovery (20–50 years after afforestation). Compared with in the abandoned land (AL), the net accumulation of SCS in R. pseudoacacia forest was 2.51 ​Mg·ha−1 ​at 50 years after afforestation, whereas there was a 398.76-mm deficit in SWS. Additionally, the natural succession of R. pseudoacacia forest has contributed to the continuous change in stand structure (e.g. vegetation cover (VC), understory vegetation coverage (UVC), and litter biomass (LB)).

Conclusions

These findings indicate that vegetation restoration increases carbon sequestration while causing soil water deficit. Furthermore, stand density (SD) was established to make a predominant contribution to the dynamics of SWS and SCS via its effects in altering vegetation, soil, and litter characteristics. Therefore, high-density plantation forests in the Loess Plateau area should be appropriately thinned to reduce the density of forest stands on the basis of soil erosion control and wind and sand fixation, so as to increase carbon sink with lower water consumption, thus realizing the synergistic development of soil carbon sequestration and water connotation.


menu
Abstract
Full text
Outline
About this article

Factors controlling deep-profile soil organic carbon and water storage following Robinia pseudoacacia afforestation of the Loess Plateau in China

Show Author's information Xi Yanga,bTongchuan Lia( )Ming'an Shaoa,b,c,d
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, China
College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China

* Corresponding author.

Abstract

Background

Afforestation is a common and effective approach used for the restoration of degraded ecosystems worldwide. In China, Robinia pseudoacacia (RP) is among the main non-native tree species and has been widely planted in revegetation of the Loess Plateau. However, owing to uncertainties regarding soil water consumption and carbon sequestration, it is necessary to assess the suitability and sustainability of R. pseudoacacia in restoration. In this study, we aimed to analyse the dynamic effects of R. pseudoacacia forest on soil carbon storage (SCS) and soil water storage (SWS). Specifically, we investigated the association between soil water content (SWC) and soil organic carbon (SOC) and underlying factors in the 0–500-cm profile of a 10- to 50-year-old chronosequence.

Results

The results obtained indicated that the dynamics of SWS and SCS on this time scale could be divided into an initial reduction phase (the initial 20 years after afforestation) and subsequent recovery (20–50 years after afforestation). Compared with in the abandoned land (AL), the net accumulation of SCS in R. pseudoacacia forest was 2.51 ​Mg·ha−1 ​at 50 years after afforestation, whereas there was a 398.76-mm deficit in SWS. Additionally, the natural succession of R. pseudoacacia forest has contributed to the continuous change in stand structure (e.g. vegetation cover (VC), understory vegetation coverage (UVC), and litter biomass (LB)).

Conclusions

These findings indicate that vegetation restoration increases carbon sequestration while causing soil water deficit. Furthermore, stand density (SD) was established to make a predominant contribution to the dynamics of SWS and SCS via its effects in altering vegetation, soil, and litter characteristics. Therefore, high-density plantation forests in the Loess Plateau area should be appropriately thinned to reduce the density of forest stands on the basis of soil erosion control and wind and sand fixation, so as to increase carbon sink with lower water consumption, thus realizing the synergistic development of soil carbon sequestration and water connotation.

Keywords: Afforestation, Soil organic carbon, Robinia pseudoacacia, Soil water, Coupling interaction

References(151)

Ajami, M., Heidari, A., Khormali, F., Gorji, M., Ayoubi, S., 2016. Environmental factors controlling soil organic carbon storage in loess soils of a subhumid region, northern Iran. Geoderma 281, 1–10. https://doi.org/10.1016/j.geoderma.2016.06.017.

An, S.S., Mentler, A., Acosta-Martinez, V., Blum, W.E.H., 2009. Soil microbial parameters and stability of soil aggregate fractions under different grassland communities on the Loess Plateau, China. Biologia 64, 424–427. https://doi.org/10.2478/s11756-009-0112-9.

Angst, Š., Mueller, C.W., Cajthaml, T., Angst, G., Lhotáková, Z., Bartuška, M., Špaldoňová, A., Frouz, J., 2017. Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma 289, 29–35. https://doi.org/10.1016/j.geoderma.2016.11.017.

Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., Ravetta, D.A., Schaeffer, S.M., 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235. https://doi.org/10.1007/s00442-004-1519-1.

Bao, S., 2000. Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing.

Benesperi, R., Giuliani, C., Zanetti, S., Gennai, M., Mariotti Lippi, M., Guidi, T., Nascimbene, J., Foggi, B., 2012. Forest plant diversity is threatened by Robinia pseudoacacia (black-locust) invasion. Biodivers. Conserv. 21, 3555–3568. https://doi.org/10.1007/s10531-012-0380-5.

Berhane, M., Xu, M., Liang, Z.Y., Shi, J.L., Wei, G.H., Tian, X.H., 2020. Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis. Global Change Biol. 26, 2686–2701. https://doi.org/10.1111/gcb.15018.

Bradford, J.B., Kastendick, D.N., 2010. Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA. Can. J. For. Res. 40, 401–409. https://doi.org/10.1139/X10-002.

Bravo-Oviedo, A., Condés, S., de Río, M., Pretzsch, H., Ducey, M.J., 2018. Maximum stand density strongly depends on species-specific wood stability, shade and drought tolerance. Forestry 91, 459–469. https://doi.org/10.1093/forestry/cpy006.

Campos, A., Hernández, M.E., Moreno-Casasola, P., Espinosa, E.C., Robledo, R.A., Mata, D.I., 2011. Soil water retention and carbon pools in tropical forested wetlands and marshes of the Gulf of Mexico. Hydrol. Sci. J. -J. Sci. Hydrol. 56, 1388–1406. https://doi.org/10.1080/02626667.2011.629786.

Castanha, C., Zhu, B., Hicks Pries, C.E., Georgiou, K., Torn, M.S., 2018. The effects of heating, rhizosphere, and depth on root litter decomposition are mediated by soil moisture. Biogeochemistry 137, 267–279. https://doi.org/10.1007/s10533-017-0418-6.

CFSY, 2016. China Forestry Statistical Yearbook. China Statistical Publishing House, Beijing.

Chang, E.H., Li, P., Zhang, T.G., Xiao, L., Xu, G.C., Zhao, B.H., Zhang, Y., 2016. Root systems distribution and water use pattern of vegetation from abandoned croplands during dry and wet season in Loess Hilly Region. Trans. Chin. Soc. Agric. Eng. 32, 129–138. https://doi.org/10.11975/j.issn.1002-6819.2016.24.017.

Chang, R., Jin, T., Lü, Y., Liu, G., Fu, B., 2014. Soil carbon and nitrogen changes following afforestation of marginal cropland across a precipitation gradient in Loess Plateau of China. PLoS One 9, e85426. https://doi.org/10.1371/journal.pone.0085426.

Chang, R.Y., Fu, B.J., Liu, G.H., Liu, S.G., 2011. Soil carbon sequestration potential for "grain for green" project in Loess Plateau, China. Environ. Manag. 48, 1158–1172. https://doi.org/10.1007/s00267-011-9682-8.

Chen, L.D., Huang, Z.L., Gong, J., Fu, B.J., Huang, Y.L., 2007. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China. Catena 70, 200–208. https://doi.org/10.1016/j.catena.2006.08.007.

Chen, C., Fang, X., Xiang, W., Lei, P., Ouyang, S., Kuzyakov, Y., 2020. Soil-plant co-stimulation during forest vegetation restoration in a subtropical area of southern China. For. Ecosyst. 7, 32. https://doi.org/10.1186/s40663-020-00242-3.

Cui, Z., Wu, G.L., Huang, Z., Liu, Y., 2019. Fine roots determine soil infiltration potential than soil water content in semi-arid grassland soils. J. Hydrol. 578, 124023. https://doi.org/10.1016/j.jhydrol.2019.124023.

De Vos, B., Van Meirvenne, M., Quataert, P., Deckers, J., Muys, B., 2005. Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci. Soc. Am. J. 69, 500–510. https://doi.org/10.2136/sssaj2005.0500.

Deng, L., Liu, G.B., Shangguang, Z.P., 2014. Land-use conversion and changing soil carbon stocks in China's 'Grain-for-Green' Program: a synthesis. Global Change Biol. 20, 3544–3556. https://doi.org/10.1111/gcb.12508.

Deng, L., Shangguan, Z.P., 2017. Afforestation drives soil carbon and nitrogen changes in China. Land Degrad. Dev. 28, 151–165. https://doi.org/10.1002/ldr.2537.

Deng, L., Wang, K.B., Chen, M.L., Shangguan, Z.P., Sweeney, S., 2013. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena 110, 1–7. https://doi.org/10.1016/j.catena.2013.06.016.

Deng, L., Yan, W.M., Zhang, Y.W., Shangguan, Z.P., 2016. Severe depletion of soil moisture following land-use changes for ecological restoration: evidence from northern China. For. Ecol. Manage. 366, 1–10. https://doi.org/10.1016/j.foreco.2016.01.026.

Dong, C.G., Qiao, Y.N., Cao, Y., Chen, Y.M., Wu, X., Xue, W., Xue, W.Y., 2021. Seasonal variations in carbon, nitrogen, and phosphorus stoichiometry of a Robinia pseudoacacia plantation on the Loess Hilly Region, China. Forests 12, 214. https://doi.org/10.3390/f12020214.

Dong, S.J., He, X.Q., 2016. Evolution of undergrowth vegetation and soil properties with development of artificial Robinia Pseudoacacia in Loess Hilly Region. Bull. Soil Water Conserv. 36, 20–27. https://doi.org/10.13961/j.cnki.stbctb.2016.05.011.

Dou, X.L., Xu, X., Shu, X., Zhang, Q.F., Cheng, X.L., 2016. Shifts in soil organic carbon and nitrogen dynamics for afforestation in central China. Ecol. Eng. 87, 263–270. https://doi.org/10.1016/j.ecoleng.2015.11.052.

Du, S., Wang, Y.L., Kume, T., Zhang, J.G., Otsuki, K., Yamanaka, N., Liu, G.B., 2011. Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agric. For. Meteorol. 151, 1–10. https://doi.org/10.1016/j.agrformet.2010.08.011.

Esteban Lucas-Borja, M., Delgado-Baquerizo, M., 2019. Plant diversity and soil stoichiometry regulates the changes in multifunctionality during pine temperate forest secondary succession. Sci. Total Environ. 697, 134204. https://doi.org/10.1016/j.scitotenv.2019.134204.

Fang, J.Y., Chen, A.P., Peng, C.H., Zhao, S.Q., Ci, L.J., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322. https://doi.org/10.1126/science.105862.

FAO, 2020. Global Forest Resources Assessment 2020–Key Findings. Rome. https://doi.org/10.4060/ca8753en.
DOI

Feng, Q., Yang, L., Wang, J., Shi, X.Y., Wang, Y.F., 2019. Response of soil moisture and soil organic carbon to vegetation restoration in deep soil profiles in Loess Hilly Region. Acta Ecol. Sin. 39, 6598–6609. https://doi.org/10.5846/stxb201812142733.

Feng, Q., Zhao, W.W., Fu, B.J., Ding, J.Y., Wang, S., 2017. Ecosystem service trade-offs and their influencing factors: a case study in the Loess Plateau of China. Sci. Total Environ. 607, 1250–1263. https://doi.org/10.1016/j.scitotenv.2017.07.079.

Forrester, D.I., Pares, A., Ohara, C., Khanna, P.K., Bauhus, J., 2013. Soil organic carbon is increased in mixed-species plantations of eucalyptus and nitrogen-fixing acacia. Ecosystems 16, 123–132. https://doi.org/10.1007/s10021-012-9600-9.

Frouz, J., Livečková, M., Albrechtová, J., Chroňaková, A., Cajthaml, T., Pižl, V., Háněl, L., Starý, J., Baldrian, P., Lhotáková, Z., Šimáčková, H., Cepáková, S., 2013. Is the effect of trees on soil properties mediated by soil fauna? A case study from postmining sites. For. Ecol. Manage. 309, 87–95. https://doi.org/10.1016/j.foreco.2013.02.013.

Fu, B.J., Wang, J., Chen, L.D., Qiu, Y., 2003. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena 54, 197–213. https://doi.org/10.1016/S0341-8162(03)00065-1.

Gao, Y., Fan, J., Peng, X.P., Wang, L., Mi, M.X., 2014. Soil water depletion and infiltration under the typical vegetation in the water-wind erosion crisscross region. Acta Ecol. Sin. 34, 7038–7046. https://doi.org/10.5846/stxb201303060356.

Garcia-Leoz, V., Villegas, J.C., Suescun, D., Florez, C.P., Merino-Martin, L., Betancur, T., Leon, J.D., 2018. Land cover effects on water balance partitioning in the Colombian Andes: improved water availability in early stages of natural vegetation recovery. Reg. Environ. Change 18, 1117–1129. https://doi.org/10.1007/s10113-017-1249-7.

Gebhardt, T., Häberle, K.H., Matyssek, R., Schulz, C., Ammer, C., 2014. The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric. For. Meteorol. 197, 235–243. https://doi.org/10.1016/j.agrformet.2014.05.013.

Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta analysis. Global Change Biol. 8, 345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x.

Guo, X.P., Zhu, J.Z., Yu, X.X., Jing, L., 2005. Ways to improve low-benefit black locust forests in Loess Plateau. For. Stud. China 7, 57–62. https://doi.org/10.1007/s11632-005-0023-y.

Han, X.Y., Gao, G.Y., Li, Z.S., Chang, R.Y., Jiao, L., Fu, B.J., 2019. Effects of plantation age and precipitation gradient on soil carbon and nitrogen changes following afforestation in the Chinese Loess Plateau. Land Degrad. Dev. 30, 2298–2310. https://doi.org/10.1002/ldr.3422.

He, X.B., Li, Z.B., Hao, M.D., Tang, K.L., Zheng, F.L., 2003. Down-scale analysis for water scarcity in response to soil-water conservation on Loess Plateau of China. Agric. Ecosyst. Environ. 94, 355–361. https://doi.org/10.1016/S0167-8809(02)00039-7.

He, X.X., Huang, Y.Z., Zhang, Q.C., Ye, S.M., Wang, S.Q., 2021. Distribution of organic carbon fractions in soil aggregates in Chinese fir plantations with different stand ages. Ecol. Process. 10, 49. https://doi.org/10.1186/s13717-021-00321-5.

Hong, S.B., Yin, G.D., Piao, S.L., Dybzinski, R., Cong, N., Li, X.Y., Wang, K., Peñuelas, J., Zeng, H., Chen, A.P., 2020. Divergent responses of soil organic carbon to afforestation. Nat. Sustain. 3, 694–700. https://doi.org/10.1038/s41893-020-0557- y.

Hou, G.R., Bi, H.X., Wang, N., Cui, Y.H., Ma, X.Z., Zhao, D.Y., Wang, S.S., 2019. Optimizing the stand density of Robinia pseudoacacia L. forests of the Loess Plateau, China, based on response to soil water and soil nutrient. Forests 10, 663. https://doi.org/10.3390/f10080663.

Huang, X., Li, S., Su, J., 2020. Selective logging enhances ecosystem multifunctionality via increase of functional diversity in a Pinus yunnanensis forest in Southwest China. For. Ecosyst. 7, 55. https://doi.org/10.1186/s40663-020-00267-8.

Hüblova, L., Frouz, J., 2021. Contrasting effect of coniferous and broadleaf trees on soil carbon storage during reforestation of forest soils and afforestation of agricultural and post-mining soils. J. Environ. Manag. 290, 112567. https://doi.org/10.1016/j.jenvman.2021.112567.

Huo, G., Zhao, X., Gao, X., Wang, S., Pan, Y., 2018. Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid Plantations in China. Agric. Ecosyst. Environ. 265, 392–401. https://doi.org/10.1016/j.agee.2018.06.028.

IPCC, 2014. Fifth Assessment Report, Climate Change 2014: Synthesis Report. Cambridge University Press, Cambridge, UK.

Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R., Whisler, F.D., 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Sci. Soc. Am. J. 69, 1338–1350. https://doi.org/10.2136/sssaj2004.0154.

IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015. World Soil Resources Report 106. FAO, Rome.

Jia, X.X., Shao, M.A., Zhu, Y.J., Luo, Y., 2017a. Soil moisture decline due to afforestation across the Loess Plateau. China. J. Hydrol. 546, 113–122. https://doi.org/10.1016/j.jhydrol.2017.01.011.

Jia, X.X., Wang, Y.Q., Shao, M.A., Luo, Y., Zhang, C.C., 2017b. Estimating regional losses of soil water due to the conversion of agricultural land to forest in China's Loess Plateau. Ecohydrology 10, e1851. https://doi.org/10.1002/eco.1851.

Jia, X.X., Yang, Y., Zhang, C.C., Shao, M.A., Huang, L.M., 2017c. A state-space analysis of soil organic carbon in China's Loess Plateau. Land Degrad. Dev. 28, 983–993. https://doi.org/10.1002/ldr.2675.

Jia, X.X., Zhao, C.L., Wang, Y.Q., Zhu, Y.J., Wei, X.R., Shao, M.A., 2020. Traditional dry soil layer index method overestimates soil desiccation severity following conversion of cropland into forest and grassland on China's Loess Plateau. Agric. Ecosyst. Environ. 291, 106794. https://doi.org/10.1016/j.agee.2019.106794.

Jia, Y.H., Shao, M.A., 2014. Dynamics of deep soil moisture in response to vegetational restoration on the Loess Plateau of China. J. Hydrol. 519, 523–531. https://doi.org/10.1016/j.jhydrol.2014.07.043.

Jian, S.Q., Zhao, C.Y., Fang, S.M., Yu, K., 2015. Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agric. For. Meteorol. 206, 85–96. https://doi.org/10.1016/j.agrformet.2015.03.009.

Jiao, L., Lu, N., Fu, B.J., Gao, G.Y., Wang, S., Jin, T.T., Zhang, L.W., Liu, J.B., Zhang, D., 2016. Comparison of transpiration between different aged black locust (Robinia pseudoacacia) trees on the semi-arid Loess Plateau, China. J. Arid Land 8, 604–617. https://doi.org/10.1007/s40333-016-0047-2.

Jin, T.T., Fu, B.J., Liu, G.H., Wang, Z., 2011. Hydrologic feasibility of artificial forestation in the semi-arid Loess Plateau of China. Hydrol. Earth Syst. Sci. 15, 2519–2530. https://doi.org/10.5194/hess-15-2519-2011.

Józefowska, A., Pietrzykowski, M., Woś, B., Cajthaml, T., Frouz, J., 2017. The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma 292, 9–16. https://doi.org/10.1016/j.geoderma.2017.01.008.

Karhu, K., Wall, A., Vanhala, P., Liski, J., Esala, M., Regina, K., 2011. Effects of afforestation and deforestation on boreal soil carbon stocks: comparison of measured C stocks with Yasso07 model results. Geoderma 164, 33–45. https://doi.org/10.1016/j.geoderma.2011.05.008.

Keyimu, M., Li, Z.S., Fu, B.J., Chen, W.L., Wei, J.S., Jiao, L., Gao, G.Y., Lü, Y.H., 2021. Spatial differences in the radial growth responses of black locust (Robinia pseudoacacia Linn. ) to climate on the Loess Plateau, China. Dendrochronologia 67, 125832. https://doi.org/10.1016/j.dendro.2021.125832.

Kirschbaum, M.U.F., Guo, L.B., Gifford, R.M., 2008. Observed and modelled soil carbon and nitrogen changes after planting a Pinus radiata stand onto former pasture. Soil Biol. Biochem. 40, 247–257. https://doi.org/10.1016/j.soilbio.2007.08.021.

Korkanç, S.Y., 2014. Effects of afforestation on soil organic carbon and other soil properties. Catena 123, 62–69. https://doi.org/10.1016/j.catena.2014.07.009.

Kou, M., Garcia-Fayos, P., Hu, S., Jiao, J.Y., 2016. The effect of Robinia pseudoacacia afforestation on soil and vegetation properties in the Loess Plateau (China): a chronosequence approach. For. Ecol. Manage. 375, 146–158. https://doi.org/10.1016/j.foreco.2016.05.025.

Laganiére, J., Angers, D.A., Paré, D., 2010. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biol. 16, 439–453. https://doi.org/10.1111/j.1365-2486.2009.01930.x.

Lauenroth, W.K., Sala, O.E., 1992. Long-term forage production of North American shortgrass steppe. Ecol. Appl. 2, 397–403. https://doi.org/10.2307/1941874.

Lazzaro, L., Mazza, G., d'Errico, G., Fabiani, A., Giuliani, C., Inghilesi, A.F., Lagomarsino, A., Landi, S., Lastrucci, L., Pastorelli, R., Roversi, P.F., Torrini, G., Tricarico, E., Foggi, B., 2018. How ecosystems change following invasion by Robinia pseudoacacia: insights from soil chemical properties and soil microbial, nematode, microarthropod and plant communities. Sci. Total Environ. 622, 1509–1518. https://doi.org/10.1016/j.scitotenv.2017.10.017.

Lee, H., Fitzgerald, J., Hewins, D.B., McCulley, R.L., Archer, S.R., Rahn, T., Throop, H.L., 2014. Soil moisture and soil-litter mixing effects on surface litter decomposition: a controlled environment assessment. Soil Biol. Biochem. 72, 123–132. https://doi.org/10.1016/j.soilbio.2014.01.027.

Li, D.J., Niu, S.L., Luo, Y.Q., 2012. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol. 195, 172–181. https://doi.org/10.1111/j.1469-8137.2012.04150.x.

Li, Y.S., 2001. Effects of forest on water circle on the Loess Plateau. J. Nat. Resour. 16, 427–432. https://doi.org/10.11849/zrzyxb.2001.05.005.

Lin, C.H., Tu, C.L., Lu, X.H., Lin, S.X., 2005. Soil nitrogen variation features of de-farming and wasteland in western karst desertification region, Guizhou Province. J. Soil Water Conserv. 19, 14–17. https://doi.org/10.13870/j.cnki.stbcxb.2005.04.004.

Liu, D., Wang, B.R., Bhople, P., Davlatbekov, F., Yu, F.Q., 2020a. Land rehabilitation improves edaphic conditions and increases soil microbial biomass and abundance. Soil Ecol. Lett. 2, 145–156. https://doi.org/10.1007/s42832-020-0030-x.

Liu, G., Shangguan, Z.P., Yao, W.Y., Yang, Q.K., Zhao, M.J., Dang, X.H., Gou, M.H., Wang, G.L., Wang, B., 2017. Ecological effects of soil conservation in Loess Plateau. Bull. Chin. Acad. Sci. 32, 11–19. https://doi.org/10.16418/j.issn.1000-3045.2017.01.002.

Liu, J.K., Zhang, Z.M., Zhang, M.X., 2018b. Impacts of forest structure on precipitation interception and run-off generation in a semiarid region in northern China. Hydrol. Process. 32, 2362–2376. https://doi.org/10.1002/hyp.13156.

Liu, X.R., Dong, Y.S., Ren, J.Q., Li, S.G., 2010. Drivers of soil net nitrogen mineralization in the temperate grasslands in Inner Mongolia, China. Nutrient Cycl. Agroecosyst. 87, 59–69. https://doi.org/10.1007/s10705-009-9312-5.

Liu, Y., Fang, Y., An, S.S., 2020b. How C: N: P stoichiometry in soils and plants responds to succession in Robinia pseudoacacia forests on the Loess Plateau, China. For. Ecol. Manage. 475, 118394. https://doi.org/10.1016/j.foreco.2020.118394.

Liu, Y., Miao, H.T., Huang, Z., Cui, Z., He, H.H., Zheng, J.Y., Han, F.P., Chang, X.F., Wu, G.L., 2018a. Soil water depletion patterns of artificial forest species and ages on the Loess Plateau (China). For. Ecol. Manage. 417, 137–143. https://doi.org/10.1016/j.foreco.2018.03.005.

Lu, F., Hu, H.F., Sun, W.J., Zhu, J.J., Liu, G.B., Zhou, W.M., Zhang, Q.F., Shi, P.L., Liu, X.P., Wu, X., Zhang, L., Wei, X.H., Dai, L.M., Zhang, K.R., Sun, Y.R., Xue, S., Zhang, W.J., Xiong, D.P., Deng, L., Liu, B.J., Zhou, L., Zhang, C., Zheng, X., Cao, J.S., Huang, Y., He, N.P., Zhou, G.Y., Bai, Y.F., Xie, Z.Q., Tang, Z.Y., Wu, B.F., Fang, J.Y., Liu, G.H., Yu, G.R., 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. U.S.A. 115, 4039–4044. https://doi.org/10.1073/pnas.170029411.

Lukina, N.V., Ershov, V.V., Gorbacheva, T.T., Orlova, M.A., Isaeva, L.G., Teben'kova, D.N., 2018. Assessment of soil water composition in the northern Taiga coniferous forests of background territories in the industrially developed region. Eurasian Soil Sci. 51, 277–289. https://doi.org/10.1134/S1064229318030079.

Macedo, M.O., Resende, A.S., Garcia, P.C., Boddey, R.M., Jantalia, C.P., Urquiaga, S., Campello, E.F.C., Franco, A.A., 2008. Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For. Ecol. Manage. 255, 1516–1524. https://doi.org/10.1016/j.foreco.2007.11.007.

Mao, R., Zeng, D.H., Hu, Y.L., Li, L.J., Yang, D., 2010. Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in northeast China. Plant Soil 332, 277–287. https://doi.org/10.1007/s11104-010-0292-7.

Mason, W.L., Quine, C.P., 1995. Silvicultural possibilities for increasing structural diversity in British spruce forests: the case of Kielder Forest. For. Ecol. Manage. 79, 13–28. https://doi.org/10.1016/0378-1127(95)03618-0.

Mcdowell, N.G., Brooks, J.R., Fitzgerald, S.A., Bond, B.J., 2010. Carbon isotope discrimination and growth response of old Pinus ponderosa trees to stand density reductions. Plant Cell Environ. 26, 631–644. https://doi.org/10.1046/j.1365-3040.2003.00999.x.

Miles, L., Kapos, V., 2008. Reducing greenhouse gas emissions form deforestation and forest degradation: global land-use implications. Science 320, 1454–1455. https://doi.org/10.1126/science.115535.

Montgomery, R.A., Chazdon, R.L., 2001. Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology 82, 2707–2718. https://doi.org/10.1890/0012-9658(2001)082[2707:FSCAAL]2.0.CO;2.

Munyaneza, O., 2014. Space-time Variation of Hydrological Processes and Water Resources in Rwanda: Focus on the Migina Catchment. CRC Press, Balkema.

Navarro-Cerrillo, R.M., Sánchez-Salguero, R., Rodriguez, C., Duque Lazo, J., MorenoRojas, J.M., Palacios-Rodriguez, G., Camarero, J.J., 2019. Is thinning an alternative when trees could die in response to drought? The case of planted Pinus nigra and P. Sylvestris stands in southern Spain. For. Ecol. Manage. 433, 313–324. https://doi.org/10.1016/j.foreco.2018.11.006.

Nikodemus, O., Kaupe, D., Kukuļs, I., Brūmelis, G., Kasparinskis, R., Dauškane, I., Treimane, A., 2020. Effects of afforestation of agricultural land with grey alder (Alnus incana (L. ) Moench) on soil chemical properties, comparing two contrasting soil groups. For. Ecosyst. 7, 38. https://doi.org/10.1186/s40663-020-00253-0.

O'Brien, S.L., Jastrow, J.D., Grimley, D.A., Gonzalez-Meler, M.A., 2010. Moisture and vegetation controls on decadal-scale accrual of soil organic carbon and total nitrogen in restored grasslands. Global Change Biol. 16, 2573–2588. https://doi.org/10.1111/j.1365-2486.2009.02114.x.

Otieno, D.O., K'otuto, G.O., Maina, J.N., Kuzyakov, Y., Onyango, J.C., 2010. Responses of ecosystem carbon dioxide fluxes to soil moisture fluctuations in a moist Kenyan savanna. J. Trop. Ecol. 26, 605–618. https://doi.org/10.1017/S0266467410000416.

Page, A.L., Miller, R.H., Kenney, D.R., 1982. Methods of Soil Analysis Part 2 (Agronomy Monographs 9). American Society of Agronomy, Madison, Wisconsin, USA.

Park, J., Kim, T., Moon, M., Cho, S., Ryu, D., Kim, H.S., 2018. Effects of thinning intensities on tree water use, growth, and resultant water use efficiency of 50-yearold Pinus koraiensis forest over four years. For. Ecol. Manage. 408, 121–128. https://doi.org/10.1016/j.foreco.2017.09.031.

Paul, K.I., Polglase, P.J., Nyakuengama, J.G., Khanna, P.K., 2002. Change in soil carbon following afforestation. For. Ecol. Manage. 168, 241–257. https://doi.org/10.1016/S0378-1127(01)00740-X.

Peoplau, C., Don, A., 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192, 189–201. https://doi.org/10.1016/j.geoderma.2012.08.003.

Post, W.M., Kwon, K.C., 2000. Soil carbon sequestration and land-use change: processes and potential. Global Change Biol. 6, 317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x.

Pregitzer, K.S., Euskirchen, E.S., 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biol. 10, 2052–2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x.

Raevel, V., Violle, C., Munoz, F., 2012. Mechanisms of ecological succession: insights from plant functional strategies. Oikos 121, 1761–1770. https://doi.org/10.1111/j.1600-0706.2012.20261.x.

Rahman, M.M., Bárcena, T.G., Vesterdal, L., 2017. Tree species and time since afforestation drive soil C and N mineralization on former cropland. Geoderma 305, 153–161. https://doi.org/10.1016/j.geoderma.2017.06.002.

Ren, A.X., Sun, M., Xue, L.Z., Deng, Y., Wang, P.R., Lei, M.M., Xue, J.F., Lin, W., Yang, Z.P., Gao, Z.Q., 2019. Spatio-temporal dynamics in soil water storage reveals effects of nitrogen inputs on soil water consumption at different growth stages of winter wheat. Agric. Water Manag. 216, 379–389. https://doi.org/10.1016/j.agwat.2019.01.023.

Ren, C.J., Chen, J., Deng, J., Zhao, F.Z., Han, X.H., Yang, G.H., Tong, X.G., Feng, Y.Z., Shelton, S., Ren, G.X., 2017. Response of microbial diversity to C: N: P stoichiometry in fine root and microbial biomass following afforestation. Biol. Fertil. Soils 53, 457–468. https://doi.org/10.1007/s00374-017-1197-x.

Richter, D.D., Markewitz, D., Trumbore, S.E., Wells, C.G., 1999. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400, 56–58. https://doi.org/10.1038/21867.

Rittl, T.F., Oliveira, D., Cerri, C.E.P., 2017. Soil carbon stock changes under different land uses in the Amazon. Geoderma Reg. 10, 138–143. https://doi.org/10.1016/j.geodrs.2017.07.004.

Sanji, R., Kooch, Y., Rey, A., 2020. Impact of forest degradation and reforestation with Alnus and Quercus species on soil quality and function in northern Iran. Ecol. Indicat. 112, 106132. https://doi.org/10.1016/j.ecolind.2020.106132.

Sartori, F., Lal, R., Ebinger, M.H., Eaton, J.A., 2007. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric. Ecosyst. Environ. 122, 325–339. https://doi.org/10.1016/j.agee.2007.01.026.

Schall, P., Gossner, M.M., Heinrichs, S., Fischer, M., Boch, S., Prati, D., Jung, K., Baumgartner, V., Blaser, S., Bohm, S., Buscot, F., Daniel, R., Goldmann, K., Kaiser, K., Kahl, T., Lange, M., Müller, J., Overmann, J., Renner, S.C., Schulze, E., Sikorski, J., Tschapka, M., Türke, M., Weisser, W.W., Wemheuer, B., Wubet, T., Ammer, C., Mori, A., 2018. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 55, 267–278. https://doi.org/10.1111/1365-2664.12950.

Schwärzel, K., Zhang, L.L., Montanarella, L., Wang, Y.H., Sun, G., 2020. How afforestation affects the water cycle in drylands: a process-based comparative analysis. Global Change Biol. 26, 944–959. https://doi.org/10.1111/gcb.14875.

Shang, W., Zhao, L., Wu, X.D., Li, Y.Q., Yue, G.Y., Zhao, Y.H., Qiao, Y.P., 2015. Soil organic matter fractions under different vegetation types in permafrost regions along the Qinghai-Tibet Highway, north of Kunlun Mountains, China. J. Mt. Sci. 12, 1010–1024. https://doi.org/10.1007/s11629-014-3372-y.

Smal, H., Olszewska, M., 2008. The effect of afforestation with Scots pine (Pinus silvestris L. ) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant Soil 305, 171–187. https://doi.org/10.1007/s11104-008-9537-0.

Song, X.S., Shi, S.M., Liu, S., Ren, R.X., He, C.X., Meng, P., Zhang, J.S., Yin, C.J., Zhang, X., 2021. Changes in soil chemical properties following afforestation of cropland with Robinia pseudoacacia in the southeastern Loess Plateau of China. For. Ecol. Manage. 487, 118993. https://doi.org/10.1016/j.foreco.2021.118993.

Su, B.Q., Shangguaan, Z.P., 2021. Response of water use effciency and plant-soil C: N: P stoichiometry to stand quality in Robinia pseudoacacia on the Loess Plateau of China. Catena 206, 105571. https://doi.org/10.1016/j.catena.2021.105571.

Sun, X.C., Onda, Y., Otsuki, K., Kato, H., Hirata, A., Gomi, T., 2014. The effect of strip thinning on tree transpiration in a Japanese cypress (Chamaecy parisobtuse Endl. ) plantation. Agric. For. Meteorol. 197, 123–135. https://doi.org/10.1016/j.agrformet.2014.06.011.

Suo, L.Z., Huang, M.B., Duan, L.X., Zhang, Y.G., 2017. Zonal pattern of soil moisture and its influencing factors under different land use types on the Loess Plateau. Acta Ecol. Sin. 37, 2045–2053. https://doi.org/10.5846/stxb201511102273.

Vesterdal, L., Ritter, E., Gundersen, P., 2002. Change in soil organic carbon following afforestation of former arable land. For. Ecol. Manage. 169, 137–147. https://doi.org/10.1016/S0378-1127(02)00304-3.

Vivoni, E.R., Rinehart, A.J., Méndez-Barroso, L.A., Aragón, C.A., Bisht, G., Cardenas, M.B., Engle, E., Forman, B.A., Frisbee, M.D., Gutiérrez-Jurado, H.A., Hong, S., Mahmood, T.H., Tai, K., Wyckoff, R.L., 2008. Vegetation controls on soil moisture distribution in the Valles Caldera, New Mexico, during the North American monsoon. Ecohydrology 1, 225–238. https://doi.org/10.1002/eco.11.

Wan, S.Z., Zhang, C.L., Chen, Y.Q., Zhao, J., Wang, X.L., Wang, J.P., Zhou, L.X., Lin, Y.B., Liu, Z.F., Fu, S.L., 2014. The understory fern Dicranopteris dichotoma facilitates the overstory Eucalyptus trees in subtropical plantations. Ecosphere 5, 1–12. https://doi.org/10.1890/ES14-00017.1.

Wang, F.M., Zou, B., Li, H.F., Li, Z.A., 2014. The effect of understory removal on microclimate and soil properties in two subtropical lumber plantations. J. For. Res. 19, 238–243. https://doi.org/10.1007/s10310-013-0395-0.

Wang, J., Fu, B.J., Jiao, L., Lu, N., Li, J.Y., Chen, W.L., Wang, L.X., 2021. Age-related water use characteristics of Robinia pseudoacacia on the Loess Plateau. Agric. For. Meteorol. 301–302, 108344. https://doi.org/10.1016/j.agrformet.2021.108344.

Wang, J.X., Huang, B.L., Luo, W.X., 2004. Compensation and rehabilitation characteristics of soil water deficit at a planted forest site of the drought-prone Loess Plateau. Acta Ecol. Sin. 24, 2395–2401.

Wang, L., Wang, Q.J., Wei, S.P., Shao, M.A., Li, Y., 2008. Soil desiccation for Loess soils on natural and regrown areas. For. Ecol. Manage. 255, 2467–2477. https://doi.org/10.1016/j.foreco.2008.01.006.

Wang, L.X., D'Odorico, P., Evans, J.P., Eldridge, D.J., McCabe, M.F., Caylor, K.K., King, E.G., 2012. Dryland ecohydrology and climate change: critical issues and technical advances. Hydrol. Earth Syst. Sci. 16, 2585–2603. https://doi.org/10.5194/hessd-9-4777-2012.

Wang, S., Fu, B.J., Gao, G.Y., Liu, Y., Zhou, J., 2013. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. Catena 101, 122–128. https://doi.org/10.1016/j.catena.2012.10.006.

Wang, X., Zhong, Z.K., Li, W.J., Liu, W.C., Zhang, X.Y., Wu, S.J., Ren, Z.X., Wu, Q.M., Shen, Z.Y., Ren, C.J., Yang, G.H., Han, X.H., 2020a. Effects of Robinia pseudoacacia afforestation on aggregate size distribution and organic C dynamics in the central Loess Plateau of China: a chronosequence approach. J. Environ. Manag. 268, 110558. https://doi.org/10.1016/j.jenvman.2020.110558.

Wang, Y., del-Campo, A.D., Wei, X.H., Winkler, R., Liu, W.Y., Li, Q., 2020b. Responses of forest carbon and water coupling to thinning treatments from leaf to stand scales in a young montane pine forest. Carbon Bal. Manag. 15, 24. https://doi.org/10.1186/s13021-020-00159-y.

Wang, Y., Liu, L., Yue, F., Li, D., 2019. Dynamics of carbon and nitrogen storage in two typical plantation ecosystems of different stand ages on the Loess Plateau of China. PeerJ 7, e7708. https://doi.org/10.7717/peerj.7708.

Wang, Y.H., Xiong, W., Yu, P.T., Shen, Z.X., Guo, M.C., Guan, W., Ma, C.M., Ye, B., Guo, H., 2006. Study on the evapotranspiration of forest and vegetation in dryland. J. Soil Water Conserv. 4 (19–25), 32. https://doi.org/10.16843/j.sswc.2006.04.004.

Wang, Y.Q., Shao, M.A., Zhu, Y.J., Liu, Z.P., 2011. Impacts of land use and plant characteristic on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 151, 437–448. https://doi.org/10.1016/j.agrformet.2010.11.016.

Wei, X., Liang, W.J., 2021. Regulation of stand density alters forest structure and soil moisture during afforestation with Robinia pseudoacacia L. and Pinus tabulaeformis Carr. on the Loess Plateau. For. Ecol. Manage. 491, 119196. https://doi.org/10.1016/j.foreco.2021.119196.

Wei, X.R., Qiu, L.P., Shao, M.A., Zhang, X.C., Gale, W.J., 2012. The accumulation of organic carbon in mineral soils by afforestation of abandoned farmland. PLoS One 7, e32054. https://doi.org/10.1371/journal.pone.0032054.

Wei, X.R., Shao, M.G., Fu, X.L., Horton, R., Li, Y., Zhang, X.C., 2009. Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China. Biogeochemistry 96, 149–162. https://doi.org/10.1007/s10533-009-9350-8.

Wu, J.S., Gou, S.L., Dang, Y.H., 2003. Mechanisms in the accumulation and movement of mineral N in soil profiles of farming land in a semi-arid region. Acta Ecol. Sin. 23, 2040–2049.

Xiang, Y.Z., Liu, Y., Yue, X.J., Yao, B., Zhang, L.Y., He, J., Luo, Y., Xu, X.Y., Zong, J.Z., 2021. Factors controlling soil organic carbon and total nitrogen stocks following afforestation with Robinia pseudoacacia on cropland across China. For. Ecol. Manage. 494, 119274. https://doi.org/10.1016/j.foreco.2021.119274.

Xu, M.P., Lu, X.Q., Xu, Y.D., Zhong, Z.K., Zhang, W., Ren, C.J., Han, X.H., Yang, G.H., Feng, Y.Z., 2020. Dynamics of bacterial community in litter and soil along a chronosequence of Robinia pseudoacacia plantations. Sci. Total Environ. 703, 135613. https://doi.org/10.1016/j.scitotenv.2019.135613.

Xu, M.X., Liu, G.B., 2004. The characteristics and evolution of soil nutrient in artificial black locust (Robinia pseudoacacia) forest land in the hilly Loess Plateau. Plant Nutr. Fert. Sci. 10, 40–46.

Yang, L., Wei, W., Chen, L., Jia, F., Mo, B., 2012. Spatial variation of shallow and deep soil moisture in the semi-arid loess hilly area, China. Hydrol. Earth Syst. Sci. 16, 3199–3217. https://doi.org/10.5194/hess-16-3199-2012.

Yaseef, N.R., Yakir, D.E., Rotenberg, S.G., Cohen, S., 2009. Ecohydrology of a semi-arid forest: partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology 3, 143–154. https://doi.org/10.1002/eco.65.

Yeganeh, K.H., 2020. A typology of sources, manifestations, and implications of environmental degradation. Manag. Environ. Qual. 31, 765–783. https://doi.org/10.1108/MEQ-02-2019-0036.

Yu, L.X., Liu, Y., Liu, T.X., Yan, F.Q., 2020. Impact of recent vegetation greening on temperature and precipitation over China. Agric. For. Meteorol. 295, 108197. https://doi.org/10.1016/j.agrformet.2020.108197.

Zeng, D.H., Mao, R., Chang, S.X., Li, L.J., Yang, D., 2010. Carbon mineralization of tree leaf litter and crop residues from poplar-based agroforestry systems in Northeast China: a laboratory study. Appl. Soil Ecol. 44, 133–137. https://doi.org/10.1016/j.apsoil.2009.11.002.

Zeng, W.X., Xiang, W.H., Zhou, B., Ouyang, S., Zeng, Y.L., Chen, L., Zhao, L.J., Valverde Barrantes, O.J., 2020. Effects of tree species richness on fine root production varied with stand density and soil nutrients in subtropical forests. Sci. Total Environ. 733, 139344. https://doi.org/10.1016/j.scitotenv.2020.139344.

Zeng, X.H., Zhang, W.J., Cao, J.S., Liu, X.P., Shen, H.P., Zhao, X., 2014. Changes in soil organic carbon, nitrogen, phosphorus, and bulk density after afforestation of the "Beijing–Tianjin Sandstorm Source Control" program in China. Catena 118, 186–194. https://doi.org/10.1016/j.catena.2014.01.005.

Zhang, C., Liu, G.B., Xue, S., Sun, C.L., 2013. Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China. Eur. J. Soil Biol. 54, 16–24. https://doi.org/10.1016/j.ejsobi.2012.10.007.

Zhang, G.Q., Zhang, P., Cao, Y., 2018a. Ecosystem carbon and nitrogen storage following farmland afforestation with black locust (Robinia pseudoacacia) on the Loess Plateau, China. J. For. Res. 29, 761–771. https://doi.org/10.1007/s11676-017-0479-3.

Zhang, K., Dang, H., Tan, S., Cheng, X., Zhang, Q., 2010. Change in soil organic carbon following the 'Grain-for-Green' program in China. Land Degrad. Dev. 21, 13–23. https://doi.org/10.1002/ldr.954.

Zhang, W., Gao, D., Chen, Z., Li, H., Deng, J., Qiao, W., Han, X., Yang, G., Feng, Y., Huang, J., 2018b. Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China. Geoderma 325, 152–161. https://doi.org/10.1016/j.geoderma.2018.03.027.

Zhang, W., Liu, W.C., Xu, M.P., Deng, J., Han, X.H., Yang, G.H., Feng, Y.Z., Ren, G.X., 2019a. Response of forest growth to C: N: P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma 337, 280–289. https://doi.org/10.1016/j.geoderma.2018.09.042.

Zhang, Y.H., Xu, X.L., Li, Z.W., Liu, M.X., Xu, C.H., Zhang, R.F., Luo, W., 2019b. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Sci. Total Environ. 650, 2657–2665. https://doi.org/10.1016/j.scitotenv.2018.09.372.

Zhao, F.H., Yu, G.R., 2008. A review on the coupled carbon and water cycles in the terrestrial ecosystems. Prog. Geogr. 27, 32–38.

Zhao, F.Z., Sun, J., Ren, C.J., Kang, D., Deng, J., Han, X.H., Yang, G.H., Feng, Y.Z., Ren, G.X., 2015b. Land use change influences soil C, N, and P stoichiometry under 'Grain-to-Green Program' in China. Sci. Rep. 5, 10195. https://doi.org/10.1038/srep10195.

Zhao, X.N., Wu, P.T., Gao, X.D., Persaud, N., 2015a. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degrad. Dev. 26, 54–61. https://doi.org/10.1002/ldr.2199.

Zheng, H., Gao, J.X., Teng, Y.G., Fang, C.Y., Tian, M.R., 2015. Temporal variations in soil moisture for three typical vegetation types in Inner Mongolia, northern China. PLoS One 10, e0118964. https://doi.org/10.1371/journal.pone.0118964.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 October 2022
Revised: 25 November 2022
Accepted: 25 November 2022
Published: 06 December 2022
Issue date: December 2022

Copyright

© 2022 The Authors.

Acknowledgements

Acknowledgements

We thank Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources to provide experimental conditions. We thank the editor and reviewers for the insightful comments and suggestions on this paper.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return