Journal Home > Volume 9 , Issue 6
Background

Forecasts of climate change impacts on biodiversity often assume that the current geographical distributions of species match their niche optima. However, empirical evidence has challenged this assumption, suggesting a mismatch. We examine whether the mismatch is related to functional traits along temperature or precipitation gradients.

Methods

The observed distributions of 32 tree species in northeast China were evaluated to test this mismatch. Bayesian models were used to estimate the climatic niche optima, i.e. the habitats where the highest species growth and density can be expected. The mismatch is defined as the difference between the actual species occurrence in an assumed niche optimum and the habitat with the highest probability of species occurrence. Species' functional traits were used to explore the mechanisms that may have caused the mismatches.

Results

Contrasting these climatic niche optima with the observed species distributions, we found that the distribution-niche optima mismatch had high variability among species based on temperature and precipitation gradients. However, these mismatches depended on functional traits associated with competition and migration lags only in temperature gradients.

Conclusions

We conclude that more relevant research is needed in the future to quantify the mismatch between species distribution and climatic niche optima, which may be crucial for future designs of forested landscapes, species conservation and dynamic forecasting of biodiversity under expected climate change.


menu
Abstract
Full text
Outline
About this article

Mismatch between species distribution and climatic niche optima in relation to functional traits

Show Author's information Zhenghua LianaJuan Wangb( )Chunyu ZhangaXiuhai ZhaoaKlaus von Gadowc,d
Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
Department of Forest Ecology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
Faculty of Forestry and Forest Ecology, Georg-August-University Göttingen, Büsgenweg 5, D-37077, Göttingen, Germany
Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, 7600, South Africa

Abstract

Background

Forecasts of climate change impacts on biodiversity often assume that the current geographical distributions of species match their niche optima. However, empirical evidence has challenged this assumption, suggesting a mismatch. We examine whether the mismatch is related to functional traits along temperature or precipitation gradients.

Methods

The observed distributions of 32 tree species in northeast China were evaluated to test this mismatch. Bayesian models were used to estimate the climatic niche optima, i.e. the habitats where the highest species growth and density can be expected. The mismatch is defined as the difference between the actual species occurrence in an assumed niche optimum and the habitat with the highest probability of species occurrence. Species' functional traits were used to explore the mechanisms that may have caused the mismatches.

Results

Contrasting these climatic niche optima with the observed species distributions, we found that the distribution-niche optima mismatch had high variability among species based on temperature and precipitation gradients. However, these mismatches depended on functional traits associated with competition and migration lags only in temperature gradients.

Conclusions

We conclude that more relevant research is needed in the future to quantify the mismatch between species distribution and climatic niche optima, which may be crucial for future designs of forested landscapes, species conservation and dynamic forecasting of biodiversity under expected climate change.

Keywords: Demography, Functional traits, Species distribution, Mean annual temperature, Mean annual precipitation, Niche theory

References(78)

AllenC.D.MacaladyA.K.ChenchouniH.BacheletD.McDowellN.VennetierM.KitzbergerT.RiglingA.BreshearsD.D.HoggE.H.T.GonzálezP.FenshamR.ZhangZ.CastroJ.DemidovaN.LimJ.AllardG.RunningS.W.SemerciA.CobbN.A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forestsFor. Ecol. Manag.201025966068410.1016/j.foreco.2009.09.001

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H.T., González, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag. 259, 660-684. https://doi.org/10.1016/j.foreco.2009.09.001.

Amano, T., Székely, T., Sandel, B., Nagy, S., Mundkur, T., Langendoen, T., Blanco, D., Soykan, C.U., Sutherland, W.J., 2018. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199-202. https://doi.org/10.1038/nature25139.

Ayres, M.P., Lombardero, M.J., 2000. Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ. 262, 263-286. https://doi.org/10.1016/s0048-9697(00)00528-3.

Batjes, N.H., 2015. World soil property estimates for broad-scale modelling (wise30sec). Report 2015/01, ISRIC - World Soil Information, Wageningen. https://www.isric.org (Accessed 01 August 2022).

Bell, D.M., Pabst, R.J., Shaw, D.C., 2020. Tree growth declines and mortality were associated with a parasitic plant during warm and dry climatic conditions in a temperate coniferous forest ecosystem. Global Change Biol. 26, 1714-1724. https://doi.org/10.1111/gcb.14834.

Bohner, T., Diez, J., 2020. Extensive mismatches between species distributions and performance and their relationship to functional traits. Ecol. Lett. 23, 33-44. https://doi.org/10.1111/ele.13396.

Brown, J.H., 1984. On the relationship between abundance and distribution of species. Am. Nat. 124, 255-279. https://doi.org/10.1086/284267.

BürknerP.brms: an r package for bayesian multilevel models using stanJ. Stat. Software20178012810.18637/jss.v080.i01

Bürkner, P., 2017. brms: An r package for bayesian multilevel models using stan. J. Stat. Softw. 80, 1-28. https://doi.org/10.18637/jss.v080.i01.

Camarero, J.J., Gazol, A., Sangüesa-Barreda, G., Vergarechea, M., Alfaro-Sánchez, R., Cattaneo, N., Vicente-Serrano, S.M., 2021. Tree growth is more limited by drought in rear-edge forests most of the times. For. Ecosyst. 8, 25. https://doi.org/10.1186/s40663-021-00303-1.

Canham, C.D., Murphy, L., 2016a. The demography of tree species response to climate: sapling and canopy tree growth. Ecosphere 7. https://doi.org/10.1002/ecs2.1474.

Canham, C.D., Murphy, L., 2016b. The demography of tree species response to climate: seedling recruitment and survival. Ecosphere 7. https://doi.org/10.1002/ecs2.1424.

Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351-366. https://doi.org/10.1111/j.1461-0248.2009.01285.x.

Csergő, A.M., Salguero Gómez, R., Broennimann, O., Coutts, S.R., Guisan, A., Angert, A.L., Welk, E., Stott, I., Enquist, B.J., McGill, B., Svenning, J.C., Violle, C., Buckley, Y.M., 2017. Less favourable climates constrain demographic strategies in plants. Ecol. Lett. 20, 969-980. https://doi.org/10.1111/ele.12794.

Dallas, T., Decker, R.R., Hastings, A., 2017. Species are not most abundant in the centre of their geographic range or climatic niche. Ecol. Lett. 20, 1526-1533. https://doi.org/10.1111/ele.12860.

Davis, S.D., Ewers, F.W., Sperry, J.S., Portwood, K.A., Crocker, M.C., Adams, G.C., 2002. Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. Am. J. Bot. 89, 820-828. https://doi.org/10.3732/ajb.89.5.820.

DavisonR.JacquemynH.AdriaensD.HonnayO.De KroonH.TuljapurkarS.Demographic effects of extreme weather events on a short-lived calcareous grassland species: stochastic life table response experimentsJ. Ecol.20109825526710.1111/j.1365-2745.2009.01611.x

Davison, R., Jacquemyn, H., Adriaens, D., Honnay, O., De Kroon, H., Tuljapurkar, S., 2010. Demographic effects of extreme weather events on a short-lived calcareous grassland species: stochastic life table response experiments. J. Ecol. 98, 255-267. https://doi.org/10.1111/j.1365-2745.2009.01611.x.

DiezJ.M.GiladiI.WarrenR.PulliamH.R.Probabilistic and spatially variable niches inferred from demographyJ. Ecol.201410254455410.1111/1365-2745.12215

Diez, J.M., Giladi, I., Warren, R., Pulliam, H.R., 2014. Probabilistic and spatially variable niches inferred from demography. J. Ecol. 102, 544-554. https://doi.org/10.1111/1365-2745.12215.

Ding, Y., Dai, X., 1994. Temperature variation in China during the last 100 years. Meteorol. Month. 19-26.

Doak, D.F., Morris, W.F., 2010. Demographic compensation and tipping points in climate-induced range shifts. Nature 467, 959-962. https://doi.org/10.1038/nature09439.

Ehrlén, J., Morris, W.F., 2015. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 18, 303-314. https://doi.org/10.1111/ele.12410.

Evans, M., Merow, C., Record, S., McMahon, S.M., Enquist, B.J., 2016. Towards process-based range modeling of many species. Trends Ecol. Evol., 860-871. https://doi.org/10.1016/j.tree.2016.08.005.

Faurby, S., Araújo, M.B., 2018. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 8, 252-256. https://doi.org/10.1038/s41558-018-0089-x.

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-m spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37. https://doi.org/10.1002/joc.5086.

Gadow, K.V., González, J., Zhang, C., Pukkala, T., Zhao, X., 2021. Sustaining Forest Ecosystems. Vol. 37. in: Tóme, M., Seifert, T., Kurttila, M. (eds.) Managing Forest Ecosystems. Springer. p. 429. https://doi.org/10.1007/978-3-030-58714-7.
DOI

Gea-Izquierdo, G., Natalini, F., Cardillo, E., 2021. Holm oak death is accelerated but not sudden and expresses drought legacies. Sci. Total Environ. 754, 141793. https://doi.org/10.1016/j.scitotenv.2020.141793.

Habibullah, M.S., Din, B.H., Tan, S., Zahid, H., 2022. Impact of climate change on biodiversity loss: global evidence. Environ. Sci. Pollut. R. 29, 1073-1086. https://doi.org/10.1007/s11356-021-15702-8.

Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A., 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457-461. https://doi.org/10.1007/s004420100628.

Hanba, Y.T., Naohiko, N., Kiyoshi, U., 2000. Relationship between leaf characteristics, tree sizes and species distribution along a slope in a warm temperate forest. Ecol. Res. 15, 393-403. https://doi.org/10.1046/j.1440-1703.2000.00360.x.

Hoffmann, W.A., Marchin, R.M., Abit, P., Lau, O.L., 2011. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Global Change Biol. 17, 2731-2742. https://doi.org/10.1111/j.1365-2486.2011.02401.x.

Holt, R.D., 2009. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. PNAS 106, 19659-19665. https://doi.org/10.1073/pnas.0905137106.

Hutchinson, G.E., 1957. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol 22, 415-427. https://doi.org/10.1101/SQB.1957.022.01.039.

Jacobsen, A.L., Pratt, R.B., Ewers, F.W., Davis, S.D., 2007. Cavitation resistance among 26 chaparral species of southern california. Ecol. Monogr. 77, 99-115. https://doi.org/10.1890/05-1879.

Jörn, P., Jörn, P., Frank, M.S., 2012. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Global Ecol. Biogeogr. 21, 293-304. https://doi.org/10.1111/j.1466-8238.2011.00663.x.

Kattge, J., Bonisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., Werner, G.D.A., Aakala, T., Abedi, M., Acosta, A.T.R., Adamidis, G.C., Adamson, K., Aiba, M., Albert, C.H., Alcántara, J.M., Alcázar C, C., Aleixo, I., Ali, H., Amiaud, B., Wirth, C., 2020. TRY plant trait database - enhanced coverage and open access. Global Change Biol. 26, 119-188. https://doi.org/10.1111/gcb.14904.

Klos, R.J., Wang, G.G., Bauerle, W.L., Rieck, J.R., 2009. Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data. Ecol. Appl. 19, 699-708. https://doi.org/10.1890/08-0330.1.

KunstlerG.GuyennonA.RatcliffeS.RügerN.Ruíz BenitoP.ChildsD.Z.DahlgrenJ.LehtonenA.ThuillerW.WirthC.ZavalaM.A.Salguero GomezR.Demographic performance of European tree species at their hot and cold climatic edgesJ. Ecol.20211091041105410.1111/1365-2745.13533

Kunstler, G., Guyennon, A., Ratcliffe, S., Rüger, N., Ruíz Benito, P., Childs, D.Z., Dahlgren, J., Lehtonen, A., Thuiller, W., Wirth, C., Zavala, M.A., Salguero Gomez, R., 2021. Demographic performance of European tree species at their hot and cold climatic edges. J. Ecol. 109, 1041-1054. https://doi.org/10.1111/1365-2745.13533.

Larcher, W., Bauer, H., 1981. Ecological significance of resistance to low temperature. Physiol. Plant Ecol. I, 403-437. https://doi.org/10.1007/978-3-642-68090-8_14.

Lian, Z., Wang, J., Fan, C., von Gadow, K., 2022. Structure complexity is the primary driver of functional diversity in the temperate forests of northeastern China. For Ecosyst 9, 100048. https://doi.org/10.1016/j.fecs.2022.100048.

Liu, X., Ma, K., 2015. Plant functional traits-concepts, applications and future directions. Sci. Sin. Vitae 45, 325-339. https://doi.org/10.1360/N052014-00244.

LoehleC.Height growth rate tradeoffs determine northern and southern range limits for treesJ. Biogeogr.19982573574210.1046/j.1365-2699.1998.2540735.x

Loehle, C., 1998. Height growth rate tradeoffs determine northern and southern range limits for trees. J. Biogeogr. 25, 735-742. https://doi.org/10.1046/j.1365-2699.1998.2540735.x.

Maguire, B., 1973. Niche response structure and the analytical potentials of its relationship to the habitat. Am. Nat. 107, 213-246. https://doi.org/10.1086/282827.

ManterD.K.ReeserP.W.StoneJ.K.A climate-based model for predicting geographic variation in swiss needle cast severity in the Oregon coast rangePhytopathology2005951256126510.1094/PHYTO-95-1256

Manter, D.K., Reeser, P.W., Stone, J.K., 2005. A climate-based model for predicting geographic variation in swiss needle cast severity in the Oregon coast range. Phytopathology 95, 1256-1265. https://doi.org/10.1094/PHYTO-95-1256.

Marshall, K.E., Baltzer, J.L., 2015. Decreased competitive interactions drive a reverse species richness latitudinal gradient in subarctic forests. Ecology 96, 461-470. https://doi.org/10.1890/14-0717.1.

McGillB.J.Trees are rarely most abundant where they grow bestJ. Plant Ecol.20125465110.1093/jpe/rtr036

McGill, B.J., 2012. Trees are rarely most abundant where they grow best. J. Plant Ecol 5, 46-51. https://doi.org/10.1093/jpe/rtr036.

MolesA.T.WartonD.I.WarmanL.SwensonN.G.LaffanS.W.ZanneA.E.PitmanA.HemmingsF.A.LeishmanM.R.Global patterns in plant heightJ. Ecol.20099792393210.1111/j.1365-2745.2009.01526.x

Moles, A.T., Warton, D.I., Warman, L., Swenson, N.G., Laffan, S.W., Zanne, A.E., Pitman, A., Hemmings, F.A., Leishman, M.R., 2009. Global patterns in plant height. J. Ecol. 97, 923-932. https://doi.org/10.1111/j.1365-2745.2009.01526.x.

Munné-Bosch, S., 2018. Limits to Tree Growth and Longevity. Trends Plant Sci. 23, 985-993. https://doi.org/10.1016/j.tplants.2018.08.001.

Nenzén, H.K., Swab, R.M., Keith, D.A., Araújo, M.B., 2012. demoniche - an R-package for simulating spatially-explicit population dynamics. Ecography 35, 577-580. https://doi.org/10.1111/j.1600-0587.2012.07378.x.

NicolèF.DahlgrenJ.P.VivatA.Till-BottraudI.EhrlénJ.Interdependent effects of habitat quality and climate on population growth of an endangered plantJ. Ecol.2011991211121810.1111/j.1365-2745.2011.01852.x

Nicolè, F., Dahlgren, J.P., Vivat, A., Till-Bottraud, I., Ehrlén, J., 2011. Interdependent effects of habitat quality and climate on population growth of an endangered plant. J. Ecol. 99, 1211-1218. https://doi.org/10.1111/j.1365-2745.2011.01852.x.

Orlandi, F., García-Mozo, H., Dhiab, A.B., Galán, C., Msallem, M., Romano, B., Abichou, M., Dominguez-Vilches, E., Fornaciari, M., 2013. Climatic indices in the interpretation of the phenological phases of the olive in mediterranean areas during its biological cycle. Clim. Change 116, 263-284. https://doi.org/10.1007/s10584-012-0474-9.

Pagel, J., Treurnicht, M., Bond, W.J., Kraaij, T., Schurr, F.M., 2020. Mismatches between demographic niches and geographic distributions are strongest in poorly dispersed and highly persistent plant species. PNAS 117, 201908684. https://doi.org/10.1073/pnas.1908684117/-/DCSupplemental.

Pearce-Higgins, J.W., Ockendon, N., Baker, D.J., Carr, J., White, E.C., Almond, R.E.A., Amano, T., Bertram, E., Bradbury, R.B., Bradley, C., Butchart, S.H.M., Doswald, N., Foden, W., Gill, D.J.C., Green, R.E., Sutherland, W.J., Tanner, E.V.J., 2015. Geographical variation in species' population responses to changes in temperature and precipitation. Proceed. Royal Soc. B Biol. Sci. 282, 20151561. https://doi.org/10.1098/rspb.2015.1561.

Peréz, S.V., Heikkinen, J., Salemaa, M., Makipaa, R., 2020. Global warming will affect the maximum potential abundance of boreal plant species. Ecography 43. https://doi.org/10.1111/ecog.04720.

PhilipS.LoehleC.Height growth rate tradeoffs determine northern and southern range limits for treesJ. Biogeogr.19982573574210.1046/j.1365-2699.1998.2540735.x

Philip, S., Loehle, C., 1998. Height growth rate tradeoffs determine northern and southern range limits for trees. J. Biogeogr. 25, 735-742. https://doi.org/10.1046/j.1365-2699.1998.2540735.x.

Pironon, S., Villellas, J., Thuiller, W., Eckhart, V.M., Geber, M.A., Moeller, D.A., García, M.B., 2018. The ‘Hutchinsonian niche’ as an assemblage of demographic niches: implications for species geographic ranges. Ecography 41, 1103-1113. https://doi.org/10.1111/ecog.03414.

Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manriquez, G., Harms, K.E., Licona, J.C., Martínez-Ramos, M., Mazer, S.J., Müller-Landau, H.C., Peña-Claros, M., Webb, C.O., Wright, I.J., 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908-1920. https://doi.org/10.1890/07-0207.1.

Pulliam, H.R., 2000. On the relationship between niche and distribution. Ecol. Lett. 3, 349-361. https://doi.org/10.1046/j.1461-0248.2000.00143.x.

R Core Team, 2021. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (Accessed 01 August 2022).
Reed, D.H., 2012. Impact of Climate Change on Biodiversity. in: Chen, W., Seiner, J., Suzuki, T., Lackner, M. (Eds.), Handbook of Climate Change Mitigation. Springer-Verlag, New York, pp. 505-530. https://link.springer.com/referencework/10.1007/978-1-4419-7991-9 (Accessed 01 August 2022).
DOI

Rice, K.J., Matzner, S.L., Byer, W., Brown, J.R., 2004. Patterns of tree dieback in Queensland, Australia: the importance of drought stress and the role of resistance to cavitation. Oecologia 139, 190-198. https://doi.org/10.1111/ecog.04027.

Santini, L., Pironon, S., Maiorano, L., Thuiller, W., 2018. Addressing common pitfalls does not provide more support to geographical and ecological abundant-centre hypotheses. Ecography 19, 1043. https://doi.org/10.1111/ecog.04027.

SchurrF.M.PagelJ.CabralJ.S.GroeneveldJ.BykovaO.O HaraR.B.HartigF.KisslingW.D.LinderH.P.MidgleyG.F.SchröderB.SingerA.ZimmermannN.E.How to understand species niches and range dynamics: a demographic research agenda for biogeographyJ. Biogeogr.2012392146216210.1111/j.1365-2699.2012.02737.x

Schurr, F.M., Pagel, J., Cabral, J.S., Groeneveld, J., Bykova, O., O Hara, R.B., Hartig, F., Kissling, W.D., Linder, H.P., Midgley, G.F., Schröder, B., Singer, A., Zimmermann, N.E., 2012. How to understand species niches and range dynamics: a demographic research agenda for biogeography. J. Biogeogr. 39, 2146-2162. https://doi.org/10.1111/j.1365-2699.2012.02737.x.

Sintayehu, D.W., 2018. Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. Ecosyst. Health Sust. 4, 225-239. https://doi.org/10.1080/20964129.2018.1530054.

SporbertM.KeilP.SeidlerG.BruelheideH.JandtU.AćićS.BiurrunI.CamposJ.A.ČarniA.ChytrýM.ĆušterevskaR.DenglerJ.GolubV.JansenF.KuzemkoA.LenoirJ.MarcenòC.MoeslundJ.E.Pérez-HaaseA.RūsiņaS.WelkE.Testing macroecological abundance patterns: the relationship between local abundance and range size, range position and climatic suitability among European vascular plantsJ. Biogeogr.2020472210222210.1111/jbi.13926

Sporbert, M., Keil, P., Seidler, G., Bruelheide, H., Jandt, U., Aćić, S., Biurrun, I., Campos, J.A., Čarni, A., Chytrý, M., Ćušterevska, R., Dengler, J., Golub, V., Jansen, F., Kuzemko, A., Lenoir, J., Marceno, C., Moeslund, J.E., Pérez-Haase, A., Rusina, S. Welk, E., 2020. Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants. J. Biogeogr. 47, 2210-2222. https://doi.org/10.1111/jbi.13926.

Sun, M., Tian, K., Zhang, Y., Wang, X., Guan, D., Yue, H., 2017. Research on leaf functional traits and their environmental adaptation. Plant Sci. J. 35, 940-949. https://doi.org/10.11913/PSJ.2095-0837.2017.60940.

Sun, S., He, C., Qiu, L., Li, C., Zhang, J., Meng, P., 2018. Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the Three-North Shelter Forest in Northern China. Agr. Forest Meteorol. 252, 39-48. https://doi.org/10.1016/j.agrformet.2017.12.264.

Swenson, N.G., Enquist, B.J., 2007. Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451-459. https://doi.org/10.3732/ajb.94.3.451.

Thuiller, W., Münkemüller, T., Schiffers, K.H., Georges, D., Dullinger, S., Eckhart, V.M., Edwards, T.C., Gravel, D., Kunstler, G., Merow, C., Moore, K., Piedallu, C., Vissault, S., Zimmermann, N.E., Zurell, D., Schurr, F.M., 2014. Does probability of occurrence relate to population dynamics? Ecography 37, 1155-1166. https://doi.org/10.1111/ecog.00836.

Toräng, P., Ehrlén, J., Agren, J., 2010. Linking environmental and demographic data to predict future population viability of a perennial herb. Oecologia 163, 99-109. https://doi.org/10.1007/s00442-009-1552-1.

Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.B., Er, G.P., Singer, A., Bridle, J.R., Crozier, L.G., Meester, L.D., Godsoe, W., 2016. Improving the forecast for biodiversity under climate change. Science 353. https://doi.org/10.1126/science.aad8466.

Villellas, J., Doak, D.F., García, M.B., Morris, W.F., 2015. Demographic compensation among populations: what is it, how does it arise and what are its implications? Ecol. Lett. 18, 1139-1152. https://doi.org/10.1111/ele.12505.

Violle, C., Navas, M., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional! Oikos 116, 882-892. https://doi.org/10.1111/j.2007.0030-1299.15559.x.

WangZ.LiY.SuX.TaoS.FengX.WangQ.XuX.LiuY.MichaletzS.T.ShresthaN.LarjavaaraM.EnquistB.J.Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to primary productivityJ. Plant Ecol.20191279180310.1093/jpe/rtz025

Wang, Z., Li, Y., Su, X., Tao, S., Feng, X., Wang, Q., Xu, X., Liu, Y., Michaletz, S.T., Shrestha, N., Larjavaara, M., Enquist, B.J., 2019. Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to primary productivity. J. Plant Ecol. 12, 791-803. https://doi.org/10.1093/jpe/rtz025.

Wisheu, I.C., 1998. How organisms partition habitats: different types of community organization can produce identical patterns. Oikos 83, 246-258. https://doi.org/10.2307/3546836.

Woodward, F.I., 1990. The impact of low temperatures in controlling the geographical distribution of plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 585-593. https://doi.org/10.1098/rstb.1990.0033.

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. https://doi.org/10.1038/nature02403.

Xu, K., Wang, X., Jiang, C., Sun, O.J., 2020. Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity. For. Ecosyst. 7, 23. https://doi.org/10.1186/s40663-020-00239-y.

Yuan, Z., Ali, A., Wang, S., Gazol, A., Freckleton, R., Wang, X., Lin, F., Ye, J., Zhou, L., Hao, Z., Loreau, M., 2018. Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Sci. Total Environ. 630, 422-431. https://doi.org/10.1016/j.scitotenv.2018.02.125.

Zurell, D., Thuiller, W., Pagel, J., Cabral, J.S., Zimmermann, N.E., 2016. Benchmarking novel approaches for modelling species range dynamics. Global Change Biol. 22, 2651-2664. https://doi.org/10.1111/gcb.13251.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 01 September 2022
Revised: 22 November 2022
Accepted: 29 November 2022
Published: 05 December 2022
Issue date: December 2022

Copyright

© 2022 The Authors.

Acknowledgements

Acknowledgements

This work was supported by the Key Project of National Key Research and Development Plan (No. 2022YFD2201004) and Beijing Forestry University Outstanding Young Talent Cultivation Project (No. 2019JQ03001). We are grateful to colleagues who surveyed data together.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return