Journal Home > Volume 9 , Issue 6

Natural secondary forest has a strong capacity to regrow naturally and recover biodiversity rapidly on abandoned lands. However, at the neighborhood scale, which can truly reflect the facilitative or competitive interactions among individual plants, the local diversity spatial structure in secondary forest and the feedback effects of neighborhood diversity on natural regeneration remain unclear, and this may be the key to properly understand the mechanisms of natural secondary forest species diversity recovery. To this end, this study established a dynamic plot in a rehabilitated secondary forest after disturbance and conducted a comprehensive survey of 68, 336 individual plants with repeated measurements at 5-year interval to assess the characteristics of neighborhood diversity structure across life history stages and link the neighborhood species richness (NSR) effect translated by species interactions at species diversity structure with individual trees recruitment/mortality in secondary forest regeneration. The results showed that, compared with tropical and temperate natural forests, a higher proportion of diversity accumulators and a lower proportion of repellers in subtropical secondary forests resulted in neighborhood diversity structures characterized by heterospecific or high-diversity patches, which are beneficial to the maintenance or restoration of biodiversity. As an important supplement to the research on the relationship between diversity and productivity, our findings show a positive diversity–survival relationship in subtropical secondary forests. Importantly, we observed that the neighborhood diversity structure exhibited a trend of accumulator-dominated to neutral-dominant changes with life stage from sapling to adult, which, in turn, determined the direction and strength of NSR effects on recruitment/mortality. Specifically, diverse local neighborhoods at a later successional stage characterized with ‘neutral’ species–species interactions can act as a ‘welfare net’ by offering favorable microhabitats for the most vulnerable recruitments or saplings, i.e., the NSR effects that promoted individual recruitment/survival in our study. These results not only enrich our understanding of the biodiversity–productivity–survival relationship but also highlight the importance of retaining late-successional species of native trees in intensive forest production or in situ conservation policies.


menu
Abstract
Full text
Outline
About this article

Neighborhood diversity structure and neighborhood species richness effects differ across life stages in a subtropical natural secondary forest

Show Author's information Haonan ZhangaShuifei ChenaXiao ZhengaXiaomin GeaYao LibYanming FangbPeng CuiaHui Dinga( )
Research Center for Nature Conservation and Biodiversity, State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, State Environmental Protection Key Laboratory on Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China (MEE), Nanjing, 210042, China
Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, 210037, China

Abstract

Natural secondary forest has a strong capacity to regrow naturally and recover biodiversity rapidly on abandoned lands. However, at the neighborhood scale, which can truly reflect the facilitative or competitive interactions among individual plants, the local diversity spatial structure in secondary forest and the feedback effects of neighborhood diversity on natural regeneration remain unclear, and this may be the key to properly understand the mechanisms of natural secondary forest species diversity recovery. To this end, this study established a dynamic plot in a rehabilitated secondary forest after disturbance and conducted a comprehensive survey of 68, 336 individual plants with repeated measurements at 5-year interval to assess the characteristics of neighborhood diversity structure across life history stages and link the neighborhood species richness (NSR) effect translated by species interactions at species diversity structure with individual trees recruitment/mortality in secondary forest regeneration. The results showed that, compared with tropical and temperate natural forests, a higher proportion of diversity accumulators and a lower proportion of repellers in subtropical secondary forests resulted in neighborhood diversity structures characterized by heterospecific or high-diversity patches, which are beneficial to the maintenance or restoration of biodiversity. As an important supplement to the research on the relationship between diversity and productivity, our findings show a positive diversity–survival relationship in subtropical secondary forests. Importantly, we observed that the neighborhood diversity structure exhibited a trend of accumulator-dominated to neutral-dominant changes with life stage from sapling to adult, which, in turn, determined the direction and strength of NSR effects on recruitment/mortality. Specifically, diverse local neighborhoods at a later successional stage characterized with ‘neutral’ species–species interactions can act as a ‘welfare net’ by offering favorable microhabitats for the most vulnerable recruitments or saplings, i.e., the NSR effects that promoted individual recruitment/survival in our study. These results not only enrich our understanding of the biodiversity–productivity–survival relationship but also highlight the importance of retaining late-successional species of native trees in intensive forest production or in situ conservation policies.

Keywords: Secondary forest restoration, Individual species area relationship, Diversity accumulator species, Neighborhood species richness effect, Life history stages, Heterospecific crowding

References(58)

Baddeley, A., Rubak, E., Turner, R., 2015. Spatial Point Patterns: Methodology and Applications with R, first ed. Chapman and Hall/CRC, New York. https://doi.org/10.1201/b19708.
DOI

Bagchi, R., Gallery, R.E., Gripenberg, S., Gurr, S.J., Narayan, L., Addis, C.E., Freckleton, R.P., Lewis, O.T., 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85-88. https://doi.org/10.1038/nature12911.

Chang, Y.M., Baddeley, A., Wallace, J., Canci, M., 2013. Spatial statistical analysis of tree deaths using airborne digital imagery. Int. J. Appl. Earth. Obs. 21, 418-426. https://doi.org/10.1016/j.jag.2012.04.006.

Ding, H., Chen, S.F., Xu, H., Luo, X.Q., Li, Y., Xu, K., Wu, Y., Wu, Y.Q., Yong, F., Zhou, W.L., Fang Y.M., 2022. Dynamics of arbor layer in the Subtropical Evergreen Broad-leaved Forest in the Wuyi Mountains, Fujian Province, southeastern China in 2013-2018. Act. Eco. Sin. 42, 3458-3469. https://doi.org/10.5846/stxb202007051746 (in Chinese with English abstract).

Feng, G., Svenning, J.-C., Mi, X., Jia, Q., Rao, M., Ren, H., Bebber, D., Ma, K., 2014. Anthropogenic disturbance shapes phylogenetic and functional tree community structure in a subtropical forest. For. Ecol. Manag. 313, 188-198. https://doi.org/10.1016/j.foreco.2013.10.047.

Fichtner, A., Härdtle, W., Li, Y., Bruelheide, H., Kunz, M., von Oheimb, G., 2017. From competition to facilitation: how tree species respond to neighbourhood diversity. Eco. Lett. 20, 892-900. https://doi.org/10.1111/ele.12786.

Fichtner, A., Schnabel, F., Bruelheide, H., Kunz, M., Mausolf, K., Schuldt, A., Härdtle, W., von Oheimb, G., 2020. Neighbourhood diversity mitigates drought impacts on tree growth. J. Ecol. 108, 865-875. https://doi.org/10.1111/1365-2745.13353.

Food and Agriculture Organization of the United Nations (FAO), 2015. Global Forest Resources Assessment 2015: How Are Forests Changing? UN Food and Agriculture Organization, Rome. http://www.fao.org/3/i4793e/i4793e.pdf (Accessed 12 February 2022).

Forrester, D.I., Bauhus J., 2016. A review of processes behind diversity-productivity relationships in forests. Curr. For. Rep. 2, 45-61. https://doi.org/10.1007/s40725-016-0031-2.

Funwi-gabga, N., Mateu, J., 2011. Understanding the nesting spatial behaviour of gorillas in the Kagwene Sanctuary, Cameroon. Stoch. Env. Res. Risk Asse. 26. https://doi.org/10.1007/s00477-011-0541-1.

Gadow, K.v., Gonzalez, J.G.Á., Zhang, C.Y., Pukkala, T., Zhao, X.H., 2021. Sustaining Forest Ecosystems. Springer Cham, Switzerland. https://doi.org/10.1007/978-3-030-58714-7.
DOI

Gafta, D., Schnitzler, A., Closset-Kopp, D., Cristea, V., 2021. Neighbourhood-based evidence of tree diversity promotion by beech in an old-growth deciduous-coniferous mixed forest (Eastern Carpathians). Ann. For. Res. 64, 13-30. https://doi.org/10.15287/afr.2020.2143.

Georgi, L., Kunz, M., Fichtner, A., Reich, K.F., Bienert, A., Maas, H., Oheimb, G.v., 2021. Effects of local neighbourhood diversity on crown structure and productivity of individual trees in mature mixed-species forests. For. Ecosyst. 8, 26. https://doi.org/10.1186/s40663-021-00306-y.

HilleRisLambers, J., Adler, P., Harpole, W., Levine, J., Mayfield, M., 2012. Rethinking community assembly through the lens of coexistence theory. Ann. Rev. Ecol. Evol. Syst. 43, 227-248. https://doi.org/10.1146/annurev-ecolsys-110411-160411.

Hooper, D.U., Chapin III, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A.J., Vandermeer, J., Wardle, D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3-35. https://doi.org/10.1890/04-0922.

Hua, F., Wang, L., Fisher, B., Zheng, X., Wang, X., Yu, D.W., Tang, Y., Zhu, J., Wilcove, D.S., 2018. Tree plantations displacing native forests: The nature and drivers of apparent forest recovery on former croplands in Southwestern China from 2000 to 2015. Biol. Conserv. 222, 113-124. https://doi.org/10.1016/j.biocon.2018.03.034.

Hua, F., Bruijnzeel, L.A., Meli, P., Martin, P.A., Zhang, J., Nakagawa, S., Miao, X., Wang, W., McEvoy, C., Peña-Arancibia, J.L., Brancalion, P.H.S., Smith, P., Edwards, D.P., Balmford, A., 2022. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376, 839-844 https://doi.org/10.1126/science.abl4649.

Hui, G.Y., Gadow, K.v., 2003. Quantitative Analysis of Forest Spatial Structure. China Science & Technology Press, Beijing. (in Chinese with English abstract).

Iida, Y., Kohyama, T.S., Swenson, N.G., Su, S.-H., Chen, C.-T., Chiang, J.-M., Sun, I.-F., 2014. Linking functional traits and demographic rates in a subtropical tree community: the importance of size dependency. J. Ecol. 102, 641-650. https://doi.org/10.1111/1365-2745.12221.

Illian, J., Penttinen, A., Stoyan, H., Stoyan. D., 2008. Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley, Hoboken, NJ, pp. 516-517.
DOI

Johnson, D.J., Magee, L., Pandit, K., Bourdon, J., Broadbent, E.N., Glenn, K., Kaddoura, Y., Machado, S., Nieves, J., Wilkinson, B.E., Almeyda Zambrano, A.M., Bohlman, S.A., 2021. Canopy tree density and species influence tree regeneration patterns and woody species diversity in a longleaf pine forest. For. Ecol. Manag. 490, 119082. https://doi.org/10.1016/j.foreco.2021.119082.

Jucker, T., Bouriaud, O., Coomes, D., 2015. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078-1086. https://doi.org/10.1111/1365-2435.12428.

Kempka, C., Gadow, K.v., 1998. Eine Strukturanalyse im Naturwald von Knysna (Analyzing neighborhood diversity and structure in the Knysna natural forests). Forstarchiv 69(6), 235-239.

Laliberté, E., Paquette, A., Legendre, P., Bouchard, A., 2008. Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest. Oecologia 159, 377-388. https://doi.org/10.1007/s00442-008-1214-8.

Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.D., McGuire, A.D., Bozzato, F., Pretzsch, H., De-Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C.B., Glick, H.B., Hengeveld, G.M., Nabuurs, G.J., Pfautsch, S., Viana, H., Vibrans, A.C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.V., HYH, C., Lei, X.D., Schelhaas, M.J., Lu, H.C., Gianelle, D., Parfenova, E.I., Salas, C., Lee, E., Lee, B., Kim, H.S., Bruelheide, H., Coomes, D.A., Piotto, D., Sunderland, T., Schmid, B., Gourlet-Fleury, S., Sonke, B., Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E.B., Neldner, V.J., Ngugi, M.R., Baraloto, C., Frizzera, L., Balazy, R., Oleksyn, J., Zawila-Niedzwiecki, T., Bouriaud, O., Bussotti, F., Finer, L., Jaroszewicz, B., Jucker, T., Valladares, F., Jagodzinski, A.M., Peri, P.L., Gonmadje, C., Marthy, W., O’Brien, T., Martin, E.H., Marshall, A.R., Rovero, F., Bitariho, R., Niklaus, P.A., Alvarez-Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V., Engone-Obiang, N.L., Ferreira, L.V., Odeke, D.E., Vasquez, R.M., Lewis, S.L., Reich, P.B., 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354(6309), aaf8957. https://doi.org/10.1126/science.aaf8957.

Miriti, M.N., 2006. Ontogenetic shift from facilitation to competition in a desert shrub. J. Ecol. 94, 973-979. https://doi.org/10.1111/j.1365-2745.2006.01138.x.

Muledi, J., Bauman, D., Jacobs, A., Meerts, P., Shutcha, M., Drouet, T., 2020. Tree growth, recruitment, and survival in a tropical dry woodland: The importance of soil and functional identity of the neighbourhood. For. Ecol. Manag. 460, 117894. https://doi.org/10.1016/j.foreco.2020.117894.

Paquette, A., Vayreda, J., Coll, L., Messier, C., Retana, J., 2018. Climate change could negate positive tree diversity effects on forest productivity: A study across five climate types in Spain and Canada. Ecosystems 21, 960-970. https://doi.org/10.1007/s10021-017-0196-y.

Pommerening, A., Grabarnik, P., 2019. Individual-based methods in forest ecology and management. Springer Cham, Switzerland. https://doi.org/10.1007/978-3-030-24528-3.
DOI

Poorter, L., Bongers, F., Aide, T.M., Almeyda Zambrano, A.M., Balvanera, P., Becknell, J.M., Boukili, V., Brancalion, P.H.S., Broadbent, E.N., Chazdon, R.L., Craven, D., de Almeida-Cortez, J.S., Cabral, G.A.L., de Jong, B.H.J., Denslow, J.S., Dent, D.H., DeWalt, S.J., Dupuy, J.M., Durán, S.M., Espírito-Santo, M.M., Fandino, M.C., César, R.G., Hall, J.S., Hernández-Stefanoni, J.L., Jakovac, C.C., Junqueira, A.B., Kennard, D., Letcher, S.G., Licona, J.-C., Lohbeck, M., Marín-Spiotta, E., Martínez-Ramos, M., Massoca, P., Meave, J.A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes, Y.R.F., Ochoa-Gaona, S., de Oliveira, A.A., Orihuela-Belmonte, E., Peña-Claros, M., Pérez-García, E.A., Piotto, D., Powers, J.S., Rodríguez-Velázquez, J., Romero-Pérez, I.E., Ruíz, J., Saldarriaga, J.G., Sánchez-Azofeifa, A., Schwartz, N.B., Steininger, M.K., Swenson, N.G., Toledo, M., Uriarte, M., van Breugel, M., van der Wal, H., Veloso, M.D.M., Vester, H.F.M., Vicentini, A., Vieira, I.C.G., Bentos, T.V., Williamson, G.B., Rozendaal, D.M.A., 2016. Biomass resilience of neotropical secondary forests. Nature 530, 211-214. https://doi.org/10.1038/nature16512.

Poorter, L., Craven, D., Jakovac, C.C., van der Sande, M.T., Amissah, L., Bongers, F., Chazdon, R.L., Farrior, C.E., Kambach, S., Meave, J.A., Muñoz, R., Norden, N., Rüger, N., van Breugel, M., Almeyda Zambrano, A.M., Amani, B., Andrade, J.L., Brancalion, P.H.S., Broadbent, E.N., de Foresta, H., Dent, D.H., Derroire, G., DeWalt, S.J., Dupuy, J.M., Durán, S.M., Fantini, A.C., Finegan, B., Hernández-Jaramillo, A., Hernández-Stefanoni, J.L., Hietz, P., Junqueira, A.B., N’dja, J.K., Letcher, S.G., Lohbeck, M., López-Camacho, R., Martínez-Ramos, M., Melo, F.P.L., Mora, F., Müller, S.C., N’Guessan, A.E., Oberleitner, F., Ortiz-Malavassi, E., Pérez-García, E.A., Pinho, B.X., Piotto, D., Powers, J.S., Rodríguez-Buriticá, S., Rozendaal, D.M.A., Ruíz, J., Tabarelli, M., Teixeira, H.M., Valadares de Sá Barretto Sampaio, E., van der Wal, H., Villa, P.M., Fernandes, G.W., Santos, B.A., Aguilar-Cano, J., de Almeida-Cortez, J.S., Alvarez-Dávila, E., Arreola-Villa, F., Balvanera, P., Becknell, J.M., Cabral, G.A.L., Castellanos-Castro, C., de Jong, B.H.J., Nieto, J.E., Espírito-Santo, M.M., Fandino, M.C., García, H., García-Villalobos, D., Hall, J.S., Idárraga, A., Jiménez-Montoya, J., Kennard, D., Marín-Spiotta, E., Mesquita, R., Nunes, Y.R.F., Ochoa-Gaona, S., Peña-Claros, M., Pérez-Cárdenas, N., Rodríguez-Velázquez, J., Villanueva, L.S., Schwartz, N.B., Steininger, M.K., Veloso, M.D.M., Vester, H.F.M., Vieira, I.C.G., Williamson, G.B., Zanini, K., Hérault, B., 2021. Multidimensional tropical forest recovery. Science 374, 1370-1376. https://doi.org/10.1126/science.abh3629.

Punchi-Manage, R., Wiegand, T., Wiegand, K., Getzin, S., Huth, A., Gunatilleke, C., Gunatilleke, N., 2015. Neighborhood diversity of large trees shows independent species patterns in a mixed dipterocarp forest in Sri Lanka. Ecology 96, 1823-1834. https://doi.org/10.1890/14-1477.1.

Qin, J., Fan, C., Geng, Y., Zhang, C., Zhao, X., Gao, L., 2022. Drivers of tree demographic trade-offs in a temperate forest. For. Ecosyst. 9, 100044. https://doi.org/10.1016/j.fecs.2022.100044.

Rayburn, A., Wiegand, T., 2012. Individual species-area relationships and spatial patterns of species diversity in a Great Basin, semi-arid shrubland. Ecography 35, 341-347. https://doi.org/10.1111/j.1600-0587.2011.07058.x.

Rozendaal, D.M.A., Bongers, F., Aide, T.M., Alvarez-Dávila, E., Ascarrunz, N., Balvanera, P., Becknell, J.M., Bentos, T.V., Brancalion, P.H.S., Cabral, G.A.L., Calvo-Rodríguez, S., Chave, J., César, R.G., Chazdon, R.L., Condit, R., Dallinga, J.S., de Almeida-Cortez, J.S., de Jong, B., de Oliveira, A., Denslow, J.S., Dent, D.H., DeWalt, S.J., Dupuy, J.M., Durán, S.M., Dutrieux, L.P., Espírito-Santo, M.M., Fandino, M.C., Fernandes, G.W., Finegan, B., García, H., Gonzalez, N., Moser, V.G., Hall, J.S., Hernández-Stefanoni, J.L., Hubbell, S., Jakovac, C.C., Hernández, A.J., Junqueira, A.B., Kennard, D., Larpin, D., Letcher, S.G., Licona, J.-C., Lebrija-Trejos, E., Marín-Spiotta, E., Martínez-Ramos, M., Massoca, P.E.S., Meave, J.A., Mesquita, R.C.G., Mora, F., Müller, S.C., Muñoz, R., de Oliveira Neto, S.N., Norden, N., Nunes, Y.R.F., Ochoa-Gaona, S., Ortiz-Malavassi, E., Ostertag, R., Peña-Claros, M., Pérez-García, E.A., Piotto, D., Powers, J.S., Aguilar-Cano, J., Rodríguez-Buriticá, S., Rodríguez-Velázquez, J., Romero-Romero, M.A., Ruíz, J., Sánchez-Azofeifa, A., de Almeida, A.S., Silver, W.L., Schwartz, N.B., Thomas, W.W., Toledo, M., Uriarte, M., de Sá Sampaio, E.V., van Breugel, M., van der Wal, H., Martins, S.V., Veloso, M.D.M., Vester, H.F.M., Vicentini, A., Vieira, I.C.G., Villa, P., Williamson, G.B., Zanini, K.J., Zimmerman, J., Poorter, L., 2019. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 5, eaau3114. https://doi.org/10.1126/sciadv.aau3114.

Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N., Loreau, M., 2014. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479-2492. https://doi.org/10.1890/13-1366.1.

Seidl, R., Turner, M.G., 2022. Post-disturbance reorganization of forest ecosystems in a changing world. PNAS 119, e2202190119. https://doi.org/10.1073/pnas.2202190119.

Seifert, T., Seifert, S., Seydack, A., Durrheim, G., Gadow, K.v., 2014. Competition effects in an afrotemperate forest. For. Ecosyst. 1, 13. https://doi.org/10.1186/s40663-014-0013-4.

Terborgh, J., 2012. Enemies maintain hyperdiverse tropical forests. Am. Nat. 179, 303-314. https://doi.org/10.1086/664183.

Tilman, D., Isbell, F., Cowles, J.M., 2014. Biodiversity and Ecosystem Functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471-493. https://doi.org/10.1146/annurev-ecolsys-120213-091917.

Tobner, C.M., Paquette, A., Gravel, D., Reich, P.B., Williams, L.J., Messier, C., 2016. Functional identity is the main driver of diversity effects in young tree communities. Eco. Lett. 19, 638-647. https://doi.org/10.1111/ele.12600.

Velázquez, E., Wiegand, T., 2020. Competition for light and persistence of rare light-demanding species within tree-fall gaps in a moist tropical forest. Ecology 101, e03034. https://doi.org/10.1002/ecy.3034.

Vilà, M., Amparo, C.-G., Vayreda, J., Bugmann, H., Fridman, J., Grodzki, W., Haase, J., Kunstler, G., Schelhaas, M., Trasobares, A., 2013. Disentangling biodiversity and climatic determinants of wood production. PloS One 8, e53530. https://doi.org/10.1371/journal.pone.0053530.

Wiegand, T., Gunatilleke, C.V.S., Gunatilleke, I.A.U.N., Huth, A., 2007. How individual species structure diversity in tropical forests. PNAS 104, 19029-19033. https://doi.org/10.1073/pnas.0705621104.

Wiegand, T., Moloney, K., 2013. Handbook of spatial point-pattern analysis in ecology. Boca Raton: Chapman and Hall, CRC Press, New York. pp. 1-9.
DOI

Williams, L., Paquette, A., Cavender-Bares, J., Messier, C., Reich, P., 2017. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 1, 63-63. https://doi.org/10.1038/s41559-016-0063.

Wright, A., Schnitzer, S., Reich, P., 2014. Living close to your neighbors: The importance of both competition and facilitation in plant communities. Ecology 95, 2213-2223. https://doi.org/10.1890/13-1855.1.

Wu, Z.Y., 1980. Vegetation of China. Science Press: Beijing, China, pp. 823-888. (in Chinese with English abstract).

Yang, J., Swenson, N.G., Cao, M., Chuyong, G.B., Ewango, C.E.N., Howe, R., Kenfack, D., Thomas, D., Wolf, A., Lin, L., 2013. A phylogenetic perspective on the individual species-area relationship in temperate and tropical tree communities. PloS One 8, e63192. https://doi.org/10.1371/journal.pone.0063192.

Zeng, Y., Gou, M., Ouyang, S., Chen, L., Fang, X., Zhao, L., Li, J., Peng, C., Xiang, W., 2019. The impact of secondary forest restoration on multiple ecosystem services and their trade-offs. Ecol. Indic. 104, 248-258. https://doi.org/10.1016/j.ecolind.2019.05.008.

Zhang, HN., Chen, S., Xia, X., Ge, X., Zhou, D., Wang, Z., 2021a. The competitive mechanism between post-abandonment Chinese fir plantations and rehabilitated natural secondary forest species under an in situ conservation policy. For. Ecol. Manag. 502, 119725. https://doi.org/10.1016/j.foreco.2021.119725.

Zhang, H.N., Yang, Q., Zhou, D., Xu, W., Gao, J., Wang, Z., 2021b. How evergreen and deciduous trees coexist during secondary forest succession: Insights into forest restoration mechanisms in Chinese subtropical forest. Glob. Ecol. Conserv. 25, e01418. https://doi.org/10.1016/j.gecco.2020.e01418.

Zhang, H.N., Xue, J.H., 2018. Spatial pattern and competitive relationships of moso bamboo in a native subtropical rainforest community. Forests 9, 774. https://doi.org/10.3390/f9120774.

Zhang, Y., Chen, H.Y.H., Reich, P.B., 2012. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742-749. https://doi.org/10.1111/j.1365-2745.2011.01944.x.

Zhang, C., Jin, W., Gao, L., Zhao, X., 2014. Scale dependent structuring of spatial diversity in two temperate forest communities. For. Ecol. Manag. 316, 110-116. https://doi.org/10.1016/j.foreco.2013.07.025.

Zhu, Y., Mi, X., Ren, H., Ma, K., 2010. Density dependence is prevalent in a heterogeneous subtropical forest. Oikos 119, 109-119. https://doi.org/10.1111/j.1600-0706.2009.17758.x.

Zhu, Y., Comita, L.S., Hubbell, S.P., Ma, K., 2015. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J. Ecol. 103, 957-966. https://doi.org/10.1111/1365-2745.12414.

Zhu, Y., Queenborough, S.A., Condit, R., Hubbell, S.P., Ma, K.P., Comita, L.S., 2018. Density-dependent survival varies with species life-history strategy in a tropical forest. Eco. Lett. 21, 506-515. https://doi.org/10.1111/ele.12915.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 November 2022
Revised: 22 November 2022
Accepted: 22 November 2022
Published: 06 December 2022
Issue date: December 2022

Copyright

© 2022 The Authors.

Acknowledgements

Acknowledgements

We are grateful to the people who helped to collect field survey data.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return