Journal Home > Volume 9 , Issue 6
Background

Litter traits critically affect litter decomposition from local to global scales. However, our understanding of the temporal dynamics of litter trait-decomposition linkages, especially their dependence on plant functional type remains limited.

Methods

We decomposed the leaf litter of 203 tree species that belong to two different functional types (deciduous and evergreen) for 2 years in a subtropical forest in China. The Weibull residence model was used to describe the different stages of litter decomposition by calculating the time to 10%, 25% and 50% mass loss (Weibull t1/10, t1/4, and t1/2 respectively) and litter mean residence time (Weibull MRT). The resulting model parameters were used to explore the control of litter traits (e.g., N, P, condensed tannins and tensile strength) over leaf litter decomposition across different decomposition stages.

Results

The litter traits we measured had lower explanatory power for the early stages (Weibull t1/10 and t1/4) than for the later stages (Weibull t1/2 and MRT) of decomposition. The relative importance of different types of litter traits in influencing decomposition changed dramatically during decomposition, with physical traits exerting predominant control for the stages of Weibull t1/10 and MRT and nutrient-related traits for the stages of Weibull t1/4, and t1/2. Moreover, we found that litter decomposition of the early three stages (Weibull t1/10, t1/4, and t1/2) of the two functional types was controlled by different types of litter traits; that is, the litter decomposition rates of deciduous species were predominately controlled by nutrient-related traits, while the litter decomposition rates of evergreen species were mainly controlled by carbon-related traits.

Conclusions

This study suggests that litter trait–decomposition linkages vary with decomposition stages and are strongly mediated by plant functional type, highlighting the necessity to consider their temporal dynamics and plant functional types for improving predictions of litter decomposition.


menu
Abstract
Full text
Outline
About this article

Temporal shifts in the explanatory power and relative importance of litter traits in regulating litter decomposition

Show Author's information Zhaolin Suna,b,*Peng Tiana,bXuechao Zhaob,cYanping WangdShunzhong WangeXiangmin FangfQingkui Wanga,b( )Shengen Liug( )
School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
University of Chinese Academy of Sciences, Beijing, 100049, China
College of Forestry, Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai'an, 271018, China
Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
College of Forestry, Jiangxi Agricultural University, Nanchang, 330032, China
College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443000, China

* Corresponding author. School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.

Abstract

Background

Litter traits critically affect litter decomposition from local to global scales. However, our understanding of the temporal dynamics of litter trait-decomposition linkages, especially their dependence on plant functional type remains limited.

Methods

We decomposed the leaf litter of 203 tree species that belong to two different functional types (deciduous and evergreen) for 2 years in a subtropical forest in China. The Weibull residence model was used to describe the different stages of litter decomposition by calculating the time to 10%, 25% and 50% mass loss (Weibull t1/10, t1/4, and t1/2 respectively) and litter mean residence time (Weibull MRT). The resulting model parameters were used to explore the control of litter traits (e.g., N, P, condensed tannins and tensile strength) over leaf litter decomposition across different decomposition stages.

Results

The litter traits we measured had lower explanatory power for the early stages (Weibull t1/10 and t1/4) than for the later stages (Weibull t1/2 and MRT) of decomposition. The relative importance of different types of litter traits in influencing decomposition changed dramatically during decomposition, with physical traits exerting predominant control for the stages of Weibull t1/10 and MRT and nutrient-related traits for the stages of Weibull t1/4, and t1/2. Moreover, we found that litter decomposition of the early three stages (Weibull t1/10, t1/4, and t1/2) of the two functional types was controlled by different types of litter traits; that is, the litter decomposition rates of deciduous species were predominately controlled by nutrient-related traits, while the litter decomposition rates of evergreen species were mainly controlled by carbon-related traits.

Conclusions

This study suggests that litter trait–decomposition linkages vary with decomposition stages and are strongly mediated by plant functional type, highlighting the necessity to consider their temporal dynamics and plant functional types for improving predictions of litter decomposition.

Keywords: Decomposition model, Litter quality, Plant functional type, Decomposition stage, Litter decay, Litter physical traits

References(72)

Allison, S.D., 2012. A trait-based approach for modelling microbial litter decomposition. Ecol. Lett. 15, 1058-1070. https://doi.org/10.1111/j.1461-0248.2012.01807.x.

Bartoń, K., 2016. MuMIn: multi-model inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn. (Accessed 13 March 2022).

Berg, B., 1986. Nutrient release from litter and humus in coniferous forest soils-a mini review. Scand. J. For. Res. 1, 359–369. https://doi:10.1080/02827588609382428.

Berg, B., McClaugherty, C., 2014. Plant Litter. Decomposition, Humus Formation, Carbon Sequestration, third ed. Springer-Verlag, Berlin.
DOI
Burnham, K.P., Anderson, D.R., 2004. Model Selection and Multimodel Inference. Springer, New York.
DOI

Canessa, R., van den Brink, L., Saldaña, A., Rios, R.S., Hättenschwiller, S., Mueller, C.W., Prater, I., Tielbörger, K., Bader, M.Y., 2021. Relative effects of climate and litter traits on decomposition change with time, climate and trait variability. J. Ecol. 109, 447-458. https://doi.org/10.1111/1365-2745.13516.

Chang, H.L., Ma, M., 2021. Feeding preference of Altica deserticola on Glycyrrhiza glabra leaves provided with different water and nitrogen levels. Phytoparasitica 49, 771-783. https://doi.org/10.1007/s12600-021-00929-5.

Chen, L., Xiang, W., Wu, H., Ouyang, S., Zhou, B.O., Zeng, Y., Chen, Y.L., Kuzyakov, Y., 2019. Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests. Soil Biol. Biochem. 130, 113-121. https://doi.org/10.1016/j.soilbio.2018.12.008.

Chomel, M., Guittonny-Larcheveque, M., Fernandez, C., Gallet, C., DesRochers, A., Paré, D., Jackson, B.G., Baldy, V., 2016. Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J. Ecol. 104, 1527-1541. https://doi.org/10.1111/1365-2745.12644.

Choong, M.F., Lucas, P.W., Ong, J.S.Y., Pereira, B., Tan, H.T.W., Turner, I.M., 1992. Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytol. 121, 597–610. https://doi:10.1111/j.1469-8137.1992.tb01131.x.

Coq, S., Souquet, J.M., Meudec, E., Cheynier, V., Hättenschwiler, S., 2010. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91, 2080-2091. https://doi.org/10.1890/09-1076.1.

Cornelissen, J.H.C., Perez-harguindeguy, N., Díaz, S., Grime, J.P., Marzano, B., Cabido, M., Vendramini, F., Cerabolini, B., 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191-200. https://doi.org/10.1046/j.1469-8137.1999.00430.x.

Cornwell, W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O., Hobbie, S.E., 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065-1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x.

Cornwell, W.K., Weedon, J.T., 2014. Decomposition trajectories of diverse litter types: a model selection analysis. Methods Ecol. Evol. 5, 173–182. https://doi:10.1111/2041-210X.12138.

Cortez, J., Garnier, E., Pérez-Harguindeguy, N., Debussche, M., Gillon, D., 2007. Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant Soil 296, 19–34. https://doi:10.1007/s11104-007-9285-6.

Coûteaux, M.M., Bottner, P., Berg, B., 1995. Litter decomposition, climate and liter quality. Trends Ecol. Evol. 10, 63–66. https://doi:10.1016/s0169-5347(00)88978-8.

de la Riva, E.G., Olmo, M., Poorter, H., Ubera, J.L., Villar, R., 2016. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS One 11, e0148788. https://doi.org/10.1371/journal.pone.0148788.

de la Riva, E.G., Prieto, I., Villar, R., 2019. The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant Soil 435, 353-366. https://doi.org/10.1007/s11104-018-3883-3.

De Marco, A., Spaccini, R., Vittozzi, P., Esposito, F., Berg, B., de Santo, A.V., 2012. Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol. Biochem. 51, 1-15. https://doi.org/10.1016/j.soilbio.2012.03.025.

Du, N.N., Li, W.R., Qiu, L.P., Zhang, Y.J., Wei, X.R., Zhang, X.C., 2020. Mass loss and nutrient release during the decomposition of sixteen types of plant litter with contrasting quality under three precipitation regimes. Ecol. Evol. 10, 3367-3382. https://doi.org/10.1002/ece3.6129.

Eriksson, K.E., Blanchette, R.A., Ander, P., 1990. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer, Berlin.
DOI

Frainer, A., Moretti, M.S., Xu, W., Gessner, M.O., 2015. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology 96, 550-561. https://doi.org/10.1890/14-1151.1.

Freschet, G.T., Aerts, R., Cornelissen, J.H.C., 2012. A plant economics spectrum of litter decomposability. Funct. Ecol. 26, 56-65. https://doi.org/10.1111/j.1365-2435.2011.01913.x.

García-Palacios, P., McKie, B.G., Handa, I.T., Frainer, A., Hättenschwiler, S., 2016a. The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes. Funct. Ecol. 30, 819-829. https://doi.org/10.1111/1365-2435.12589.

García-Palacios, P., Shaw, E.A., Wall, D.H., Hattenschwiler, S., 2016b. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19, 554-563. https://doi.org/10.1111/ele.12590.

Ge, J.L., Berg, B., Xie, Z.Q., 2017. Leaf habit of tree species does not strongly predict leaf litter decomposition but alters climate-decomposition relationships. Plant Soil 419, 363-376. https://doi.org/10.1007/s11104-017-3353-3.

Gill, A.L., Schilling, J., Hobbie, S.E., 2021. Experimental nitrogen fertilisation globally accelerates, then slows decomposition of leaf litter. Ecol. Lett. 24, 802-811. https://doi.org/10.1111/ele.13700.

Hättenschwiler, S., Coq, S., Barantal, S., Handa, I.T., 2011. Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol. 189, 950-965. https://doi.org/10.1111/j.1469-8137.2010.03483.x.

Hobbie, S.E., Reich, P.B., Oleksyn, J., Ogdahl, M., Zytkowiak, R., Hale, C., Karolewski, P., 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87, 2288-2297. https://doi.org/10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2.

Hoeber, S., Fransson, P., Weih, M., Manzoni, S., 2020. Leaf litter quality coupled to Salix variety drives litter decomposition more than stand diversity or climate. Plant Soil 453, 313-328. https://doi.org/10.1007/s11104-020-04606-0.

Hoorens, B., Stroetenga, M., Aerts, R., 2009. Litter mixture interactions at the level of plant functional types are additive. Ecosystems 13, 90-98. https://doi.org/10.1007/s10021-009-9301-1.

Jiang, L., Wang, H.M., Li, S.G., Fu, X.L., Dai, X.Q., Yan, H., Kou, L., 2021. Mycorrhizal and environmental controls over root trait-decomposition linkage of woody trees. New Phytol. 229, 284-295. https://doi.org/10.1111/nph.16844.

Jing, H., Wang, G.L., 2020. Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the Loess Plateau of China. For. Ecol. Manag. 476, 118465. https://doi.org/10.1016/j.foreco.2020.118465.

Kurokawa, H., Peltzer, D.A., Wardle, D.A., 2010. Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. Funct. Ecol. 24, 513-523. https://doi.org/10.1111/j.1365-2435.2009.01676.x.

Lin, G.G., McCormack, M.L., Ma, C.E., Guo, D.L., 2017. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol. 213, 1440-1451. https://doi.org/10.1111/nph.14206.

Lin, H., Li, Y.N., Bruelheide, H., Zhang, S.R., Ren, H.B., Zhang, N.L., Ma, K.P., 2021. What drives leaf litter decomposition and the decomposer community in subtropical forests-the richness of the above-ground tree community or that of the leaf litter? Soil Biol. Biochem. 160, 108314. https://doi.org/10.1016/j.soilbio.2021.108314.

Lin, T., Zheng, H.Z., Huang, Z.H., Wang, J., Zhu, J.M., 2018. Non-structural carbohydrate dynamics in leaves and branches of Pinus massoniana (lamb.) following 3-year rainfall exclusion. Forests 9, 315. https://doi.org/10.3390/f9060315.

Liu, G.F., Wang, L., Jiang, L., Pan, X., Huang, Z.Y., Dong, M., Cornelissen, J.H.C., 2018. Specific leaf area predicts dryland litter decomposition via two mechanisms. J. Ecol. 106, 218-229. https://doi.org/10.1111/1365-2745.12868.

Liu, Q., Yin, R., Tan, B., You, C.M., Zhang, L., Zhang, J., Xu, Z.F., Schadler, M., Scheu, S., 2021. Nitrogen addition and plant functional type independently modify soil mesofauna effects on litter decomposition. Soil Biol. Biochem. 160, 108340. https://doi.org/10.1016/j.soilbio.2021.108340.

Loranger, G., Ponce, D.I., Lavelle, P., 2002. Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biol. Fertil. Soils 35, 247-252. https://doi.org/10.1007/s00374-002-0467-3.

Makkonen, M., Berg, M.P., Handa, I.T., Hättenschwiler, S., van Ruijven, J., van Bodegom, P.M., Aerts, R., 2012. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol. Lett. 15, 1033-1041. https://doi.org/10.1111/j.1461-0248.2012.01826.x.

Makkonen, M., Berg, M.P., van Logtestijn, R.S.P., van Hal, J.R., Aerts, R., 2013. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122, 987-997. https://doi.org/10.1111/j.1600-0706.2012.20750.x.

Marigo, G., 1973. Sur une méthode de fractionnement et d’estimation des composés phénoliques chez les végétaux. Analusis 2, 106-110.

Onoda, Y., Westoby, M., Adler, P.B., Choong, A.M.F., Clissold, F.J., Cornelissen, J.H.C., Díaz, S., Dominy, N.J., Elgart, A., Enrico, L., Fine, P.V.A., Howard, J.J., Jalili, A., Kitajima, K., Kurokawa, H., McArthur, C., Lucas, P.W., Markesteijn, L., Pérez-Harguindeguy, N., Poorter, L., Richards, L., Santiago, L.S., Sosinski Jr, E.E., Van Bael, S.A., Warton, D.I., Wright, I.J., Wright, S.J., Yamashita, N., 2011. Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301-312. https://doi.org/10.1111/j.1461-0248.2010.01582.x.

Osono, T., 2006. Fungal decomposition of lignin in leaf litter: comparison between tropical and temperate forests. In: Meyer, W., Pearce, C. (Eds.), Proceeding for the 8th International Mycological Congress, Cairns, Australia. Medimond, Italy, pp. 111–117.

Park, S., Cho, K.H., 2003. Nutrient leaching from leaf litter of emergent macrophyte (Zizanialatifolia) and the effects of water temperature on the leaching process. Kor. J. Biol. Sci. 7, 289-294.

Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S., King, J.Y., Adair, E.C., Brandt, L.A., Hart, S.C., Fasth, B., 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315, 361-364. https://doi.org/10.1126/science.1134853.

Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J.H.C., Vendramini, F., Cabido, M., Castellanos, A., 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218, 21-30.

Poinsot-Balaguer, N., Racon, L., Sadaka, N., Lepetit, J., 1993. Effects of tannin compounds on two species of Collembola. Eur. J. Soil Biol. 29, 13-16.

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (Accessed 13 March 2022)..

Ramos, S.M., Graca, M.A.S., Ferreira, V., 2021. A comparison of decomposition rates and biological colonization of leaf litter from tropical and temperate origins. Aquat. Ecol. 55, 925-940. https://doi.org/10.1007/s10452-021-09872-3.

Reich, P.B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S.E., Eissenstat, D.M., Chorover, J., Chadwick, O.A., Hale, C.M., Tjoelker, M.G., 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecol. Lett. 8, 811-818. https://doi.org/10.1111/j.1461-0248.2005.00779.x.

Reich, P.B., Uhl, C., Walters, M.B., Ellsworth, D.S., 1991. Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86, 16-24. https://doi.org/10.1007/bf00317383.

Reich, P.B., Wright, I.J., Cavender-Bares, J., Craine, J.M., Oleksyn, J., Westoby, M., Walters, M.B., 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, 143-164. https://doi.org/10.1086/374368.

Rosenfield, M.V., Keller, J.K., Clausen, C., Cyphers, K., Funk, J.L., 2020. Leaf traits can be used to predict rates of litter decomposition. Oikos 129, 1589-1596. https://doi.org/10.1111/oik.06470.

Sayad, E., Hosseini, V., Gholami, S., Salehe-Shooshtari, M.H., 2015. Different predictors determining litter decomposition rate in functional groups of the tree plantations in a common garden. Trees 29, 1883-1891. https://doi.org/10.1007/s00468-015-1269-1.

Shen, Y., Tian, D.S., Hou, J.H., Wang, J.S., Zhang, R.Y., Li, Z.L., Chen, X.L., Wei, X.H., Zhang, X.Y., He, Y.C., Niu, S.L., 2021. Forest soil acidification consistently reduces litter decomposition irrespective of nutrient availability and litter type. Funct. Ecol. 35, 2753-2762. https://doi.org/10.1111/1365-2435.13925.

Smith, V.C., Bradford, M.A., 2003. Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time. Appl. Soil Ecol. 24, 197-203. https://doi.org/10.1016/S0929-1393(03)00094-5.

Sun, T., Hobbie, S.E., Berg, B., Zhang, H.G., Wang, Q.K., Wang, Z.W., Hattenschwiler, S., 2018. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc. Natl. Acad. Sci. USA 115, 10392-10397. https://doi.org/10.1073/pnas.1716595115.

Swift, J.M., Heal, O.W., Anderson, J.M., 1979. Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley, CA.

Treseder, K.K., Bent, E., Borneman, J., McGuire, K.L., 2014. Shifts in fungal communities during decomposition of boreal forest litter. Fung. Ecol. 10, 58-69. https://doi.org/10.1016/j.funeco.2013.02.002.

Trofymow, J.A., Moore, T.R., Titus, B., Prescott, C., Morrison, I., Siltanen, M., Smith, S., Fyles, J., Wein, R., Camiré, C., Duschene, L., Kozak, L., Kranabetter, M., Visser, S., 2002. Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can. J. For. Res. 32, 789-804. https://doi.org/10.1139/x01-117.

Vaieretti, M.V., Harguindeguy, N.P., Gurvich, D.E., Cingolani, A.M., Cabido, M., 2005. Decomposition dynamics and physico-chemical leaf quality of abundant species in a montane woodland in central Argentina. Plant Soil 278, 223-234. https://doi.org/10.1007/s11104-005-8432-1.

Wall, D.H., Bradford, M.A., St. John, M.G., Trofymow, J.A., Behan-Pelletier, V., Bignell, D.E., Dangerfield, J.M., Parton, W.J., Rusek, J., Voigt, W., Wolters, V., Gardel, H.Z., Ayuke, F.O., Bashford, R., Beljakova, O.I., Bohlen, P.J., Brauman, A., Flemming, S., Henschel, J.R., Johnson, D.L., Jones, T.H., Kovarova, M., Kranabetter, J.M., Kutny, L., Lin, K.C., Maryati, M., Masse, D., Pokarzhevskii, A., Rahman, H., Sabará, M.G., Salamon, J.A., Swift, M.J., Varela, A., Vasconcelos, H.L., White, D., Zou, X.M., 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Global Change Biol. 14, 2661-2677. https://doi.org/10.1111/j.1365-2486.2008.01672.x.

Walsh, C., Nally, R.M., 2013. hier.part: Hierarchical Partitioning. Retrieved from. https://cran.r-project.org/web/packages/hier.part/index.html. (Accessed 13 March 2022).

Wieder, W.R., Boehnert, J., Bonan, G.B., 2014. Evaluating soil biogeochemistry parameterizations in Earth system models with observations. Glob. Biogeochem. Cy. 28, 211-222. https://doi.org/10.1002/2013GB004665.

Wickings, K., Grandy, A.S., Reed, S.C., Cleveland, C.C., 2012. The origin of litter chemical complexity during decomposition. Ecol. Lett. 15, 1180-1188. https://doi.org/10.1111/j.1461-0248.2012.01837.x.

Yang, K., Zhu, J.J., Zhang, W.W., Zhang, Q., Lu, D.L., Zhang, Y.K., Zheng, X., Xu, S., Wang, G.G., 2022. Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects. J. Ecol. 110, 1673-1686. https://doi.org/10.1111/1365-2745.13902.

Yue, K., García-Palacios, P., Parsons, S.A., Yang, W.Q., Peng, Y., Tan, B., Huang, C.P., Wu, F.Z., 2018. Assessing the temporal dynamics of aquatic and terrestrial litter decomposition in an alpine forest. Funct. Ecol. 32, 2464-2475. https://doi.org/10.1111/1365-2435.13143.

Zukswert, J.M., Prescott, C.E., 2017. Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species. Oecologia 185, 305-316. https://doi.org/10.1007/s00442-017-3951-z.

Zhang, W.D., Chao, L., Yang, Q.P., Wang, Q.K., Fang, Y.T., Wang, S.L., 2016. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology 97, 2834-2843. https://doi.org/10.1002/ecy.1515.

Zhang, X.X., Wang, L.J., Zhou, W.X., Hu, W., Hu, J.W., Hu, M., 2022. Changes in litter traits induced by vegetation restoration accelerate litter decomposition in Robinia pseudoacacia plantations. Land Degrad. Dev. 33, 179-192. https://doi.org/10.1002/ldr.4136.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 July 2022
Revised: 02 November 2022
Accepted: 02 November 2022
Published: 09 November 2022
Issue date: December 2022

Copyright

© 2022 The Authors.

Acknowledgements

Acknowledgements

We are grateful to Youzhi Yu, Fuming Xiao, Ke Huang and Tao Sun for their helps during collecting litters. Constructive comments and suggestions from two anonymous reviewers are greatly appreciated for help improving the quality of our manuscript.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return