Journal Home > Volume 9 , Issue 6

Tropical mountain ranges shape the structure of tree communities and promote highly diverse natural habitats. The “Bosque Protector Chongón-Colonche” (BPCC), an 86,000-ha mountain formation situated on the coast of Ecuador, is biogeographically important for the region by connecting floristic elements of the wet Choco and the dry Tumbesian forests. Our understanding of the factors that model tree and palm diversity and distribution in this mountain range are limited. We measured and identified all trees and palms (DBH ≥10 ​cm) in 289 plots of 0.2 ​ha, distributed throughout BPCC. We used generalized linear models to explain the relationship between forest diversity and structure and climatic variables (temperature, rain, aridity), and altitude. We then used cluster and non-metric multidimensional scale (NMDS) analyses to search for distinct forest communities within the BPCC. Variance partition (varpart) was used to determine which predictor variables best explained these distinct forest communities. A species indicator analysis identified the species most likely to define these distinct forest communities. Finally, we carried out a niche modeling approach to identify the potential distribution of these forest communities within BPCC. In total, we identified 220 tree and palm species in our survey. The average number of species per plot was 17.8 ​± ​5.8, ranging from 3 to 40 species. Classification methods sorted the 289 study plots into six different forest communities, three communities in the dry forest and three in the semi-humid Garúa forest. Precipitation and temperature, but not altitude or aridity, explained floristic composition. These results emphasize the high but little cataloged diversity in the lowland mountain rainforests of coastal Ecuador.


menu
Abstract
Full text
Outline
About this article

Six forests in one: Tree species diversity in the Bosque Protector Chongón Colonche, a lowland mountain range in coastal Ecuadorian

Show Author's information Oswaldo Jadána,b,*( )David A. DonosocEdwin Ponce-RamírezdFranz Pucha-Cofrepe,fOmar Cabrerag
Facultad de Ciencias Agropecuarias, Universidad de Cuenca, 12 de Octubre y Diego de Tapia, Cuenca, 010107, Ecuador
Programa de Doctorado en Conservación de Recursos Naturales, Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, Móstoles, Madrid, ES- 28933, Spain
Departamento de Biología, Escuela Politécnica Nacional, Ladrón de Guevara E11·253, Quito, 170525, Ecuador
Geoforest S.A, 12 de febrero y Av. Franklin Vega, Macas, 140150, Ecuador
Grupo de Investigación Hidrología y Climatología, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, Loja, 110101, Ecuador
Brandenburg University of Technology (BTU) Cottbus-Senftenberg, 03044, Cottbus, Germany
Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto S/N, Loja, 110101, Ecuador

* Corresponding author. Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca, 010107, Ecuador.

Abstract

Tropical mountain ranges shape the structure of tree communities and promote highly diverse natural habitats. The “Bosque Protector Chongón-Colonche” (BPCC), an 86,000-ha mountain formation situated on the coast of Ecuador, is biogeographically important for the region by connecting floristic elements of the wet Choco and the dry Tumbesian forests. Our understanding of the factors that model tree and palm diversity and distribution in this mountain range are limited. We measured and identified all trees and palms (DBH ≥10 ​cm) in 289 plots of 0.2 ​ha, distributed throughout BPCC. We used generalized linear models to explain the relationship between forest diversity and structure and climatic variables (temperature, rain, aridity), and altitude. We then used cluster and non-metric multidimensional scale (NMDS) analyses to search for distinct forest communities within the BPCC. Variance partition (varpart) was used to determine which predictor variables best explained these distinct forest communities. A species indicator analysis identified the species most likely to define these distinct forest communities. Finally, we carried out a niche modeling approach to identify the potential distribution of these forest communities within BPCC. In total, we identified 220 tree and palm species in our survey. The average number of species per plot was 17.8 ​± ​5.8, ranging from 3 to 40 species. Classification methods sorted the 289 study plots into six different forest communities, three communities in the dry forest and three in the semi-humid Garúa forest. Precipitation and temperature, but not altitude or aridity, explained floristic composition. These results emphasize the high but little cataloged diversity in the lowland mountain rainforests of coastal Ecuador.

Keywords: Forest communities, Chongón-Colonche, Climatic variables, Dry forest, Garúa forest

References(78)

Aldrich, M., Billington, C., Edwards, M., Laidlaw, R., 1997. Tropical montane cloud forests: an urgent priority for conservation. WCMC Biodiver. Bull. 2, 1–14.

Astudillo-Sánchez, E., Pérez, J., Troccoli, L., Aponte, H., Tinoco, O., 2019. Flora leñosa del bosque de garúa de la cordillera Chongón Colonche, Santa Elena-Ecuador. Ecol. Appl. 18, 155-169. https://doi.org/10.21704/rea.v18i2.1334.

Ayerza, R., 2019. Importancia hídrica de los bosques de la cordillera Chongón-Colonche para las tierras áridas del noroeste de Santa Elena. Bosques Latitud Cero 9, 16-30.

Báez, S., Malizia, A., Carilla, J., Blundo, C., Aguilar, M., Aguirre, N., Aquirre, Z., Álvarez, E., Cuesta, F., Duque, A., 2015. Large-scale patterns of turnover and basal area change in Andean forests. PLoS One 10, e0126594. https://doi.org/10.1371/journal.pone.0126594.

Bakker, J.D., 2008. Increasing the utility of indicator species analysis. J. Appl. Ecol. 45, 1829-1835. https://doi.org/10.1111/j.1365-2664.2008.01571.x.

Banda, K., Delgado-Salinas, A., Dexter, K.G., Linares-Palomino, R., Oliveira-Filho, A., Prado, D., Pullan, M., Quintana, C., Riina, R., Rodríguez, G.M., 2016. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353, 1383-1387. https://doi.org/10.1126/science.aaf5080.

Berg, K.S., Horstman, E., 1996. The Great Green Macaw Ara ambigua guayaquilensis in Ecuador: first nest with young. COTINGA 5, 53-54.

Bonifaz, C., Cornejo, X., 2004. Flora del Bosque de Garúa (árboles y epífitas) de la comuna Loma Alta, cordillera Chongón Colonche, provincia del Guayas, Ecuador. Universidad de Guayaquil, Guayaquil.

Castellanos-Castro, C., Newton, A.C., 2015. Environmental heterogeneity influences successional trajectories in Colombian seasonally dry tropical forests. Biotropica 47, 660-671. https://doi.org/10.1111/btp.12245.

Chain-Guadarrama, A., Finegan, B., Vilchez, S., Casanoves, F., 2012. Determinants of rain-forest floristic variation on an altitudinal gradient in southern Costa Rica. J. Trop. Ecol. 28, 463-481. https://doi.org/10.1017/S0266467412000521.

Chao, A., Chazdon, R.L., Colwell, R.K., Shen, T.J., 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148-159. https://doi.org/10.1111/j.1461-0248.2004.00707.x.

Clark, J.L., Neill, D.A., Asanza, M., 2006. Floristic checklist of the mache-chindul mountains of Northwestern Ecuador. Contrib. U. S. Natl. Herb. pp. 1-180.

Cornejo, X., 2009. Amyris centinelensis and Zanthoxylum bonifaziae: two new species of Rutaceae from western Ecuador. Harv. Pap. Bot. 14, 161-166. https://doi.org/10.3100/025.014.0207.

Cornejo, X., Bonifaz, C., 2005. Inga colonchensis (Fabaceae, Mimosoideae), una Nueva Endémica del Bosque Seco Tropical en Ecuador. Novon St. Louis Mo. 15, 270-273. http://www.jstor.org/stable/3393333.
Cornejo, X., Iltis, H.H., 2005. Studies in the Capparaceae ⅩⅩⅥ. Capparis bonifaziana, a new species and western ecuadorian sister to the mostly amazonian C. macrophylla. Novon St. Louis Mo 15, 393–404. https://biostor.org/reference/63898. (Accessed 12 January 2022).

Cueva, E., Lozano, D., Yaguana, C., 2019. Efecto de la gradiente altitudinal sobre la composición florística, estructura y biomasa arbórea del bosque seco andino, Loja, Ecuador. Bosque 40, 365-378. https://doi.org/10.4067/S0717-92002019000300365.

De Cáceres, M., Legendre, P., Wiser, S.K., Brotons, L., 2012. Using species combinations in indicator value analyses. Methods Ecol. Evol. 3, 973-982. https://doi.org/10.1111/j.2041-210X.2012.00246.x.

De Cauwer, V., Muys, B., Revermann, R., Trabucco, A., 2014. Potential, realised, future distribution and environmental suitability for Pterocarpus angolensis DC in southern Africa. For. Ecol. Manag. 315, 211-226. https://doi.org/10.1016/j.foreco.2013.12.032.

de la Cruz-Uc, X., Valdés-Manzanilla, A., Barradas, V.L., Cámara Cabrales, L.d.C., 2019. Comunidades sintéticas arbóreas: una alternativa al deterioro forestal en la parte baja de la cuenca del río Usumacinta en Tabasco, México. Bosque 40, 117-127. https://doi.org/10.4067/S0717-92002019000200117.

Dray, S., Pélissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P.R., Bellier, E., Bivand, R., Blanchet, F.G., De Cáceres, M., Dufour, A.-B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J., Wagner, H.H., 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257-275. https://doi.org/10.1890/11-1183.1.

Espinosa, C.I., Cabrera, O., Luzuriaga, A.L., Escudero, A., 2011. What factors affect diversity and species composition of endangered Tumbesian dry forests in Southern Ecuador? Biotropica 43, 15-22. https://doi.org/10.1111/j.1744-7429.2010.00665.x.

Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M.S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Eguiguren Velepucha, P., Fernandez, F., Licona, J.C., Lorenzo, L., Negret, B.S., Vaz, M., Poorter, L., 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191-201. https://doi.org/10.1111/1365-2745.12346.

Franklin, J., 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511810602.
DOI

Gaikwad, J., Wilson, P.D., Ranganathan, S., 2011. Ecological niche modeling of customary medicinal plant species used by Australian Aborigines to identify species-rich and culturally valuable areas for conservation. Ecol. Model. 222, 3437-3443. https://doi.org/10.1016/j.ecolmodel.2011.07.005.

García-Garizábal, I., 2017. Rainfall variability and trend analysis in coastal arid Ecuador. Int. J. Climatol. 37, 4620-4630. https://doi.org/10.1002/joc.5110.

Geml, J., Pastor, N., Fernandez, L., Pacheco, S., Semenova, T.A., Becerra, A.G., Wicaksono, C.Y., Nouhra, E.R., 2014. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol. Ecol. 23, 2452-2472. https://doi.org/10.1111/mec.12765.

Gibson, C.C., McKean, M.A., Ostrom, E., 2000. Explaining Deforestation: the Role of Local Institutions. People and Forests: Communities, Institutions, and Governance. MA. MIT Press, Cambridge, pp. 1–26.
DOI

Girardin, C.A., Farfan-Rios, W., Garcia, K., Feeley, K.J., Jørgensen, P.M., Murakami, A.A., Cayola Pérez, L., Seidel, R., Paniagua, N., Fuentes Claros, A.F., Maldonado, C., Silman, M., Salinas, N., Reynel, C., Neill, D.A., Serrano, M., Caballero, C.J., de los Angeles La Torre Cuadros, M., Macia, M.J., Killeen, T.J., Malhi, Y., 2014. Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecol. Divers. 7, 161-171. https://doi.org/10.1080/17550874.2013.820806.

Hernández, L., Parés-Jiménez, V., Reyna, C., Lizcano, D.J., Martínez, C.E.C., 2016. Woody plants of the machalilla National park, Ecuador: a check list. Arnaldoa 23, 363-392.

Homeier, J., Breckle, S.W., Günter, S., Rollenbeck, R.T., Leuschner, C., 2010. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42, 140-148. https://doi.org/10.1111/j.1744-7429.2009.00547.x.

Hubbell, S., 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203, 1299-1309. https://doi.org/10.1126/science.203.4387.1299.

Hubbell, S., 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton.

Jadán, O., Cifuentes, M., Torres, B., Selesi, D., Veintimilla, D., Guenter, S., 2015. Influence of tree cover on diversity, carbon sequestration and productivity of cocoa systems in the Ecuadorian Amazon. Bois. et Forets des. Trop. 325, 35-47. https://doi.org/10.19182/bft2015.325.a31271.

Jadán, O., Donoso, D.A., Cedillo, H., Bermúdez, F., Cabrera, O., 2021. Floristic groups, and changes in diversity and structure of trees, in tropical montane forests in the southern Andes of Ecuador. Diversity 13, 400. https://doi.org/10.3390/d13090400.

Jadán, O., Veintimilla, D., Ponce, E., González, M., Waise, H., Aguirre, Z., 2014. Identificación y caracterización florística de bosques naturales en el Bosque Protector Chongón Colonche, Ecuador. Bosque Latitud. Cero. 4, 7-14.

Janzen, D.H., 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501-528. https://doi.org/10.1086/282687.

Jones, M.M., Tuomisto, H., Clark, D.B., Olivas, P., 2006. Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J. Ecol. 94, 181-195. https://doi.org/10.1111/j.1365-2745.2005.01071.x.

Josse, C., Balslev, H., 1994. The composition and structure of a dry, semideciduous forest in western Ecuador. Nord. J. Bot. 14, 425-434. https://doi.org/10.1111/j.1756-1051.1994.tb00628.x.

Khurana, E., Singh, J., 2001. Ecology of tree seed and seedlings: implications for tropical forest conservation and restoration. Curr. Sci. 80, 748-757.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., 2018. Classification and Regression Training. R Package Version 6.0–81.

Leal-Pinedo, J., Linares-Palomino, R., 2005. The dry forests of the Biosphere Reserve of Northwestern (Peru): tree diversity and conservation status. Caldasia 27, 195-211.

Lesnoff, M., Lancelot, R., Lancelot, M.R., 2018. Package ‘aods3’. CRAN. https://cran.r-project.org/web/packages/aods3/aods3.pdf. (Accessed 5 May 2021).

Linares-Palomino, R., Kvist, L.P., Aguirre-Mendoza, Z., Gonzales-Inca, C., 2010. Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forests. Biodivers. Conserv. 19, 169-185. https://doi.org/10.1007/s10531-009-9713-4.

Linares-Palomino, R., Oliveira-Filho, A.T., Pennington, R.T., 2011. Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In: Dirzo, R., Young, H.S., Mooney, H.A., Ceballos, G. (Eds.), Seasonally Dry Tropical Forests. Island Press, Washington, DC. https://doi.org/10.5822/978-1-61091-021-7_1.
DOI

Liu, H., Ye, Q., Wiens, J.J., 2020. Climatic-niche evolution follows similar rules in plants and animals. Nat. Ecol. Evol. 4, 753-763. https://doi.org/10.1038/s41559-020-1158-x.

Malhi, Y., 2012. The productivity, metabolism and carbon cycle of tropical forest vegetation. J. Ecol. 100, 65-75. https://doi.org/10.1111/j.1365-2745.2011.01916.x.

Malizia, A., Blundo, C., Carilla, J., Osinaga Acosta, O., Cuesta, F., Duque, A., Aguirre, N., Aguirre, Z., Ataroff, M., Baez, S., 2020. Elevation and latitude drives structure and tree species composition in Andean forests: results from a large-scale plot network. PLoS One 15, e0231553. https://doi.org/10.1371/journal.pone.0231553.

Mazón, M.M., Klanderud, K., Finegan, B., Veintimilla, D., Bermeo, D., Murrieta, E., Delgado, D., Sheil, D., 2020. How forest structure varies with elevation in old growth and secondary forest in Costa Rica. For. Ecol. Manag. 469, 118191. https://doi.org/10.1016/j.foreco.2020.118191.

Muenchow, J., von Wehrden, H., Rodríguez, E.F., Rodriguez, R.A., Bayer, F., Richter, M., 2013. Woody vegetation of a Peruvian tropical dry forest along a climatic gradient depends more on soil than annual precipitation. Erdkunde 67, 241-248. https//doi.org/10.3112/erdkunde.2013.03.03.

Navarro-Cerillo, R., Clavero, I., Lorenzo, A., Quero, J., Duque-Lazo, J., 2016. Integración de datos de inventario y modelos dehábitat para predecir la regeneración de especies leñosas mediterráneas en repoblaciones forestales. Ecosistemas 25, 6-21. https://doi.org/10.7818/ECOS.2016.25-3.02.

Neill, D.A., Clark, J.L., Vargas, H., Nuñez, T., 1999. Botanical Exploration of the Mache-Chindul Mountains, Northwestern Ecuador. Final report presented to the National Geographic Society, Washington, DC, USA (unpublished)

Neuvonen, S., Niemelä, P., Virtanen, T., 1999. Climatic change and insect outbreaks in boreal forests: the role of winter temperatures. Ecol. Bull. 47, 63-67.

Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Simpson, G., Solymos, P., Stevens, M., Wagner, H., 2020. vegan: Community Ecology Package. R package version 2.6-2. https://CRAN.R-project.org/package=vegan. (Accessed 15 August 2022).

Palacios, W., Pérez, J., 2012. Ecología, Usos y Manejo de la Tagua (Phytelephas aequatoriales Spruce) en la Cordillera Chongón Colonche. Int. Symp. Med. Plant. Nat. Prod. 1030, 39-48.

Peng, L., Cheng, F.; Hu, X.; Mao, J.; Xu, X.; Zhong, Y.; Li, S.; Xian, H., 2019. Modelling environmentally suitable areas for the potential introduction and cultivation of the emerging oil crop Paeonia ostii in China. Sci. Rep. 9, 1–10. doi:https://www.nature.com/articles/s41598-019-39449-y.

Pennington, R.T., Lavin, M., Oliveira-Filho, A., 2009. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40, 437-457. https://doi.org/10.1146/annurev.ecolsys.110308.120327.

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

Ponce, E., 2009. Línea base para la estimacion de la cantidad de carbono fijado y para la planificación forestal comunal y grupal al futuro del bosque protector Chongón Colonche. In: Natura, F. (Ed.), Fundación Natura-KFW, Santa Elena, Ecuador, p. 35.

Quintana, C., Girardello, M., Barfod, A.S., Balslev, H., 2017a. Diversity patterns, environmental drivers, and changes in vegetation composition in dry inter-Andean valleys. J. Plant Ecol. 10, 461-475. https://doi.org/10.1093/jpe/rtw036.

Quintana, C., Pennington, R.T., Ulloa, C.U., Balslev, H., 2017b. Biogeographic barriers in the Andes: is the Amotape—huancabamba zone a dispersal barrier for dry forest plants? Ann. Mo. Bot. Gard. 102, 542-550. https://doi.org/10.3417/D-17-00003A.

Quintana, C., Girardello, M., Balslev, H., 2019. Balancing plant conservation and agricultural production in the Ecuadorian Dry Inter-Andean Valleys. PeerJ 7, e6207. https://doi.org/10.7717/peerj.6207.

R Core Team, 2013. R: a Language and Environment for Statistical Computing. Vienna, Austria. http://www.R-project.org/. (Accessed 15 August 2022).

Rasal Sánchez, M., Troncos Castro, J., Lizano Durán, C., Parihuamán Granda, O., Quevedo Calle, D., Rojas Idrogo, C., Delgado Paredes, G.E., 2011. Características edáficas y composición florística del bosque estacionalmente seco la menta y timbes, Región Piura, Perú. Ecol. Apl. 10, 61-74.

Robertson, G., 1989. Nitrification and denitrification in humid tropical ecosystems: potential controls on nitrogen retention. In: Proctor, J. (Ed.), Mineral Nutrients in Tropical Forest and Savanna Ecosystems. Cambridge, Massachusetts, USA, pp. 55–69.

Rosbakh, S., Poschlod, P., 2015. Initial temperature of seed germination as related to species occurrence along a temperature gradient. Funct.l Ecol. 29, 5–14. doi:https://doi.org/10.1111/1365-2435.12304.

Sánchez, O., Kvist, L.P., Aguirre, Z., 2006. Bosques secos en Ecuador y sus plantas útiles. In: Morales, M., Ollgaard, B., Kvist, L.P., Borchsenius, F., Balslev, H. (Eds.), Botánica Económica de los Andes Centrales. Universidad Mayor de San Andres. La Paz, Bolivia, pp. 188-204.

Schwarzkopf, T., Riha, S.J., Fahey, T.J., Degloria, S., 2011. Are cloud forest tree structure and environment related in the Venezuelan Andes? Aus. Ecol. 36, 280-289. https://doi.org/10.1111/j.1442-9993.2010.02160.x.

Sesnie, S.E., Finegan, B., Gessler, P.E., Ramos, Z., 2009. Landscape-scale environmental and floristic variation in Costa Rican old-growth rain forest remnants. Biotropica 41, 16-26. https://doi.org/10.1111/j.1744-7429.2008.00451.x.

Stevens, G.C., 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240-256.

Swenson, N.G., Enquist, B.J., 2009. Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90, 2161-2170. https://doi.org/10.1890/08-1025.1.

Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T., Prentice, I.C., 2005. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 102, 8245-8250. https://doi.org/10.1073/pnas.0409902102.

Uslar, Y.V., Mostacedo, B., Saldias, M., 2004. Composición, estructura y dinámica de un bosque seco semideciduo en Santa Cruz, Bolivia. Ecol. Boliv. 39, 25-43.

Valencia, R., 2000. Libro rojo de las plantas endémicas del Ecuador. Herbario QCA, Pontificia Universidad Catolica del Ecuador, Quito, Ecuador.

Valencia, R., Foster, R.B., Villa, G., Condit, R., Svenning, J.C., Hernandez, C., Romoleroux, K., Losos, E., Magård, E., Balslev, H., 2004. Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J. Ecol. 92, 214-229.

Veintimilla, D., Ngo Bieng, M.A., Delgado, D., Vilchez-Mendoza, S., Zamora, N., Finegan, B., 2019. Drivers of tropical rainforest composition and alpha diversity patterns over a 2,520 m altitudinal gradient. Ecol. Evol. 9, 5720-5730. https://doi.org/10.1002/ece3.5155.

Vessella, F., Schirone, B., 2013. Predicting potential distribution of Quercus suber in Italy based on ecological niche models: conservation insights and reforestation involvements. For. Ecol. Manag. 304, 150-161. https://doi.org/10.1016/j.foreco.2013.05.006.

Wrege, M.S., de Sousa, V.A., Fritzsons, E., Soares, M.T.S., de Aguiar, A.V., 2016. Predicting current and future geographical distribution of Araucaria in Brazil for fundamental niche modeling. Ecol. Environ. Conserv. 4, 269-279. https://doi.org/10.13189/eer.2016.040506.

Yang, X., Chen, J., 2009. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biol. Biochem. 41, 910-918. https://doi.org/10.1016/j.soilbio.2008.12.028.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 April 2022
Revised: 30 September 2022
Accepted: 30 September 2022
Published: 14 October 2022
Issue date: December 2022

Copyright

© 2022 The Authors.

Acknowledgements

O.J. thanks the Vice-rectorate for Research of the University of Cuenca (https://www.ucuenca.edu.ec) (Vicerrectorado de Investigación de la Universidad de Cuenca, VIUC), Ecuador, for the economic financing under the research project called “El Rol de los bosques andinos frente al cambio climático con base a la relación taxonómica y funcional de la vegetación leñosa con los stocks de carbono, Azuay – Ecuador”. This research project was developed under research permit Nro: 214-19-IC-FLO-DPAA/MA, granted by the Ministry of the Environment, Water, and Ecological Transition of Ecuador. O.C. thanks the UTPL for their support in the culmination of the manuscript. We are grateful to Luis Cayuela and Marcos Mendez for their insightful comments on a previous version of the manuscript. The authors thank Diana Szekely for their help in the language revision.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return