Journal Home > Volume 9 , Issue 3

A main question in restoration of degraded forests and forest landscapes recovering from logging and fire is what to expect from natural regeneration through surviving propagules in the soil or seed sources and associated dispersal agents from the surrounding landscape mosaic, as alternative to tree planting. Tree diversity in secondary forests may be high, but based on newcomer species of low wood density and long-distance, abiotic dispersal modes. We compiled and analyzed three pairs of case studies (totaling 815 plots and 11.8 ​ha) of secondary forests recovering from logging, fire and conversion to agroforest in Sumatra and Kalimantan (Indonesia) on mineral soils. Data on tree species diversity, wood density frequency distribution (indicative of successional status) and dispersal modes were compared with those of less disturbed comparator forests in the same landscapes. Relatively undisturbed lowland dipterocarp forest in Kalimantan had close to 200 species of trees (> 10 ​cm diameter) at a 1-ha sample scale (and 450 ​at a 10-ha scale). After repeated fires a sample area of 2 ​ha was needed to reach the same species richness. Regulation-based logging had little impact on tree species richness. In rubber agroforest with low-intensity management beyond rubber planting, 50 tree species were found at a 1-ha scale and close to 100 species in 3 ​ha. The Kalimantan forest after repeated fires had a markedly higher fraction of low-wood-density trees (40%), but otherwise, all forests sampled were similar in overall wood density profiles. Selectively logged forest managed by a local community (village forest) and rubber agroforest in Sumatra contained larger fractions of heavy-wood-density trees. The majority of trees (50%–70%) had birds, bats and primates as dispersal agents in all sites. Selectively logged forests had higher fractions of autochorous species (15%) compared to other sites. Anemochorous (wind-dispersed) species, especially Macaranga lowii, were most common (20%) in lowland dipterocarp forest. Comparison between secondary forests and agroforests showed the influence of farmer selection regarding what is allowed to grow beyond the pole stage. Wood density and seed dispersal profiles can be used as degradation indicators of species assemblages across various disturbance levels and types, as they reflect the habitat quality of the surrounding landscape mosaics.


menu
Abstract
Full text
Outline
About this article

Functional trait profiles and diversity of trees regenerating in disturbed tropical forests and agroforests in Indonesia

Show Author's information Subekti RahayuaSidiq PambudiaDikdik PermadiaHesti L. TatabEndri MartiniaSaida RasnovicHani S. NuroniahbRoeland KindtaMohamad NugrahaaSonya DewiaMeine van Noordwijka,d,*( )
World Agroforestry (ICRAF), Bogor, Indonesia
FOERDIA, Ministry of Environment and Forestry, Bogor, Indonesia
Botany Department, Syiah Kuala University, Banda Aceh, Indonesia
Plant Production Systems, Wageningen University, Wageningen, the Netherlands

* Corresponding author. World Agroforestry (ICRAF), Bogor, Indonesia.

Abstract

A main question in restoration of degraded forests and forest landscapes recovering from logging and fire is what to expect from natural regeneration through surviving propagules in the soil or seed sources and associated dispersal agents from the surrounding landscape mosaic, as alternative to tree planting. Tree diversity in secondary forests may be high, but based on newcomer species of low wood density and long-distance, abiotic dispersal modes. We compiled and analyzed three pairs of case studies (totaling 815 plots and 11.8 ​ha) of secondary forests recovering from logging, fire and conversion to agroforest in Sumatra and Kalimantan (Indonesia) on mineral soils. Data on tree species diversity, wood density frequency distribution (indicative of successional status) and dispersal modes were compared with those of less disturbed comparator forests in the same landscapes. Relatively undisturbed lowland dipterocarp forest in Kalimantan had close to 200 species of trees (> 10 ​cm diameter) at a 1-ha sample scale (and 450 ​at a 10-ha scale). After repeated fires a sample area of 2 ​ha was needed to reach the same species richness. Regulation-based logging had little impact on tree species richness. In rubber agroforest with low-intensity management beyond rubber planting, 50 tree species were found at a 1-ha scale and close to 100 species in 3 ​ha. The Kalimantan forest after repeated fires had a markedly higher fraction of low-wood-density trees (40%), but otherwise, all forests sampled were similar in overall wood density profiles. Selectively logged forest managed by a local community (village forest) and rubber agroforest in Sumatra contained larger fractions of heavy-wood-density trees. The majority of trees (50%–70%) had birds, bats and primates as dispersal agents in all sites. Selectively logged forests had higher fractions of autochorous species (15%) compared to other sites. Anemochorous (wind-dispersed) species, especially Macaranga lowii, were most common (20%) in lowland dipterocarp forest. Comparison between secondary forests and agroforests showed the influence of farmer selection regarding what is allowed to grow beyond the pole stage. Wood density and seed dispersal profiles can be used as degradation indicators of species assemblages across various disturbance levels and types, as they reflect the habitat quality of the surrounding landscape mosaics.

Keywords: Sumatra, Agroforestry, Wood density, Dipterocarp, Dispersal modes, Kalimantan, Landscape restoration, Natural regeneration

References(100)

Adrianto, H.A., Spracklen, D.V., Arnold, S.R., 2019. Relationship between fire and forest cover loss in Riau Province, Indonesia between 2001 and 2012. Forests 10, 889. https://doi.org/10.3390/f10100889.

Alroy, J., 2017. Effects of habitat disturbance on tropical forest biodiversity. Proc. Natl. Acad. Sci. Unit. States Am. 114 (23), 6056–6061. https://doi.org/10.1073/pnas.1611855114.

Ang, C.C., O'brien, M.J., Ng, K.K.S., Lee, P.C., Hector, A., Schmid, B., Shimizu, K.K., 2016. Genetic diversity of two tropical tree species of the Dipterocarpaceae following logging and restoration in Borneo: high genetic diversity in plots with high species diversity. Plant Ecol. Divers. 9 (5–6), 459–469.

Ashton, P.S., 1998. Niche specificity among tropical trees: a question of scales. In: Newbery, D.M., Prins, H.H.T., Brown, N.D. (Eds.), Dynamics of Tropical Communities. Blackwell Science, Oxford, UK.
Atmoko, T., Yassir, I., Sitepu, B.S., Mukhlisi, M., Widuri, S.A., Muslim, T., Mediawati, I., Ma'ruf, A., 2015. Keanekaragaman Hayati Hutan Rintis Wartono Kadri: Hutan Tropis Kalimantan di KHDTK Samboja. Balai Penelitian Teknologi Konservasi Sumber Daya Alam Samboja. Badan Penelitian dan Pengembangan Kehutanan. Kementerian Lingkungan Hidup dan Kehutanan, Jakarta.

Beech, E., Rivers, M., Oldfield, S., Smith, P.P., 2017. Global tree search: the first complete global database of tree species and country distributions. J. Sustain. For. 36 (5), 454–489.

Benítez-López, A., Alkemade, R., Schipper, A.M., Ingram, D.J., Verweij, P.A., Eikelboom, J.A.J., Huijbregts, M.A.J., 2017. The impact of hunting on tropical mammal and bird populations. Science 356 (6334), 180–183.

Blackham, G.V., Webb, E.L., Corlett, R.T., 2014. Natural regeneration in a degraded tropical peatland, central Kalimantan, Indonesia: implications for forest restoration. For. Ecol. Manag. 324, 8–15.

Butarbutar, T., Sudirma, S., Neupane, P.R., Kohl, M., 2016. Carbon recovery following selective logging in tropical rainforests in Kalimantan, Indonesia. For. Ecosyst. 6, 36. https://doi.org/10.1186/s40663-019-0195-x.

Caughlin, T.T., Ferguson, J.M., Lichstein, J.W., Zuidema, P.A., Bunyavejchewin, S., Levey, D.J., 2015. Loss of animal seed dispersal increases extinction risk in a tropical tree species due to pervasive negative density dependence across life stages. Proc. R. Soc. B: Biol. Sci. 282, 20142095, 1798.
DOI

Cavanaugh, K.C., Gosnell, J.S., Davis, S.L., Ahumada, J., Boundja, P., Clark, D.B., Mugerwa, B., Jansen, P.A., O'Brien, T.G., Rovero, F., Sheil, D., Vasquez, R., Andelman, S., 2014. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecol. Biogeogr. 23, 563–573.

Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12 (4), 351–366.

Chazdon, R.L., 2014. Second Growth: the Promise of Tropical Forest Regeneration in an Age of Deforestation. University of Chicago Press, Chicago.
DOI

Chazdon, R.L., Guariguata, M., 2016. Natural regeneration as a tool for large-scale forest restoration in the tropics: prospects and challenges. Biotropica 48 (1), 716–730. https://doi.org/10.1111/btp.12381.

Chokkalingam, U., Bhat, D.M., von Gemmingen, G., 2001. Secondary forests associated with the rehabilitation of degraded lands in tropical Asia: a synthesis. J. Trop. For. Sci. 13 (4), 816–831.

Clark, J.A., Covey, K.R., 2012. Tree species richness and the logging of natural forests: a meta-analysis. For. Ecol. Manag. 276, 146–153.

Cleary, D.F.R., 2017. Impact of logging on tree, liana and herb assemblages in a Bornean forest. J. Sustain. For. 36 (8), 806–817. https://doi.org/10.1080/10549811.2017.1372294.

Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L., Longino, J.T., 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21.

Corlett, R.T., 2009. Seed dispersal distances and plant migration potential in tropical East Asia. Biotropica 41 (5), 592–598.

Corlett, R.T., 2017. Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: an update. Glob. Ecol. Conserv. 11, 1–22.

Creed, I.F., van Noordwijk, M., 2018. Forest and Water on a Changing Planet: Vulnerability, Adaptation and Governance Opportunities: a Global Assessment Report (No. 38). International Union of Forest Research Organizations (IUFRO).

Dewi, S., van Noordwijk, M., Zulkarnain, M.T., Dwiputra, A., Hyman, G., Prabhu, R., Gitz, V., Nasi, R., 2017. Tropical forest-transition landscapes: a portfolio for studying people, tree crops and agro-ecological change in context. Int. J. Biodivers. Sci. Ecosyst. Ser. Manage. 13 (1), 312–329.

Elliott, S., Blakesley, D., Hardwick, K., 2013. Restoring Tropical Forests: a Practical Guide. Royal Botanic Gardens, Kew, UK.
FAO, 2015. Global Forest Resources Assessment 2015: Country Report Indonesia. Food and Agriculture Organization, Rome.
Fiala, B., 1996. Ants benefit pioneer trees: the genus of Macaranga as an example of antsplants association in Dipterocarp Forest Ecosystems. In: Schulte, A., Schone, D. (Eds.), Dipterocarp Forest Ecosystems: toward Sustainable Management. World Scientific Publishing Co. Pte. Ltd, Singapore.
DOI

Ganesh, T., Davidar, P., 2001. Dispersal modes of tree species in the wet forests of southern Western Ghats. Curr. Sci. 80 (3), 394–399.

Ghazoul, J., Chazdon, R., 2017. Degradation and recovery in changing forest landscapes: a multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188.

Gillison, A.N., Bignell, D.E., Brewer, K.R., Fernandes, E.C., Jones, D.T., Sheil, D., May, P.H., Watt, A.D., Constantino, R., Couto, E.G., Hairiah, K., Jepson, P., Kartono, A.P., Maryanto, I., Neto, G.G., van Noordwijk, M., Silveira, E.A., Susilo, F.-X., Vosti, S.A., Nunes, P.C., 2013. Plant functional types and traits as biodiversity indicators for tropical forests: two biogeographically separated case studies including birds, mammals and termites. Biodivers. Conserv. 22 (9), 1909–1930.

Hairiah, K., Dewi, S., Agus, F., Velarde, S.J., Ekadinata, A., Rahayu, S., van Noordwijk, M., 2011. Measuring Carbon Stocks across Land Use Systems: a Manual. World Agroforestry Centre (ICRAF), Bogor (Indonesia), p. 154.

Harrison, R.D., Tan, S., Plotkin, J.B., Slik, F., Detto, M., Brenes, T., Itoh, A., Davies, S.J., 2013. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16 (5), 687–694.

Hawes, J.E., Vieira, I.C., Magnago, L.F., Berenguer, E., Ferreira, J., Aragão, L.E., Cardoso, A., Lees, A.C., Lennox, G.D., Tobias, J.A., Waldron, A., 2020. A large-scale assessment of plant dispersal mode and seed traits across human-modified Amazonian forests. J. Ecol. 108, 1373–1385. https://doi.org/10.1111/1365-2745.13358.

Hiratsuka, M., Toma, T., Diana, R., Hadriyanto, D., Morikawa, Y., 2006. Biomass recovery of naturally regenerated vegetation after the 1998 forest fire in East Kalimantan, Indonesia. JARQ-Japan Agric. Res. Quart. 40 (3), 277–282.

Holl, K.D., Aide, T.M., 2011. When and where to actively restore ecosystems? For. Ecol. Manag. 261 (10), 1558–1563.

Hubbell, S.P., 2001. The unified neutral theory of biodiversity and biogeography. In: Monographs in Population Biology. Princeton University Press, Princeton, NJ.

Johns, A.D., 1989. Recovery of a peninsular Malaysian rainforest avifauna following selective logging: the first twelve years. Forktail 4, 89–105.

Kartawinata, K., 2010. Dua Abad Mengungkap Kekayaan Flora dan Ekosistem Indonesia. In: Sarwono Prawirohardjo Memorial Lecture X, Lembaga Ilmu Pengetahuan Indonesia. Jakarta, 23 Augustus 2010.

Kartawinata, K., Purwaningsih, Partomihardjo, T., Yusuf, R., Abdulhadi, R., Riswan, S., 2008. Floristic and structure of a lowland dipterocarp forest at Wanariset Semboja, East Kalimantan, Indonesia. REINWARDTIA 12 (4), 301–323.

Kessler, M., Keßler, P.J., Gradstein, S.R., Bach, K., Schmull, M., Pitopang, R., 2005. Tree diversity in primary forest and different land use systems in Central Sulawesi, Indonesia. Biodivers. Conserv. 14 (3), 547–560.

Kindt, R., Coe, R., 2005. Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. World Agroforestry Centre (ICRAF), Nairobi (Kenya), ISBN 92-9059-179-X. http://www.worldagroforestry.org/output/tree-diversity-analysis. (Accessed 15 January 2021). accessed.
Kindt, R., Dawson, I.K., Lillesø, J.-P.B., Muchugi, A., Pedercini, F., Roshetko, J., van Noordwijk, M., Graudal, L., Jamnadass, R., 2021. The One Hundred Tree Species Prioritized for Planting in the Tropics and Subtropics as Indicated by Database Mining. Working Paper No. 312. World Agroforestry (ICRAF). https://doi.org/10.5716/WP21001.PDF. Nairobi, Kenya. (Accessed 15 January 2021). accessed.
DOI
Kiyono, T., Hastaniah, 2000. Transformation of dipterocarp forest into Imperata grassland. In: Guharja, E., Fatawi, M., Sutisna, M., Mori, T., Ohta, S. (Eds.), Rainforest Ecosystems of East Kalimantan: El Nino, Drought, Fire and Human Impact. Springer, Tokyo.

Lamb, D., 1998. Large-scale ecological restoration of degraded tropical forest lands: the potential role of timber plantations. Restor. Ecol. 6 (3), 271–279.

Laumonier, Y., Uryu, Y., Stüwe, M., Budiman, A., Setiabudi, B., Hadian, O., 2010. Ecofloristic sectors and deforestation threats in Sumatra: identifying new conservation area network priorities for ecosystem-based land use planning. Biodivers. Conserv. 19 (4), 1153–1174.

Lohbeck, M., Poorter, L., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J.A., Paz, H., Pérez-García, E.A., Romero-Pérez, I.E., Tauro, A., Bongers, F., 2013. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94 (6), 1211–1216.

MacKinnon, K., Hatta, G., Mangalik, A., Halim, H., 1996. The Ecology of Kalimantan. Periplus, Hongkong.

Mahayani, N.P.D., Slik, F.J., Savini, T., Webb, E.L., Gale, G.A., 2020. Rapid recovery of phylogenetic diversity, community structure and composition of Bornean tropical forest a decade after logging and post-logging silvicultural interventions. For. Ecol. Manag. 476, 118467.

Maury-Lechon, G., Curtet, L., 1998. Biogeography and Evolutionary Systematics of Dipterocarpaceae. A Review of Dipterocarps: Taxonomy, Ecology and Silviculture. Center for International Forestry Research (CIFOR), Indonesia, pp. 5–44.

McConkey, K.R., 2018. Seed dispersal by primates in Asian habitats: from species, to communities, to conservation. Int. J. Primatol. 39 (3), 466–492.

Meijaard, E., Sheil, D., Nasi, R., Augeri, D., Rosenbaum, B., Iskandar, D., Setyawati, T., Lammertink, M., Rachmatika, I., Wong, A., Soehartono, T., 2005. Life after Logging: Reconciling Wildlife Conservation and Production Forestry in Indonesian Borneo. Center for International Forestry Research (CIFOR), Bogor.

Muller-Landau, H.C., Wright, S.J., Calderón, O., Condit, R., Hubbell, S.P., 2008. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 96 (4), 653–667.

Nawir, A.A., Murniati, 2007. Pendahuluan. In: Nawir, A.A., Murniati, Rumboko, L. (Eds.), Rehabilitasi Hutan di Indonesia. Akan Kemanakah Arah Setelah Lebih dari Tiga Dasawarsa? Centre for International Forestry Research, pp. 1–17. Bogor, Indonesia.
DOI

Neuschulz, E.L., Mueller, T., Schleuning, M., Böhning-Gaese, K., 2016. Pollination and seed dispersal are the most threatened processes of plant regeneration. Sci. Rep. 6, 29839. https://doi.org/10.1038/srep29839.

Nifinluri, T., Clearwater, M.J., van Gardingen, P., 1999. Measurement of gap size and understory light intensity after logging in Central Kalimantan. In: Sist, P., Sabogal, C., Byron, Y. (Eds.), Management of Secondary and Logged-Over Forest in Indonesia. Bogor, Indonesia, Center for International Forestry Research. Selected Proceeding on International Workshop 17–19, pp. 65–70. (Accessed November 1997).
Niiyama, K., Kassim, A.R., Iida, S., Kimura, K., Ripin, A., Appanah, S., 2003. Regeneration of a clear-cut plot in a lowland dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia. In: Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S.C., Ashton, P.S. (Eds.), Pasoh Ecology of a Lowland Rain Forest in South East Asia. Springer, Tokyo.
DOI
Obidzinski, K., Kusters, K., 2015. Formalizing the logging sector in Indonesia: historical dynamics and lessons for current policy initiatives. Soc. Nat. Resour. 28 (5), 530–542. https://doi.org/10.1080/08941920.2015.1014605. (Accessed 15 January 2021)
DOI

Ordonez, J.C., Luedeling, E., Kindt, R., Tata, H.L., Harja, D., Jamnadass, R., van Noordwijk, M., 2014. Constraints and opportunities for tree diversity management along the forest transition curve to achieve multifunctional agriculture. Curr. Opin. Environ. Sustain. 6, 54–60.

Orsi, F., Church, R.L., Geneletti, D., 2011. Restoring forest landscapes for biodiversity conservation and rural livelihoods: a spatial optimisation model. Environ. Model. Software 26 (12), 1622–1638.

Palmiotto, P.A., Davies, S.J., Vogt, K.A., Ashton, M.S., Vogt, D.J., Ashton, P.S., 2004. Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. J. Ecol. 92 (4), 609–623.

Peres, C.A., Emilio, T., Schietti, J., Desmoulière, S.J., Levi, T., 2016. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. Unit. States Am. 113 (4), 892–897.

Pinedo-Vasquez, M., Padoch, C., 1996. Managing forest remnants. In: Schelhas, J., Greenberg, R. (Eds.), Forest Patches in Tropical Landscapes. Island Press, Washington (DC), pp. 327–342.

Potapov, P., Yaroshenko, A., Turubanova, S., Dubinin, M., Laestadius, L., Thies, C., Aksenov, D., Egorov, A., Yesipova, Y., Glushkov, I., Karpachevskiy, M., Kostikova, A., Manisha, A., Tsybikova, E., Zhuravleva, I., 2008. Mapping the world's intact forest landscapes by remote sensing. Ecol. Soc. 13 (2), 51.

Potts, S.G., Imperatriz-Fonseca, V., Ngo, H., Biesmeijer, J.C., Breeze, T., Dicks, L., Garibaldi, L., Settele, J., Vanbergen, A.J., Aizen, M.A., Cunningham, S.A., 2016. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) on Pollinators, Pollination and Food Production. IPBES, Bonn.
Rahayu, S., Pambudi, S., van Noordwijk, M., Harja, D., Wilkinson, R., 2016. Wood density as a proxy for tree functional group recovery after forest disturbance in lowland forest of east Kalimantan, Indonesia. In: Basar, K., et al. (Eds.), ICMNS 2016 Book of Abstracts. Paper Presented at the 6th International Conference on Mathematics and Natural Sciences 2016 (ICMNS 2016), 02 November 2016. Bandung, Indonesia, p. 96. http://www.chem.itb.ac.id/icmns/wp-content/uploads/2016/06/book-of-abstracts.pdf. (Accessed 15 January 2021). accessed.

Rahayu, S., Basuni, S., Kartono, A.P., Hikmat, A., van Noordwijk, M., 2017. Tree species composition of 1.8 ha plot Samboja Research Forest: 28 years after initial fire. Indones. J. Fore. Res. 4 (2), 95–106. https://doi.org/10.20886/ijfr.2017.4.2.95-106.

Rasnovi, S., 2006. Ekologi regenerasi tumbuhan berkayu pada sistem agroforest karet. PhD thesis. Institut Pertanian Bogor. Bogor, Indonesia.

Redford, K.H., 1992. The empty forest. Bioscience 42 (6), 412–422.

Rogers, H.S., 2011. The Fate of a Silent Forest: the Effects of Complete Bird Loss on the Forest of Guam. University of Washington, Washington.

Roshetko, J.M., Dawson, I.K., Urquiola, J., Lasco, R.D., Leimona, B., Weber, J.C., Bozzano, M., Lillesø, J.P.B., Graudal, L., Jamnadass, R., 2018. To what extent are genetic resources considered in environmental service provision? A case study based on trees and carbon sequestration. Clim. Dev. 10. https://doi.org/10.1080/17565529.2017.1334620.

Sari, R.R., Saputra, D.D., Hairiah, K., Rozendaal, D., Roshetko, J.M., van Noordwijk, M., 2020. Gendered species preferences link tree diversity and carbon stocks in cacao agroforest in Southeast Sulawesi, Indonesia. Land 9 (4), 108.

Sayer, J., Chokkalingam, U., Poulsen, J., 2004. The restoration of forest biodiversity and ecological values. For. Ecol. Manag. 201 (1), 3–11.

Scales, B.R., Marsden, S.J., 2008. Biodiversity in small-scale tropical agroforests: a review of species richness and abundance shifts and the factors influencing them. Environ. Conserv. 35 (2), 160–172.

Scholes, R., Montanarella, L., Brainich, A., Barger, N., ten Brink, B., Cantele, M., Erasmus, B., Fisher, J., Gardner, T., Holland, T.G., Kohler, F., Kotiaho, J.S., von Maltitz, G., Nangendo, G., Pandit, R., Parrotta, J., Potts, M.D., Prince, S., Sankaran, M., Willemen, L., 2018. Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental SciencePolicy-Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn.

Shono, K., Cadaweng, E.A., Durst, P.B., 2007. Application of assisted natural regeneration to restore degraded tropical forestlands. Restor. Ecol. 15 (4), 620–626.

Simbolon, H., 2005. Dinamika hutan Dipterokarpa campuran, Wanariset Samboja, Kalimantan Timur setelah tiga kali kebakaran 1980–2003. Biodiversitas 6 (2), 133–138.

Sist, P., Saridan, A., 1998. Description of the primary lowland forest of Berau. In: Bertault, J.G., Kadir, K. (Eds.), Silvicultural Research in a Lowland Mixed Dipterocarp Forest of East Kalimantan. Indonésie-Ministry of Agriculture-Agency for Agricultural Research and Development, CIRAD-Forêt. CIRAD, Montpellier, pp. 51–94.

Sist, P., Saridan, A., 1999. Stand structure and floristic composition of a primary lowland dipterocarp forest in East Kalimantan. J. Trop. For. Sci. 11 (4), 704–722.

Slik, J.W.F., van Balen, S., 2006. Bird community changes in response to single and repeated fire in lowland tropical rainforest of Eastern Borneo. Biodivers. Conserv. 15, 4425–4451.

Slik, J.W.F., Verburg, R.W., Keßler, P.J.A., 2002. Effects of fire and selective logging on the tree species composition of lowland dipterocarp forest in East Kalimantan, Indonesia. Biodivers. Conserv. 11, 85–98.

Slik, J.W.F., Bernard, C.S., Breman, F.C., van Beek, M., Salim, A., Sheil, D., 2008. Wood density as a conservation tool: quantification of disturbance and identification of conservation-priority areas in tropical forests. Conserv. Biol. 22 (5), 1299–1308.

Smits, W.T.M., 1983. Dipterocarps and mycorrhiza. An ecological adaptation and a factor in forest regeneration. Flora Malesiana Bull 36, 3926–3937.

Sreekar, R., Zhang, K., Xu, J., Harrison, R.D., 2015. Yet another empty forest: considering the conservation value of a recently established tropical Nature Reserve. PLoS One 10 (2), e0117920.

Stanturf, J.A., Palik, B.J., Dumroese, R.K., 2014. Contemporary forest restoration: a review emphasizing function. For. Ecol. Manag. 331, 292–323.

Takeuchi, Y., Ichikawa, S., Konuma, A., Tomaru, N., Niiyama, K., Lee, S.L., Muhammad, N., Tsumura, Y., 2004. Comparison of the fine-scale genetic structure of three dipterocarp species. Heredity 92 (4), 323–328.

Tata, H.L., van Noordwijk, M., Werger, M., 2008a. Trees and regeneration in rubber agroforests and other forest-derived vegetation in Jambi (Sumatra, Indonesia). J. For. Res. 5 (1), 1–20.

Tata, H.L., Wibawa, G., Joshi, L., 2008b. Enrichment Planting with Dipterocarpaceae Species in Rubber Agroforests: Manual. World Agroforestry Centre (ICRAF) Bogor, Indonesia Crops. http://apps.worldagroforestry.org/sea/Publications/files/manual/MN0047-11.pdf. (Accessed 15 January 2021). accessed.
Tata, H.L., van Noordwijk, M., Harja, D., Joshi, L., 2009. Dipterocarp Trees in Rubber Agroforestry: Interplanting Strategies for High-Value Timber Production in Sumatra. World Congress on Agroforestry, 2009. http://apps.worldagroforestry.org/sea/Publications/files/poster/PO0203-09.pdf. (Accessed 15 January 2021). accessed.

Tata, H.L., van Noordwijk, M., Summerbell, R., Werger, M.J., 2010. Limited response to nursery-stage mycorrhiza inoculation of Shorea seedlings planted in rubber agroforest in Jambi, Indonesia. N. For. 39 (1), 51.

Tata, H.L., Muchugi, A., Kariba, R., van Noordwijk, M., 2018. Genetic diversity of Dyera polyphylla (Miq.) Steenis populations used in tropical peatlands restoration in Indonesia. Mires Peat 21 (1), 1–14. https://doi.org/10.19189/MaP.2017.OMB.269.

Toma, T., Warsudi, W., Osone, Y., Sutejo, S., Sato, T., Sukartiningsih, S., 2016. Sixteen years changes in tree density and aboveground biomass of a logged and burned dipterocarp forest in East Kalimantan, Indonesia. Biodiversitas 18 (3), 1159–1167.

van Nieuwstadt, M.G.L., Sheil, D., 2004. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. J. Ecol. 93 (1), 191–201. https://doi.org/10.1111/j.1365-2745.2004.00954.x.

van Noordwijk, M., 2020. Prophets, profits, prove it: social forestry under pressure. One Earth 2, 394–397. https://doi.org/10.1016/j.oneear.2020.05.008.

van Noordwijk, M., Tata, H.L., Xu, J., Dewi, S., Minang, P.A., 2012. Segregate or integrate for multifunctionality and sustained change through rubber-based agroforestry in Indonesia and China. In: Agroforestry-the Future of Global Land Use. Springer, Dordrecht, pp. 69–104.
DOI

van Noordwijk, M., Bizard, V., Wangpakapattanawong, P., Tata, H.L., Villamor, G.B., Leimona, B., 2014. Tree cover transitions and food security in Southeast Asia. Glob. Food Sec. 3 (3–4), 200–208.

van Noordwijk, M., Rahayu, S., Gebrekirstos, A., Kindt, R., Tata, H.L., Muchugi, A., Ordonez, J.C., Xu, J., 2019. Tree diversity as basis of agroforestry. In: van Noordwijk, M. (Ed.), Sustainable Development through Trees on Farms: Agroforestry in its Fifth Decade. World Agroforestry (ICRAF), Bogor, Indonesia, pp. 13–38.

van Noordwijk, M., Gitz, V., Minang, P.A., Dewi, S., Leimona, B., Duguma, L., Pingault, N., Meybeck, A., 2020a. People-centric nature-based land restoration through agroforestry: a typology. Land 9 (8), 251.

van Noordwijk, M., Ekadinata, A., Leimona, B., Catacutan, D., Martini, E., Tata, H.L., Öborn, I., Hairiah, K., Wangpakapattanawong, P., Mulia, R., Dewi, S., Rahayu, S., Zulkarnain, T., 2020b. Agroforestry options for degraded landscapes in Southeast Asia. In: Dagar, J.C., Gupta, S.R., Teketay, D. (Eds.), Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges. Springer, Singapore.
DOI

Vittoz, P., Engler, R., 2007. Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot. Helv. 117 (2), 109–124.

Wang, C., Yang, Y., Zhang, Y., 2011. Economic development, rural livelihoods, and ecological restoration: evidence from China. Ambio 40 (1), 78–87.

Werner, S., 1997. The impact of management practices in species richness within productive rubber agroforest of Indonesia. In: Sist, P., Sabogal, C., Byron, Y. (Eds.), Management of Secondary and Logged-Over Forest in Indonesia. Center for International Forestry Research (CIFOR). Selected Proceeding on International Workshop 17–19 November 1997, pp. 33–44. Bogor Indonesia.

Westcott, D.A., Graham, D.L., 2000. Patterns of movement and seed dispersal of a tropical frugivore. Oecologia 122 (2), 249–257.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Published: 26 March 2022
Issue date: June 2022

Copyright

© 2022 The Authors.

Acknowledgements

Acknowledgements

We acknowledge statistical advice from Dewi Bodro. Jim Roshetko provided comments and suggestions on a draft of the manuscript. Anonymous reviewers helped us sharpen the arguments and improve the manuscript.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return