Journal Home > Volume 9 , Issue 3
Background

The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted. However, the specific mechanisms affecting biodiversity and ecosystem multifunctionality (BEMF) relationships in forests are largely unknown. This is particularly evident for the macroscale of a large forested landscape.

Methods

Based on 412 one-tenth hectare field plots distributed over forested areas across northeastern China, we evaluated three alternative hypotheses explaining the relationships between BEMF, namely: niche complementarity, mass ratio, and vegetation quantity effect. We used Rao's quadratic entropy and community weighted mean trait values to quantify forest "biodiversity". These two variables represent two complementary aspects of functional properties, which are in line with niche complementary and mass ratio effects, respectively.

Results

Ecosystem multifunctionality was negatively associated with the community weighted mean values of acquisitive traits (a proxy of mass ratio effect). Rao's quadratic entropy (a proxy of niche complementarity) had no relationship with ecosystem multifunctionality. Higher stand biomass greatly increased ecosystem multifunctionality, which is in line with the vegetation quantity effect. Our results confirm that in the temperate forests of northeastern China, the relationship of BEMF was primarily affected by vegetation quantity, followed by mass ratio effects.

Conclusions

The results of this study contribute to a better understanding of the main drivers of ecosystem multifunctionality in forest ecosystems. The results of this study provide additional evidence to support the vegetation quantity and mass ratio hypotheses in forest ecosystems.


menu
Abstract
Full text
Outline
About this article

Evaluating alternative hypotheses behind biodiversity and multifunctionality relationships in the forests of Northeastern China

Show Author's information Qingmin YueaMinhui HaoaYan GengaXuerui WangaKlaus von Gadowb,cChunyu ZhangaXiuhai ZhaoaLushuang Gaoa( )
Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
Faculty of Forestry and Forest Ecology, Georg-August-Universitat, Göttingen, D-37077, Germany
Faculty of AgriSciences, Stellenbosch University, Matieland, 7600, South Africa

Abstract

Background

The importance of biodiversity in maintaining multiple ecosystem functions has been widely accepted. However, the specific mechanisms affecting biodiversity and ecosystem multifunctionality (BEMF) relationships in forests are largely unknown. This is particularly evident for the macroscale of a large forested landscape.

Methods

Based on 412 one-tenth hectare field plots distributed over forested areas across northeastern China, we evaluated three alternative hypotheses explaining the relationships between BEMF, namely: niche complementarity, mass ratio, and vegetation quantity effect. We used Rao's quadratic entropy and community weighted mean trait values to quantify forest "biodiversity". These two variables represent two complementary aspects of functional properties, which are in line with niche complementary and mass ratio effects, respectively.

Results

Ecosystem multifunctionality was negatively associated with the community weighted mean values of acquisitive traits (a proxy of mass ratio effect). Rao's quadratic entropy (a proxy of niche complementarity) had no relationship with ecosystem multifunctionality. Higher stand biomass greatly increased ecosystem multifunctionality, which is in line with the vegetation quantity effect. Our results confirm that in the temperate forests of northeastern China, the relationship of BEMF was primarily affected by vegetation quantity, followed by mass ratio effects.

Conclusions

The results of this study contribute to a better understanding of the main drivers of ecosystem multifunctionality in forest ecosystems. The results of this study provide additional evidence to support the vegetation quantity and mass ratio hypotheses in forest ecosystems.

Keywords: Biomass, Functional traits, Biodiversity and ecosystem multifunctionality, Mass ratio effect, Niche complementarity effect, Vegetation quantity effect

References(61)

Adair, E.C., Hooper, D.U., Paquette, A., Hungate, B.A., 2018. Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecol. Lett. 21, 1604–1619. https://doi.org/10.1111/ele.13145.

Axelrod, D., Al-Shehbaz, I., Raven, P., 1996. Floristic characteristics and diversity of East Asian plants. In: Zhang, A., Wu, S. (Eds.), History of the Modern Flora of China. China Higher Education Press, Beijing, pp. 43–55.

Balvanera, P., Pfisterer, A.B., Buchmann, N., He, J.S., Nakashizuka, T., Raffaelli, D., Schmid, B., 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156. https://doi.org/10.1111/j.1461-0248.2006.00963.x.

Bao, S., 1999. Soil Agricultural Chemical Analysis Procedure, third ed. Chinese Agricultural Science Press, Beijing.
Bauhus, J., Forrester, D.I., Pretzsch, H., Felton, A., Pyttel, P., Benneter, A., 2017. Silvicultural options for mixed-species stands. In: Pretzsch, H., Forrester, D.I., Bauhus, J. (Eds.), Mixed-species Forests. Springer, Berlin, pp. 433–501.
DOI

Bennett, E.M., Cramer, W., Begossi, A., Cundill, G., Diaz, S., Egoh, B.N., Geijzendorffer, I.R., Krug, C.B., Lavorel, S., Lazos, E., Lebel, L., Martin-Lopez, B., Meyfroidt, P., Mooney, H.A., Nel, J.L., Pascual, U., Payet, K., Perez Harguindeguy, N., Peterson, G.D., Prieur-Richard, A.-H.N., Reyers, B., Roebeling, P., Seppelt, R., Solan, M., Tschakert, P., Tscharntke, T., Turner, B.L., Verburg, P.H., Viglizzo, E.F., White, P.C.L., Woodward, G., 2015. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 14, 76–85. https://doi.org/10.1016/j.cosust.2015.03.007.

Bryan, B.A., Gao, L., Ye, Y.Q., Sun, X.F., Connor, J.D., Crossman, N.D., Stafford-Smith, M., Wu, J.G., He, C.Y., Yu, D.Y., Liu, Z.F., Li, A., Huang, Q.X., Ren, H., Deng, X.Z., Zheng, H., Niu, J.M., Han, G.D., Hou, X.Y., 2018. China's response to a national landsystem sustainability emergency. Nature 559, 193–204. https://doi.org/10.1038/ s41586-018-0280-2.

Byrnes, J.E.K., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N., Hector, A., Cardinale, B.J., Hooper, D.U., Dee, L.E., Emmett Duffy, J., Freckleton, R., 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124. https://doi.org/10.1111/2041-210x.12143.

Chiang, J.-M., Spasojevic, M.J., Muller-Landau, H.C., Sun, I.F., Lin, Y., Su, S.-H., Chen, Z.- S., Chen, C.-T., Swenson, N.G., McEwan, R.W., 2016. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840. https://doi.org/10.1007/s00442-016-3717-z.

Dai, L.M., Li, S.L., Zhou, W.M., Qi, L., Zhou, L., Wei, Y.W., Li, J.Q., Shao, G.F., Yu, D.P., 2018. Opportunities and challenges for the protection and ecological functions promotion of natural forests in China. For. Ecol. Manag. 410, 187–192. https:// doi.org/10.1016/j.foreco.2017.09.044.

de Avila, A.L., van der Sande, M.T., Dormann, C.F., Pena-Claros, M., Poorter, L., Mazzei, L., Ruschel, A.R., Silva, J.N.M., de Carvalho, J.O.P., Bauhus, J., 2018. Disturbance intensity is a stronger driver of biomass recovery than remaining treecommunity attributes in a managed Amazonian forest. J. Appl. Ecol. 55, 1647–1657. https://doi.org/10.1111/1365-2664.13134.

Dong, L., Zhang, L., Li, F., 2014. A compatible system of biomass equations for three conifer species in Northeast, China. For. Ecol. Manag. 329, 306–317. https://doi.org/ 10.1016/j.foreco.2014.05.050.

Dong, L., Zhang, L., Li, F., 2015. Developing additive systems of biomass equations for nine hardwood species in Northeast China. Trees Struct. Funct. 29, 1149–1163. https://doi.org/10.1007/s00468-015-1196-1.

Felipe-Lucia, M.R., Soliveres, S., Penone, C., Manning, P., van der Plas, F., Boch, S., Prati, D., Ammer, C., Schall, P., Gossner, M.M., Bauhus, J., Buscot, F., Blaser, S., Bluethgen, N., de Frutos, A., Ehbrecht, M., Frank, K., Goldmann, K., Haensel, F., Jung, K., Kahl, T., Nauss, T., Oelmann, Y., Pena, R., Polle, A., Renner, S., Schloter, M., Schoening, I., Schrumpf, M., Schulze, E.-D., Solly, E., Sorkau, E., Stempfhuber, B., Tschapka, M., Weisser, W.W., Wubet, T., Fischer, M., Allan, E., 2018. Multiple forest attributes underpin the supply of multiple ecosystem services. Nat. Commun. 9, 4839. https://doi.org/10.1038/s41467-018-07082-4.

Finegan, B., Pena-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M.S., CarrenoRocabado, G., Casanoves, F., Diaz, S., Eguiguren Velepucha, P., Fernandez, F., Carlos Licona, J., Lorenzo, L., Salgado Negret, B., Vaz, M., Poorter, L., 2015. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201. https://doi.org/ 10.1111/1365-2745.12346.

Fotis, A.T., Murphy, S.J., Ricart, R.D., Krishnadas, M., Whitacre, J., Wenzel, J.W., Queenborough, S.A., Comita, L.S., 2018. Above-ground biomass is driven by massratio effects and stand structural attributes in a temperate deciduous forest. J. Ecol. 106, 561–570. https://doi.org/10.1111/1365-2745.12847.

Gamfeldt, L., Roger, F., 2017. Revisiting the biodiversity-ecosystem multifunctionality relationship. Nat. Ecol. Evol. 1, 0168. https://doi.org/10.1038/s41559-017-0168.

Gamfeldt, L., Hillebrand, H., Jonsson, P.R., 2008. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231. https://doi.org/10.1890/06-2091.1.

Grime, J.P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910. https://doi.org/10.1046/j.1365-2745.1998.00306.x.

Hao, Z.Q., Deng, H.B., Dai, L.M., Wang, Q.L., Dong, S.J., Huang, N.W., 2000. Natural forest conversation and forestry in Northeast China. In: Zhang, P.C. (Ed.), Discussion on Natural Forest Conservation Programme. Chinese Forestry Press, Beijing, pp. 463–474.

Hao, M., Zhang, C., Zhao, X., von Gadow, K., 2018. Functional and phylogenetic diversity determine woody productivity in a temperate forest. Ecol. Evol. 8, 2395–2406. https://doi.org/10.1002/ece3.3857.

Hao, M., Messier, C., Geng, Y., Zhang, C., Zhao, X., von Gadow, K., 2020. Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. Eur. J. For. Res. 139, 959–968. https://doi.org/10.1007/s10342-020-01298-0.

Huang, W., 2019. Forest condition change, tenure reform, and government-funded ecoenvironmental programs in Northeast China. For. Pol. Econ. 98, 67–74. https:// doi.org/10.1016/j.forpol.2018.09.003.

Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305. https://doi.org/10.1890/08-2244.1.

Le Bagousse-Pinguet, Y., Soliveres, S., Gross, N., Torices, R., Berdugo, M., Maestre, F.T., 2019. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl. Acad. Sci. Unit. States Am. 116, 8419–8424. https://doi.org/10.1073/pnas.1815727116.

Lefcheck, J.S., Byrnes, J.E.K., Isbell, F., Gamfeldt, L., Griffin, J.N., Eisenhauer, N., Hensel, M.J.S., Hector, A., Cardinale, B.J., Duffy, J.E., 2015. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936. https://doi.org/10.1038/ncomms7936.

Lohbeck, M., Poorter, L., Martinez-Ramos, M., Bongers, F., 2015. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96, 1242–1252. https://doi.org/10.1890/14-0472.1.

Luo, W., Kim, H.S., Zhao, X., Ryu, D., Jung, I., Cho, H., Harris, N., Ghosh, S., Zhang, C., Liang, J., 2020. New forest biomass carbon stock estimates in Northeast Asia based on multisource data. Global Change Biol 26, 7045–7066. https://doi.org/10.1111/gcb.15376.

Meyer, S.T., Ptacnik, R., Hillebrand, H., Bessler, H., Buchmann, N., Ebeling, A., Eisenhauer, N., Engels, C., Fischer, M., Halle, S., Klein, A.-M., Oelmann, Y., Roscher, C., Rottstock, T., Scherber, C., Scheu, S., Schmid, B., Schulze, E.-D., Temperton, V.M., Tscharntke, T., Voigt, W., Weigelt, A., Wilcke, W., Weisser, W.W., 2018. Biodiversity-multifunctionality relationships depend on identity and number of measured functions. Nat. Ecol. Evol. 2, 44–49. https://doi.org/10.1038/s41559-017-0391-4.

Mori, A.S., Lertzman, K.P., Gustafsson, L., 2017. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J. Appl. Ecol. 54, 12–27. https://doi.org/10.1111/1365-2664.12669.

Ouyang, S., Xiang, W., Wang, X., Xiao, W., Chen, L., Li, S., Sun, H., Deng, X., Forrester, D.I., Zeng, L., Lei, P., Lei, X., Gou, M., Peng, C., 2019. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 107, 2266–2277. https://doi.org/10.1111/1365-2745.13194.

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609.

Peng, C., Zhou, X., Zhao, S., Wang, X., Zhu, B., Piao, S., Fang, J., 2009. Quantifying the response of forest carbon balance to future climate change in Northeastern China: model validation and prediction. Global Planet. Change 66, 179–194. https://doi.org/10.1016/j.gloplacha.2008.12.001.

Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M.S., Cornwell, W.K., Craine, J.M., Gurvich, D.E., Urcelay, C., Veneklaas, E.J., Reich, P.B., Poorter, L., Wright, I.J., Ray, P., Enrico, L., Pausas, J.G., de Vos, A.C., Buchmann, N., Funes, G., Quetier, F., Hodgson, J.G., Thompson, K., Morgan, H.D., ter Steege, H., van der Heijden, M.G.A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, M.V., Conti, G., Staver, A.C., Aquino, S., Cornelissen, J.H.C., 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234. https://doi.org/10.1071/bt12225.

Prado-Junior, J.A., Schiavini, I., Vale, V.S., Arantes, C.S., van der Sande, M.T., Lohbeck, M., Poorter, L., 2016. Conservative species drive biomass productivity in tropical dry forests. J. Ecol. 104, 817–827. https://doi.org/10.1111/1365-2745.12543.

Qian, H., Ricklefs, R.E., 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407, 180–182. https://doi.org/10.1038/35025052.

Qian, H., Ricklefs, R.E., White, P.S., 2005. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 8, 15–22. https://doi.org/10.1111/j.1461-0248.2004.00682.x.

R Development Core Team, 2019. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Rao, C.R., 1982. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43. https://doi.org/10.1016/0040-5809(82)90004-1.

Ratcliffe, S., Liebergesell, M., Ruiz-Benito, P., Madrigal Gonzalez, J., Castaneda, J.M.M., Kaendler, G., Lehtonen, A., Dahlgren, J., Kattge, J., Penuelas, J., Zavala, M.A., Wirth, C., 2016. Modes of functional biodiversity control on tree productivity across the European continent. Global Ecol. Biogeogr. 25, 251–262. https://doi.org/10.1111/geb.12406.

Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K., Allan, E., Benavides, R., Bruelheide, H., Ohse, B., Paquette, A., Ampoorter, E., Bastias, C.C., Bauhus, J., Bonal, D., Bouriaud, O., Bussotti, F., Carnol, M., Castagneyrol, B., Checko, E., Dawud, S.M., De Wandeler, H., Domisch, T., Finer, L., Fischer, M., Fotelli, M., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Haase, J., Hattenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F.-X., Kambach, S., Kolb, S., Koricheva, J., Liebersgesell, M., Milligan, H., Mueller, S., Muys, B., Nguyen, D., Nock, C., Pollastrini, M., Purschke, O., Radoglou, K., Raulund-Rasmussen, K., Roger, F., Ruiz-Benito, P., Seidl, R., Selvi, F., Seiferling, I., Stenlid, J., Valladares, F., Vesterdal, L., Baeten, L., 2017. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426. https://doi.org/10.1111/ele.12849.

Ruiz-Benito, P., Gomez-Aparicio, L., Paquette, A., Messier, C., Kattge, J., Zavala, M.A., 2014. Diversity increases carbon storage and tree productivity in Spanish forests. Global Ecol. Biogeogr. 23, 311–322. https://doi.org/10.1111/geb.12126.

Ruiz-Benito, P., Ratcliffe, S., Zavala, M.A., Martinez-Vilalta, J., Vila-Cabrera, A., Lloret, F., Madrigal-Gonzalez, J., Wirth, C., Greenwood, S., Kaendler, G., Lehtonen, A., Kattge, J., Dahlgren, J., Jump, A.S., 2017. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Global Change Biol 23, 4162–4176. https://doi.org/10.1111/gcb.13728.

Sax, D.F., Gaines, S.D., 2003. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566. https://doi.org/10.1016/s0169-5347(03)00224-6.

Schuldt, A., Assmann, T., Brezzi, M., Buscot, F., Eichenberg, D., Gutknecht, J., Haerdtle, W., He, J.-S., Klein, A.-M., Kuehn, P., Liu, X., Ma, K., Niklaus, P.A., Pietsch, K.A., Purahong, W., Scherer-Lorenzen, M., Schmid, B., Scholten, T., Staab, M., Tang, Z., Trogisch, S., von Oheimb, G., Wirth, C., Wubet, T., Zhu, C.-D., Bruelheide, H., 2018. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989. https://doi.org/10.1038/s41467-018-05421-z.

Tilman, D., Lehman, C.L., Thomson, K.T., 1997. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl. Acad. Sci. Unit. States Am. 94, 1857–1861. https://doi.org/10.1073/pnas.94.5.1857.

Tobner, C.M., Paquette, A., Gravel, D., Reich, P.B., Williams, L.J., Messier, C., 2016. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647. https://doi.org/10.1111/ele.12600.

van der Plas, F., Ratcliffe, S., Ruiz-Benito, P., Scherer-Lorenzen, M., Verheyen, K., Wirth, C., Zavala, M.A., Ampoorter, E., Baeten, L., Barbaro, L., Bastias, C.C., Bauhus, J., Benavides, R., Benneter, A., Bonal, D., Bouriaud, O., Bruelheide, H., Bussotti, F., Carnol, M., Castagneyrol, B., Charbonnier, Y., Cornelissen, J.H.C., Dahlgren, J., Checko, E., Coppi, A., Dawud, S.M., Deconchat, M., De Smedt, P., De Wandeler, H., Domisch, T., Finer, L., Fotelli, M., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Haase, J., Haettenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F.-X., Jucker, T., Kambach, S., Kaendler, G., Kattge, J., Koricheva, J., Kunstler, G., Lehtonen, A., Liebergesell, M., Manning, P., Milligan, H., Mueller, S., Muys, B., Nguyen, D., Nock, C., Ohse, B., Paquette, A., Penuelas, J., Pollastrini, M., Radoglou, K., Raulund-Rasmussen, K., Roger, F., Seidl, R., Selvi, F., Stenlid, J., Valladares, F., van Keer, J., Vesterdal, L., Fischer, M., Gamfeldt, L., Allan, E., 2018. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol. Lett. 21, 31–42. https://doi.org/10.1111/ele.12868.

van der Sande, M.T., Pena-Claros, M., Ascarrunz, N., Arets, E., Licona, J.C., Toledo, M., Poorter, L., 2017. Abiotic and biotic drivers of biomass change in a Neotropical forest. J. Ecol. 105, 1223–1234. https://doi.org/10.1111/1365-2745.12756.

van der Sande, M.T., Arets, E.J., Peña-Claros, M., Hoosbeek, M.R., Cáceres-Siani, Y., van der Hout, P., Poorter, L., 2018. Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Funct. Ecol. 32, 461–474. https://doi.org/10.1111/1365-2435.12968.

Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional! Oikos 116, 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x.

von Gadow, K., González, J.G. Á., Zhang, C., Pukkala, T., Zhao, X., 2021. Sustaining Forest Ecosystems. Springer Nature, Cham.
DOI

Wang, C.K., 2006. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag. 222, 9–16. https://doi.org/10.1016/j.foreco.2005.10.074.

Wu, Z., Zhang, Z., Wang, J., 2019. Estimating the productive potential of five natural forest types in northeastern China. Forest Ecosyst 6, 42. https://doi.org/10.1186/s40663-019-0204-0.

Yu, D., Zhou, L., Zhou, W., Ding, H., Wang, Q., Wang, Y., Wu, X., Dai, L., 2011. Forest management in northeast China: history, problems, and challenges. Environ. Manag. 48, 1122–1135. https://doi.org/10.1007/s00267-011-9633-4.

Yuan, Z., Ali, A., Wang, S., Gazol, A., Freckleton, R., Wang, X., Lin, F., Ye, J., Zhou, L., Hao, Z., Loreau, M., 2018. Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Sci. Total Environ. 630, 422–431. https://doi.org/10.1016/j.scitotenv.2018.02.125.

Yuan, Z., Ali, A., Ruiz-Benito, P., Jucker, T., Mori, A.S., Wang, S., Zhang, X., Li, H., Hao, Z., Wang, X., Loreau, M., 2020. Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. J. Ecol. 108, 2012–2024. https://doi.org/10.1111/1365-2745.13378.

Yuan, Z., Ali, A., Loreau, M., Ding, F., Liu, S., Sanaei, A., Zhou, W., Ye, J., Lin, F., Fang, S., Hao, Z., Wang, X., Le Bagousse-Pinguet, Y., 2021. Divergent above- and belowground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Global Change Biol 27, 2883–2894. https://doi.org/10.1111/ gcb.15606.

Yue, Q., Hao, M., Li, X., Zhang, C., von Gadow, K., Zhao, X., 2020. Assessing biotic and abiotic effects on forest productivity in three temperate forests. Ecol. Evol. 10, 7887–7900. https://doi.org/10.1002/ece3.6516.

Zhang, Y., Liang, S., 2014. Changes in forest biomass and linkage to climate and forest disturbances over Northeastern China. Global Change Biol 20, 2596–2606. https://doi.org/10.1111/gcb.12588.

Zhang, C.Y., He, F.L., Zhang, Z.H., Zhao, X.H., von Gadow, K., 2020. Latitudinal gradients and ecological drivers of beta-diversity vary across spatial scales in a temperate forest region. Global Ecol. Biogeogr. 29, 1257–1264. https://doi.org/10.1111/geb.13101.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Published: 12 March 2022
Issue date: June 2022

Copyright

© 2022 The Authors.

Acknowledgements

Acknowledgements

We would like to thank all the students who took part in the forest field survey.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return