Journal Home > Volume 9 , Issue 2
Background

Forest based climate mitigation emerged as a key component of the Paris Agreement, and thus requires robust science to reduce uncertainties related to such strategies. The aim of this study was to assess and compare the cumulative effects on carbon dynamics of forest management and climate change on boreal and northern temperate forest sector in eastern Canada for the 2020–2100 period.

Methods

We used the spatially explicit forest landscape model LANDIS-II and its extension Forest Carbon Succession, in conjunction with the Carbon Budget Model for Harvested Wood Products framework. We simulated the dynamics of forest composition and carbon flows from forest ecosystems to wood products and their substitution effect on markets under increasing climate forcing, according to a tonne-year approach. Simulations were conducted for a series of forest management scenarios based on realistic practices principally by clearcut in the boreal territory and continuous-cover forestry in the northern temperate one. These scenarios included: i) a business-as-usual scenario (BaU), representing the current management strategy, ii) increased harvesting by 6.3% to 13.9%, iii) increased conservation (i.e. reduced harvesting by 11.1% to 49.8%), iiii) and a scenario representing the natural evolution of the forest landscape (i.e. without any management activity).

Results

Our study revealed that increasing harvesting levels had contrasting effects on the mitigation potential in northern temperate (enhance net sequestration) and boreal forest sector (enhance net emissions) in comparison to the BaU from 2040 onwards, regardless of the future climate. Carbon storage in wood products and the substitution effect were not sufficient to offset carbon emissions from ecosystems. Moreover, climate change had a strong impact on the capacity of both landscapes to act as carbon sinks. Northern temperate landscapes became a net source of carbon over time due to their greater vulnerability to climate change than boreal landscapes.

Conclusions

Our study highlights the need to consider the initial landscape characteristics in simulations to maximize the mitigation potential of alternative forest management strategies. The optimal management solution can be very different according to the characteristics of forest ecosystems. This opens the possibility of optimizing management for specific forest stands, with the objective of maximizing the mitigation potential of a given landscape.


menu
Abstract
Full text
Outline
About this article

How can the forest sector mitigate climate change in a changing climate? Case studies of boreal and northern temperate forests in eastern Canada

Show Author's information Lucas Moreaua( )Evelyne ThiffaultaDominic CyrbYan BoulangercRobert Beauregarda
Département des sciences du bois et de la forêt, Université Laval, Québec, Canada
Science and Technology Branch, Environment and Climate Change Canada, Gatineau, Canada
Laurentian Forestry Centre, Natural Resources Canada, Québec, Canada

Abstract

Background

Forest based climate mitigation emerged as a key component of the Paris Agreement, and thus requires robust science to reduce uncertainties related to such strategies. The aim of this study was to assess and compare the cumulative effects on carbon dynamics of forest management and climate change on boreal and northern temperate forest sector in eastern Canada for the 2020–2100 period.

Methods

We used the spatially explicit forest landscape model LANDIS-II and its extension Forest Carbon Succession, in conjunction with the Carbon Budget Model for Harvested Wood Products framework. We simulated the dynamics of forest composition and carbon flows from forest ecosystems to wood products and their substitution effect on markets under increasing climate forcing, according to a tonne-year approach. Simulations were conducted for a series of forest management scenarios based on realistic practices principally by clearcut in the boreal territory and continuous-cover forestry in the northern temperate one. These scenarios included: i) a business-as-usual scenario (BaU), representing the current management strategy, ii) increased harvesting by 6.3% to 13.9%, iii) increased conservation (i.e. reduced harvesting by 11.1% to 49.8%), iiii) and a scenario representing the natural evolution of the forest landscape (i.e. without any management activity).

Results

Our study revealed that increasing harvesting levels had contrasting effects on the mitigation potential in northern temperate (enhance net sequestration) and boreal forest sector (enhance net emissions) in comparison to the BaU from 2040 onwards, regardless of the future climate. Carbon storage in wood products and the substitution effect were not sufficient to offset carbon emissions from ecosystems. Moreover, climate change had a strong impact on the capacity of both landscapes to act as carbon sinks. Northern temperate landscapes became a net source of carbon over time due to their greater vulnerability to climate change than boreal landscapes.

Conclusions

Our study highlights the need to consider the initial landscape characteristics in simulations to maximize the mitigation potential of alternative forest management strategies. The optimal management solution can be very different according to the characteristics of forest ecosystems. This opens the possibility of optimizing management for specific forest stands, with the objective of maximizing the mitigation potential of a given landscape.

Keywords: Carbon, Climate change, Forest management, Forest sector, Boreal landscapes, Northern temperate landscape, Mitigation potential

References(101)

Arora, V.K., Boer, G.J., 2010. Uncertainties in the 20th century carbon budget associated with land use chang. Global Change Biol. 16(12): 3327-3348, https://doi.org/10.1111/j.1365-2486.2010.02202.x.

Athena Sustainable Materials Institute, 2018c. A cradle-to-gate life cycle assesment of canadian oriented strand board - OSB. In: Tech. Rep. Athena Sustainable Materials Institute.
Athena Sustainable Materials Institute, 2018a. A cradle-to-gate life cycle assesment of eastern canadian surfaced dry softwood lumber. In: Tech. Rep. Athena Sustainable Materials Institute.
Athena Sustainable Materials Institute, 2018b. A cradle-to-gate life cycle assessment of canadian plywood. In: Tech. Rep. Athena Sustainable Materials Institute.
Beauregard, R., Lavoie, P., Thiffault, E., Ménard, I., Moreau, L., Boucher, J.F., Robichaud, F.,, 2019. Groupe de travail sur la forêt et les changements climatique (gtfcc). In: Tech. rep., GTFCC.
Bond-Lamberty B, Thomson A, 2010. Temperature-associated increases in the global soil respiration record. Nature 4647288. : 579-U132, https://doi.org/10.1038/nature08930, place: London Publisher: Nature Publishing Group WOS: 000275974200045.

Boucher, D., Boulanger, Y., Aubin, I., Bernier, P.Y., Beaudoin, A., Guindon, L., Gauthier, S., 2018. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Ecol. Appl. 28 (5), 1245–1259. https://doi.org/10.1002/eap.1724.

Boulanger, Y., Pascual Puigdevall, J., 2021. Boreal forests will be more severely affected by projected anthropogenic climate forcing than mixedwood and northern hardwood forests in eastern Canada. Landsc. Ecol. 36 (6), 1725–1740. https://doi.org/10.1007/s10980-021-01241-7.

Boulanger, Y., Arseneault, D., Morin, H., Jardon, Y., Bertrand, P., Dagneau, C., 2012. Dendrochronological reconstruction of spruce budworm (Choristoneura fumiferana) outbreaks in southern Quebec for the last 400 years1This article is one of a selection of papers from the 7th International Conference on Disturbance Dynamics in Boreal Forests. Can. J. For. Res. 42 (7), 1264–1276. https://doi.org/10.1139/x2012-069 publisher: NRC Research Press.
DOI

Boulanger Y, Gauthier S, Burton PJ, 2014. A refinement of models projecting future canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44(4): 365-376, https://doi.org/10.1139/cjfr-2013-0372, publisher: NRC Research Press.

Boulanger, Y., Taylor, A.R., Price, D.T., Cyr, D., McGarrigle, E., Rammer, W., SainteMarie, G., Beaudoin, A., Guindon, L., Mansuy, N., 2017. Climate change impacts on forest landscapes along the canadian southern boreal forest transition zone. Landsc. Ecol. 32 (7), 1415–1431. https://doi.org/10.1007/s10980-016-0421-7.

Brecka, A.F., Shahi, C., Chen, H.Y., 2018. Climate change impacts on boreal forest timber supply. For. Pol. Econ. 92, 11–21. https://doi.org/10.1016/j.forpol.2018.03.010.

Brecka, A.F., Boulanger, Y., Searle, E.B., Taylor, A.R., Price, D.T., Zhu, Y., Shahi, C., Chen, H.Y., 2020. Sustainability of Canada's forestry sector may be compromised by impending climate change. For. Ecol. Manag. 474, 352. https://doi.org/10.1016/j.foreco.2020.118352, 118.
DOI

Brice, M.H., Cazelles, K., Legendre, P., Fortin, M.J., 2019. Disturbances amplify tree community responses to climate change in the temperate–boreal ecotone. Global Ecol. Biogeogr. 28 (11), 1668–1681. https://doi.org/10.1111/geb.12971.

Brunet-Navarro, P., Jochheim, H., Cardellini, G., Richter, K., Muys, B., 2021. Climate mitigation by energy and material substitution of wood products has an expiry date. J. Clean. Prod. 303, 127026. https://doi.org/10.1016/j.jclepro.2021.127026.

Bédard, S., Majcen, Z., 2003. Growth following single-tree selection cutting in québec northern hardwoods. For. Chron. 79 (5), 898–905. https://doi.org/10.5558/tfc79898-5.

Bédard, S., Guillemette, F., Raymond, P., Tremblay, S., Larouche, C., Deblois, J., 2014. Rehabilitation of northern hardwood stands using multicohort silvicultural scenarios in québec. J. For. 112. https://doi.org/10.5849/jof.13-035

Chen, J., Ter-Mikaelian, M.T., Ng, P.Q., Colombo, S.J., 2018a. Ontario's managed forests and harvested wood products contribute to greenhouse gas mitigation from 2020 to 2100. For. Chron. 94 (3), 269–282. https://doi.org/10.5558/tfc2018-040 publisher: Canadian Institute of Forestry.

Chen, J., Ter-Mikaelian, M.T., Yang, H., Colombo, S.J., 2018b. Assessing the greenhouse gas effects of harvested wood products manufactured from managed forests in Canada. Forestry: Int. J. Financ. Res. 91 (2), 193–205. https://doi.org/10.1093/forestry/cpx056.

Denman, K.L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.M., Dickinson, R.E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., Archer, D., Arora, V., Austin, J., Baker, D., Berry, J.A., Betts, R., Bonan, G., Bousquet, P., Canadell, J., Christian, J., Clark, D.A., Dameris, M., Dentener, F., Easterling, D., Eyring, V., Feichter, J., Friedlingstein, P., Fung, I., Fuzzi, S., Gong, S., Gruber, N., Guenther, A., Gurney, K., Henderson-Sellers, A., House, J., Jones, A., Jones, C., K€ archer, B., Kawamiya, M., Lassey, K., Leck, C., Lee-Taylor, J., Malhi, Y., Masarie, K., McFiggans, G., Menon, S., Miller, J.B., Peylin, P., Pitman, A., Quaas, J., Raupach, M., Rayner, P., Rehder, G., Riebesell, U., Rodenbeck, C., Rotstayn, L., € Roulet, N., Sabine, C., Schultz, M.G., Schulz, M., Schwartz, S.E., Steffen, W., Stevenson, D., Tian, Y., Trenberth, K.E., Noije, T.V., Wild, O., Zhang, T., Zhou, L., Boonpragob, K., Heimann, M., Molina, M.,, 2007. Couplings between changes in the climate system and biogeochemistry. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds. ), Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Techreport of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 500–588 chap. 7.

Dugan, A.J., Birdsey, R., Mascorro, V.S., Magnan, M., Smyth, C.E., Olguin, M., Kurz, W.A., 2018. A systems approach to assess climate change mitigation options in landscapes of the United States forest sector. Carbon Bal. Manag. 13 (1), 13. https://doi.org/10.1186/s13021-018-0100-x.

Dymond, C., Beukema, S., Scheller, R.,, 2021. LANDIS-II forest carbon succession extension version 2.2 user's guide. URL. https://landis-ii-foundation.github.io/Extension-ForCS-Succession/.
Dymond, C.C., Beukema, S., Nitschke, C.R., Coates, K.D., Scheller, R.M., 2016. Carbon sequestration in managed temperate coniferous forests under climate change. Biogeosciences 13 (6), 1933. https://doi.org/10.5194/bg-13-1933-2016, 1947.
DOI
Environment and Climate Change Canada,, 2020. National Inventory 1990-2018: Greenhouse Gas Sources and Sinks in canada.
Environment and Climate Change Canada,, 2021. National Inventory 1990-2019: Greenhouse Gas Sources and Sinks in canada - Part 2.

Friedlingstein, P., Jones, M.W., O'Sullivan, M., Andrew, R.M., Hauck, J., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D.C.E., Canadell, J.G., Ciais, P., Jackson, R.B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L.P., Currie, K.I., Feely, R.A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D.S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R.A., Hurtt, G., Ilyina, T., Jain, A.K., Joetzjer, E., Kaplan, J.O., Kato, E., Klein Goldewijk, K., Korsbakken, J.I., Landschützer, P., Lauvset, S.K., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P.C., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P.P., Tian, H., Tilbrook, B., Tubiello, F.N., van der Werf, G.R., Wiltshire, A.J., Zaehle, S., 2019. Global carbon budget 2019. Earth Syst. Sci. Data 11(4): 1783-1838, https://doi.org/10.5194/essd-11-1783-2019.

Fundation, T.L.I.,, 2018. LANDIS-II model v7.0 conceptual description. URL. http://sites.google.com/install.

Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A.Z., Schepaschenko, D.G., 2015. Boreal forest health and global change American Association for the Advancement of Science section: review. Science 349 (6250), 819–822. https://doi.org/10.1126/science.aaa9092.

Goldblum, D., Rigg, L., 2010. The deciduous forest – boreal forest ecotone. Geogr. Compass 4, 701–717. https://doi.org/10.1111/j.1749-8198.2010.00342.x.

Gonsamo, A., Chen, J.M., Colombo, S.J., Ter-Mikaelian, M.T., Chen, J., 2017. Global change induced biomass growth offsets carbon released via increased forest fire and respiration of the central canadian boreal forest. J. Geophys. Res. : Biogeosciences 122 (5), 1275–1293. https://doi.org/10.1002/2016JG003627.

Grassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., Penman, J., 2017. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7 (3), 220–226. https://doi.org/10.1038/nclimate3227.

Gustafson, E.J., Shifley, S.R., Mladenoff, D.J., Nimerfro, K.K., He, H.S., 2000. Spatial simulation of forest succession and timber harvesting using LANDIS. Can. J. For. Res. 30 (1), 32–43. https://doi.org/10.1139/x99-188.

Gustavsson, L., Haus, S., Lundblad, M., Lundström, A., Ortiz, C.A., Sathre, R., Truong, N.L., Wikberg, P.E., 2017. Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renew. Sustain. Energy Rev. 67, 612–624. https://doi.org/10.1016/j.rser.2016.09.056.

Harmon, M.E., 2019. Have product substitution carbon benefits been overestimated? Asensitivity analysis of key assumptions. Environ. Res. Lett. 14 (6). https://doi.org/10.1088/1748-9326/ab1e95, 065008.
DOI

Head, M., Bernier, P., Levasseur, A., Beauregard, R., Margni, M., 2019. Forestry carbonbudget models to improve biogenic carbon accounting in life cycle assessment.J. Clean. Prod. 213, 289–299. https://doi.org/10.1016/j.jclepro.2018.12.122.

Head, M., Levasseur, A., Beauregard, R., Margni, M., 2020. Dynamic greenhouse gas lifecycle inventory and impact profiles of wood used in Canadian buildings. Build.Environ. 173. https://doi.org/10.1016/j.buildenv.2020.106751.

Head, M., Magnan, M., Kurz, W.A., Levasseur, A., Beauregard, R., Margni, M., 2021. Temporally-differentiated biogenic carbon accounting of wood building product life cycles. SN Appl. Sci. 3 (1), 62. https://doi.org/10.1007/s42452-020-03979-2.

Heffner, J., Steenberg, J., Leblon, B., 2021. Comparison between empirical models and the CBM-CFS3 carbon budget model to predict carbon stocks and yields in Nova scotia forests. Forests 12 (9), 1235. https://doi.org/10.3390/f12091235.

Heinonen, T., Pukkala, T., Mehtätalo, L., Asikainen, A., Kangas, J., Peltola, H., 2017. Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry. For. Pol. Econ. 80, 80–98. https://doi.org/10.1016/j.forpol.2017.03.011.

Hennigar, C., MacLean, D., Quiring, D., Kershaw, J., 2008. Differences in spruce budwormdefoliation among balsam fir and white, red, and black spruce. For. Sci. 54, 158–166.

Hennigar, C.R.H.R., MacLean, D.A.M.A., 2010. Spruce budworm and management effectson forest and wood product carbon for an intensively managed forest. Can. J. For.Res. https://doi.org/10.1139/X10-104.

Howard, C., Dymond, C.C., Griess, V.C., Tolkien-Spurr, D., van Kooten, G.C., 2021. Woodproduct carbon substitution benefits: a critical review of assumptions. Carbon Bal.Manag. 16 (1), 9. https://doi.org/10.1186/s13021-021-00171-w.

IPCC, 2006. IPCC guidelines for national greenhouse gas inventory. In: Tech. rep. IPCC.

IPCC, 2014. 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol. Tech. Rep. Institute for Global Environmental Strategies, Kanagawa, Japan.

Kenefic, L.S., Bataineh, M., Wilson, J.S., Brissette, J.C., Nyland, R.D., 2014. Silviculturalrehabilitation of cutover mixedwood stands. J. For. 112 (3), 261–271. https://doi.org/10.5849/jof.13-033.

Kilpeläinen, A., Torssonen, P., Strandman, H., Kellomäki, S., Asikainen, A., Peltola, H., 2016. Net climate impacts of forest biomass production and utilization in managed boreal forests. GCB Bioenergy 8 (2), 307–316. https://doi.org/10.1111/gcbb.12243.

Krishna, M.P., Mohan, M., 2017. Litter decomposition in forest ecosystems: a review.Energy, Ecol. Environ. 2 (4), 236–249. https://doi.org/10.1007/s40974-017-0064-9.

Kurz, W., Shaw, C., Boisvenue, C., Stinson, G., Metsaranta, J., Leckie, D., Dyk, A., Smyth, C., Neilson, E., 2013. Carbon in Canada's boreal forest — a synthesis. Environ.Rev. 21 (4), 260–292. https://doi.org/10.1139/er-2013-0041.

Kurz, W.A., Dymond, C.C., White, T.M., Stinson, G., Shaw, C.H., Rampley, G.J., Smyth, C., Simpson, B.N., Neilson, E.T., Trofymow, J.A., Metsaranta, J., Apps, M.J., 2009. CBMCFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Model. 220 (4), 480–504. https://doi.org/10.1016/j.ecolmodel.2008.10.018.

Laganière, J., Paré, D., Thiffault, E., Bernier, P.Y., 2017. Range and uncertainties in estimating delays in greenhouse gas mitigation potential of forest bioenergy sourced from canadian forests. GCB Bioenergy 9 (2), 358–369. https://doi.org/10.1111/gcbb.12327.

Laiho, O., Lähde, E., Pukkala, T., 2011. Uneven- vs even-aged management in Finnish boreal forests. Forestry: Int. J. Financ. Res. 84 (5), 547–556. https://doi.org/10.1093/forestry/cpr032.

Landry, G., Thiffault, E., Cyr, D., Moreau, L., Boulanger, Y., Dymond, C., 2021. Mitigation potential of ecosystem-based forest management under climate change: a case study in the boreal-temperate forest ecotone. Forests 12 (12), 1667. https://doi.org/10.3390/f12121667.

Levasseur, A., Lesage, P., Margni, M., Desch^ enes, L., Samson, R., 2010. Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ. Sci. Technol. 44 (8), 3169–3174. https://doi.org/10.1021/es9030003.

Levasseur, A., Brandão, M., Lesage, P., Margni, M., Pennington, D., Clift, R., Samson, R., 2012a. Valuing temporary carbon storage. Nat. Clim. Change 2 (1), 6–8. https://doi.org/10.1038/nclimate1335.

Levasseur, A., Lesage, P., Margni, M., Brand~ ao, M., Samson, R., 2012b. Assessingtemporary carbon sequestration and storage projects through land use, land-usechange and forestry: comparison of dynamic life cycle assessment with ton-yearapproaches. Climatic Change 115 (3), 759–776. https://doi.org/10.1007/s10584-012-0473-x.

Lexer, M.J., Hönninger, K., 2001. A modified 3d-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. For. Ecol. Manag. 144 (1), 43–65. https://doi.org/10.1016/S0378-1127(00)00386-8.

Lundmark, T., Bergh, J., Hofer, P., Lundström, A., Nordin, A., Poudel, B.C., Sathre, R., Taverna, R., Werner, F., 2014. Potential roles of Swedish forestry in the context ofclimate change mitigation. Forests 5 (4), 557–578. https://doi.org/10.3390/f5040557.

Lundmark, T., Bergh, J., Nordin, A., Fahlvik, N., Poudel, B.C., 2016. Comparison of carbon balances between continuous-cover and clear-cut forestry in Sweden. Ambio 45, 203–213. https://doi.org/10.1007/s13280-015-0756-3.

MacLean, D., Porter, K., Quiring, D., Hennigar, C., 2007. Optimized harvest planning under alternative foliage-protection scenarios to reduce volume losses to spruce budworm. Can. J. For. Res. 37, 1755–1769. https://doi.org/10.1139/X07-001.

Malhi, Y., Baldocchi, D.D., Jarvis, P.G., 1999. The carbon balance of tropical, temperateand boreal forests. Plant Cell Environ. 22 (6), 715–740. https://doi.org/10.1046/j.1365-3040.1999.00453.x.

McKenney, D., Pedlar, J., Hutchinson, M., Papadopol, P., Lawrence, K., Campbell, K., Milewska, E., Hopkinson, R.F., Price, D., 2013. Spatial climate models for Canada'sforestry community. For. Chron. 89 (5), 659–663. https://doi.org/10.5558/tfc2013-118.

Messier, C., Bauhus, J., Doyon, F., Maure, F., Sousa-Silva, R., Nolet, P., Mina, M., Aquilué, N., Fortin, M.J., Puettmann, K., 2019. The functional complex networkapproach to foster forest resilience to global changes. For. Ecosyst. 6 (1), 21. https://doi.org/10.1186/s40663-019-0166-2.

Metsaranta, J., Shaw, C., Kurz, W., Boisvenue, C., Morken, S., 2017. Uncertainty ofinventory-based estimates of the carbon dynamics of Canada's managed forest(1990–2014). Can. J. For. Res. 47 (8), 1082–1094. https://doi.org/10.1139/cjfr-2017-0088.

Mina, M., Messier, C., Duveneck, M., Fortin, M.J., Aquilué, N., 2021. Network analysiscan guide resilience-based management in forest landscapes under global change.Ecol. Appl. 31 (1), e2221. https://doi.org/10.1002/eap.2221.

Mladenoff, D., He, H., 1999. Design, behavior and applications of LANDIS, an objectoriented model of forest landscape disturbance and succession. In: Mladenoff, David, Baker, W.L. (Eds. ), Spatial Modeling of Forest Landscape Change: Approaches and Applications. Cambridge University Press, pp. 125–162 chap. 6.
Ouranos, C.,, 2021. Portraits climatiques. URL. https://www.ouranos.ca/portraits-climatiques/.

Paradis, L., Thiffault, E., Achim, A., 2019. Comparison of carbon balance and climatechange mitigation potential of forest management strategies in the boreal forest ofquebec (Canada). Forestry: Int. J. Financ. Res. 92 (3), 264–277. https://doi.org/10.1093/forestry/cpz004.

Payne, N.J., Allan Cameron, D., Leblanc, J.D., Morrison, I.K., 2019. Carbon storage andnet primary productivity in Canadian boreal mixedwood stands. J. For. Res. 30 (5), 1667–1678. https://doi.org/10.1007/s11676-019-00886-0.

Peng, Y., Thomas, S., Tian, D., 2008. Forest management and soil respiration: implicationsfor carbon sequestration. Environ. Rev. 16, 93–111. https://doi.org/10.1139/A08-003.

Pingoud, K., Ekholm, T., Soimakallio, S., Helin, T., 2016. Carbon balance indicator forforest bioenergy scenarios. GCB Bioenergy 8 (1), 171–182. https://doi.org/10.1111/gcbb.12253.

Poudel, B.C., Sathre, R., Bergh, J., Gustavsson, L., Lundström, A., Hyvönen, R., 2012.Potential effects of intensive forestry on biomass production and total carbon balancein north-central Sweden. Environ. Sci. Pol. 15 (1), 106–124. https://doi.org/10.1016/j.envsci.2011.09.005.

Prévost, M., Charette, L., 2019. Rehabilitation silviculture in a high-graded temperatemixedwood stand in quebec, Canada. N. For. 50 (4), 677–698. https://doi.org/10.1007/s11056-018-9690-0.

Pugh, T.A.M., Arneth, A., Kautz, M., Poulter, B., Smith, B., 2019. Important role of forestdisturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 12 (9), 730–735. https://doi.org/10.1038/s41561-019-0427-2.

Pukkala, T., 2014. Does biofuel harvesting and continuous cover management increasecarbon sequestration? For. Pol. Econ. 43, 41–50. https://doi.org/10.1016/j.forpol.2014.03.004.

Pukkala, T., 2018. Carbon forestry is surprising. For. Ecosyst. 5. https://doi.org/10.1186/s40663-018-0131-5.

Québec, 2013. Loi sur l'aménagement durable du territoire forestier A-18.1. Éditeur officiel du québec. URL. http://legisquebec.gouv.qc.ca/fr/showdoc/cs/a-18.1.

Rüter, S., Matthews, R., Lundblad, M., Sato, A., Hassan, R.,, 2019. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. In: Chapter 12 : Harvested Wood Products. Tech. Rep., vol. 4. IPCC.

Sathre, R., O'Connor, J., 2010. Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ. Sci. Pol. 13 (2), 104–114. https://doi.org/10.1016/j.envsci.2009.12.005.

Saucier, J.P., Bergeron, J.F., Grondin, P., Robitaille, A., 1998. Les régions écologiques du québec méridional: un des éléments du système hiérarchique de classification écologique du territoire mis au point par le ministère des ressources naturelles. MNRQ Supplément 1–12.

Scheller, R.M., Domingo, J.B., Sturtevant, B.R., Williams, J.S., Rudy, A., Gustafson, E.J., Mladenoff, D.J., 2007. Design, development, and application of LANDIS-II, a spatiallandscape simulation model with flexible temporal and spatial resolution. Ecol.Model. 201 (3), 409–419. https://doi.org/10.1016/j.ecolmodel.2006.10.009.

Seppälä, J., Heinonen, T., Pukkala, T., Kilpeläinen, A., Mattila, T., Myllyviita, T., Asikainen, A., Peltola, H., 2019. Effect of increased wood harvesting and utilizationon required greenhouse gas displacement factors of wood-based products and fuels.J. Environ. Manag. 247, 580–587. https://doi.org/10.1016/j.jenvman.2019.06.031.

Shaw, C.H., Hilger, A.B., Metsaranta, J., Kurz, W.A., Russo, G., Eichel, F., Stinson, G., Smyth, C., Filiatrault, M., 2014. Evaluation of simulated estimates of forest ecosystem carbon stocks using ground plot data from Canada's National Forest Inventory. Ecol. Model. 272, 323–347. https://doi.org/10.1016/j.ecolmodel.2013.10.005.

Skog, K.E., 2008. Sequestration of carbon in harvested wood products for the UnitedStates. For. Prod. J. 58 (6), 56–72. June 2008.

Skytt, T., Englund, G., Jonsson, B.G., 2021. Climate mitigation forestry—temporal tradeoffs. Environ. Res. Lett. 16 (11). https://doi.org/10.1088/1748-9326/ac30fa publisher: IOP Publishing.
DOI
Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N., Rice, C., Robledo Abad, C., Romanovskaya, A., Sperling, F., Tubiello, F.,, 2014. Climate Change 2014 Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Techreport of the Intergovernmental Panel on Climate Change. Tech. Rep. Cambridge University Press. https://doi.org/10.1017/CBO9781107415416.
DOI

Smyth, C., Rampley, G., Lemprière, T.C., Schwab, O., Kurz, W.A., 2017. Estimating product and energy substitution benefits in national-scale mitigation analyses for Canada. GCB Bioenergy 9 (6), 1071–1084. https://doi.org/10.1111/gcbb.12389.

Smyth, C.E., Stinson, G., Neilson, E., Lemprière, T.C., Hafer, M., Rampley, G.J., Kurz, W.A., 2014. Quantifying the biophysical climate change mitigation potential of Canada's forest sector. Biogeosciences 11 (13), 3515–3529. https://doi.org/10.5194/ bg-11-3515-2014.

Smyth, C.E., Smiley, B.P., Magnan, M., Birdsey, R., Dugan, A.J., Olguin, M., Mascorro, V.S., Kurz, W.A., 2018. Climate change mitigation in Canada's forest sector: a spatially explicit case study for two regions. Carbon Bal. Manag. 13 (1), 11. https://doi.org/10.1186/s13021-018-0099-z.

Steenberg, J.W.N., Duinker, P.N., Bush, P.G., 2013. Modelling the effects of climatechange and timber harvest on the forests of central nova scotia, Canada. Ann. For. Sci.70 (1), 61–73. https://doi.org/10.1007/s13595-012-0235-y.

Sturtevant, B.R., Gustafson, E.J., Li, W., He, H.S., 2004. Modeling biological disturbances in LANDIS: a module description and demonstration using spruce budworm. Ecol. Model. 180 (1), 153–174. https://doi.org/10.1016/j.ecolmodel.2004.01.021.

Sun, M., Wang, Y., Shi, L., Klemeš, J.J., 2018. Uncovering energy use, carbon emissionsand environmental burdens of pulp and paper industry: a systematic review andmeta-analysis. Renew. Sustain. Energy Rev. 92, 823–833. https://doi.org/10.1016/j.rser.2018.04.036.

Taylor, A.R., Boulanger, Y., Price, D.T., Cyr, D., McGarrigle, E., Rammer, W., Kershaw, J.A., 2017. Rapid 21st century climate change projected to shiftcomposition and growth of Canada's Acadian Forest Region. For. Ecol. Manag. 405, 284–294. https://doi.org/10.1016/j.foreco.2017.07.033.

Ter-Mikaelian, M.T., Colombo, S.J., Chen, J., 2021. Harvest volumes and carbon stocks inboreal forests of Ontario, Canada. For. Chron. 97 (2), 168–178. https://doi.org/10.5558/tfc2021-018 publisher: Canadian Institute of Forestry.
DOI
Tremblay, J.A., Boulanger, Y., Cyr, D., Taylor, A.R., Price, D.T., St-Laurent, M.H., 2018. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest. PLoS One 13 (2), e0191. https://doi.org/10.1371/journal.pone.0191645, 645.
DOI

Valade, A., Bellassen, V., Magand, C., Luyssaert, S., 2017. Sustaining the sequestrationefficiency of the european forest sector. For. Ecol. Manag. 405, 44–55. https://doi.org/10.1016/j.foreco.2017.09.009.

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., 2011. The representative concentration pathways: an overview. Climatic Change 109 (1), 5. https://doi.org/10.1007/s10584-011-0148-z.

Wang, Z., Grant, R.F., Arain, M.A., Chen, B.N., Coops, N., Hember, R., Kurz, W.A., Price, D.T., Stinson, G., Trofymow, J.A., Yeluripati, J., Chen, Z., 2011. Evaluatingweather effects on interannual variation in net ecosystem productivity of a coastaltemperate forest landscape: a model intercomparison. Ecol. Model. 222 (17), 3236–3249. https://doi.org/10.1016/j.ecolmodel.2011.06.005.

White, T., Luckai, N., Larocque, G., Kurz, W., Smyth, C., 2008. A practical approach forassessing the sensitivity of the carbon budget model of the Canadian forest sector(CBM-CFS3). Ecol. Model. 219, 373–382. https://doi.org/10.1016/j.ecolmodel.2008.07.012.

Whitman, E., Parisien, M.A., Thompson, D.K., Flannigan, M.D.,, 2019. Short-interval wildfire and drought overwhelm boreal forest resilience. In: Scientific techreports, 9, pp. 18–796. https://doi.org/10.1038/s41598-019-55036-7, 1.
DOI

Xu, Z., Smyth, C.E., Lemprière, T.C., Rampley, G.J., Kurz, W.A., 2018. Climate changemitigation strategies in the forest sector: biophysical impacts and economicimplications in british columbia, Canada. Mitig. Adapt. Strategies Glob. Change 23(2), 257–290. https://doi.org/10.1007/s11027-016-9735-7.

Zubizarreta-Gerendiain, A., Pukkala, T., Peltola, H., 2016. Effects of wood harvesting andutilisation policies on the carbon balance of forestry under changing climate: aFinnish case study. For. Pol. Econ. 62, 168–176.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Published: 14 March 2022
Issue date: April 2022

Copyright

© 2022 Beijing Forestry University.

Acknowledgements

Acknowledgements

Authors would like to thank Julie Bouliane and Dany Senay, respectively from Forêt Montmorency and Forêt Hereford, for their help in defining forest management scenarios.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return