Journal Home > Volume 9 , Issue 2
Background

The characterization of surface and canopy fuel loadings in fire-prone pine ecosystems is critical for understanding fire behavior and anticipating the most harmful ecological effects of fire. Nevertheless, the joint consideration of both overstory and understory strata in burn severity assessments is often dismissed. The aim of this work was to assess the role of total, overstory and understory pre-fire aboveground biomass (AGB), estimated by means of airborne Light Detection and Ranging (LiDAR) and Landsat data, as drivers of burn severity in a megafire occurred in a pine ecosystem dominated by Pinus pinaster Ait. in the western Mediterranean Basin.

Results

Total and overstory AGB were more accurately estimated (R2 equal to 0.72 and 0.68, respectively) from LiDAR and spectral data than understory AGB (R2 ​= ​0.26). Density and height percentile LiDAR metrics for several strata were found to be important predictors of AGB. Burn severity responded markedly and non-linearly to total (R2 ​= ​0.60) and overstory (R2 ​= ​0.53) AGB, whereas the relationship with understory AGB was weaker (R2 ​= ​0.21). Nevertheless, the overstory plus understory AGB contribution led to the highest ability to predict burn severity (RMSE ​= ​122.46 in dNBR scale), instead of the joint consideration as total AGB (RMSE ​= ​158.41).

Conclusions

This study novelty evaluated the potential of pre-fire AGB, as a vegetation biophysical property derived from LiDAR, spectral and field plot inventory data, for predicting burn severity, separating the contribution of the fuel loads in the understory and overstory strata in Pinus pinaster stands. The evidenced relationships between burn severity and pre-fire AGB distribution in Pinus pinaster stands would allow the implementation of threshold criteria to support decision making in fuel treatments designed to minimize crown fire hazard.


menu
Abstract
Full text
Outline
About this article

Pre-fire aboveground biomass, estimated from LiDAR, spectral and field inventory data, as a major driver of burn severity in maritime pine (Pinus pinaster) ecosystems

Show Author's information José Manuel Fernández-Guisuragaa,b( )Susana Suárez-SeoanecPaulo M. FernandesbVíctor Fernández-GarcíaaAlfonso Fernández-MansodCarmen Quintanoe,fLeonor Calvoa
Area of Ecology, Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, 24071, León, Spain
Centro de Investigação e de Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
Department of Organisms and Systems Biology (Ecology Unit) and Research Unit of Biodiversity (IMIB; UO-CSIC-PA), University of Oviedo, Oviedo, Mieres, Spain
Agrarian Science and Engineering Department, School of Agricultural and Forestry Engineering, University of León, 24400, Ponferrada, Spain
Electronic Technology Department, School of Industrial Engineering, University of Valladolid, 47011, Valladolid, Spain
Sustainable Forest Management Research Institute, University of Valladolid-Spanish National Institute for Agriculture and Food Research and Technology (INIA), 34004, Palencia, Spain

Abstract

Background

The characterization of surface and canopy fuel loadings in fire-prone pine ecosystems is critical for understanding fire behavior and anticipating the most harmful ecological effects of fire. Nevertheless, the joint consideration of both overstory and understory strata in burn severity assessments is often dismissed. The aim of this work was to assess the role of total, overstory and understory pre-fire aboveground biomass (AGB), estimated by means of airborne Light Detection and Ranging (LiDAR) and Landsat data, as drivers of burn severity in a megafire occurred in a pine ecosystem dominated by Pinus pinaster Ait. in the western Mediterranean Basin.

Results

Total and overstory AGB were more accurately estimated (R2 equal to 0.72 and 0.68, respectively) from LiDAR and spectral data than understory AGB (R2 ​= ​0.26). Density and height percentile LiDAR metrics for several strata were found to be important predictors of AGB. Burn severity responded markedly and non-linearly to total (R2 ​= ​0.60) and overstory (R2 ​= ​0.53) AGB, whereas the relationship with understory AGB was weaker (R2 ​= ​0.21). Nevertheless, the overstory plus understory AGB contribution led to the highest ability to predict burn severity (RMSE ​= ​122.46 in dNBR scale), instead of the joint consideration as total AGB (RMSE ​= ​158.41).

Conclusions

This study novelty evaluated the potential of pre-fire AGB, as a vegetation biophysical property derived from LiDAR, spectral and field plot inventory data, for predicting burn severity, separating the contribution of the fuel loads in the understory and overstory strata in Pinus pinaster stands. The evidenced relationships between burn severity and pre-fire AGB distribution in Pinus pinaster stands would allow the implementation of threshold criteria to support decision making in fuel treatments designed to minimize crown fire hazard.

Keywords: Aboveground biomass, LiDAR, Landsat, Burn severity, Pinus pinaster

References(131)

Alonzo, M., Dial, R.J., Schulz, B.K., Andersen, H. -E., Lewis-Clark, E., Cook, B.D., Morton, D.C., 2020. Mapping tall shrub biomass in Alaska at landscape scale using structure-from-motion photogrammetry and lidar. Remote Sens. Environ. 245, 111841.

Amato, V.J., Lightfoot, D., Stropki, C., Pease, M., 2013. Relationships between tree stand density and burn severity as measured by the Composite Burn Index following a ponderosa pine forest wildfire in the American Southwest. Forest Ecol. Manag. 302, 71-84.

Arkle, R.S., Pilliod, D.S., Welty, J.L., 2012. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests. Forest Ecol. Manag. 276, 174-184.

Avitabile, V., Baccini, A., Friedl, M.A., Schmullius, C., 2012. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 117, 366-380.

Bastos, A., Gouveia, C.M., DaCamara, C.C., Trigo, R.M., 2011. Modelling post-fire vegetation recovery in Portugal. Biogeosciences 8, 3593-3607.

Bell, D.M., Gregory, M.J., Kane, V., Kane, J., Kennedy, R.E., Roberts, H.M., Yang, Z., 2018. Multiscale divergence between Landsat- and lidar-based biomass mapping is related to regional variation in canopy cover and composition. Carbon Balance Manag. 13, 15.

Bivand, R., Keitt, T., Rowlingson, B., 2021. rgdal: Bindings for the 'Geospatial' Data Abstraction Library R package version 15-23. https://CRANR-projectorg/package=rgdal (accessed 13 March 2021).

Botequim, B., Zubizarreta-Gerendiain, A., Garcia-Gonzalo, J., Silva, A., Marques, S., Fernandes, P.M., Pereira, J.M.C., Tomé, M., 2015. A model of shrub biomass accumulation as a tool to support management of Portuguese forests. iForest 8, 114-125.

Bouvier, M., Durrieu, S., Fournier, R.A., Renaud, J. -P., 2015. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens. Environ. 156, 322-334.

Breiman, L., 2001. Random forests. Machine Learn. 45, 5-32.

Carlson, T.N., Ripley, D.A., 1997. On the relation between NDVI, fractional vegetation cover, and Leaf Area Index. Remote Sens. Environ. 62, 241-252.

Castedo-Dorado, F., Gómez-Vázquez, I., Fernandes, P.M., Crecente-Campo, F., 2012. Shrub fuel characteristics estimated from overstory variables in NW Spain pine stands. Forest Ecol. Manag. 275, 130-141.

Chen, Q., 2013. Lidar remote sensing of vegetation biomass, In: Wang, G., Weng, Q. (Eds. ), Remote Sensing of Natural Resources. Taylor and Francis, London, pp. 399-420.

Chergui, B., Fahd, S., Santos, X., Pausas, J.G., 2018. Socioeconomic factors drive fire regime variability in the Mediterranean Basin. Ecosystems 21, 619-628.

Cocke, A.E., Fulé, P.Z., Crouse, J.E., 2005. Comparison of burn severity assessments using differenced normalized burn ratio and ground data. Int. J. Wildland Fire 14, 189-198.

Coppoletta, M., Merriam, K., Collins, B., 2016. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol. Appl. 26, 686-699.

Corona, P., Ascoli, D., Barbati, A., Bovio, G., Colangelo, G., Elia, M., Garfi, V., Iovino, F., Lafortezza, R., Leone, V., Lovreglio, R., Marchetti, M., Marchi, E., Menguzzato, G., Nocentini, S., Picchio, R., Portoghesi, L., Puletti, N., Sanesi, G., Chianucci, F., 2015. Integrated forest management to prevent wildfires under Mediterranean environments. Ann. Silvicult. Res. 39, 1-22.

Cruz, M.G., Alexander, M.E., Wakimoto, R.H., 2004. Modeling the likelihood of crown fire occurrence in conifer forest stands. Forest Sci. 50, 640-658.

Csillik, O., Kumar, P., Mascaro, J., O'Shea, T., Asner, G.P., 2019. Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Sci. Rep. -UK 9, 17831.

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J., 2007. Random forests for classification in ecology. Ecology 88, 2783-2792.

Deo, R.K., Russell, M.B., Domke, G.M., Woodall, C.W., Falkowski, M.J., Cohen, W.B., 2017. Using landsat time-series and LiDAR to inform aboveground forest biomass baselines in Northern Minnesota, USA. Can. J. Remote Sens. 43, 28-47.

Domingo, D., Lamelas, M.T., Montealegre, A.L., García-Martín, A., De la Riva, J., 2018. Estimation of total biomass in Aleppo pine forest stands applying parametric and nonparametric methods to low-density airborne laser scanning data. Forests 9, 158.

Dube, T., Mutanga, O., 2015. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogramm. 101, 36-46.

Estornell, J., Ruiz, L.A., Velázquez-Marti, B., 2011a. Study of shrub cover and height using LIDAR data in a mediterranean area. Forest Sci. 57, 171-179.

Estornell, J., Ruiz, L.A., Velázquez-Martí, B., Fernández-Sarría, A., 2011b. Estimation of shrub biomass by airborne LiDAR data in small forest stands. Forest Ecol. Manag. 26, 1697-1703.

Estornell, J., Ruiz, L.A., Velázquez-Martí, B., Hermosilla, T., 2012. Estimation of biomass and volume of shrub vegetation using LiDAR and spectral data in a Mediterranean environment. Biomass Bioenerg. 46, 710-721.

Evans, J.S., Hudak, A.T., 2007. A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments. IEEE T. Geosci. Remote 45, 1029-1038.

Fensholt, R., Sandholt, I., 2003. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sens. Environ. 87, 111-121.

Fernandes, P.M., Rigolot, E., 2007. The fire ecology and management of maritime pine (Pinus pinaster Ait). Forest Ecol. Manag. 241, 1-13.

Fernandes, P., Luz, A., Loureiro, C., 2010. Changes in wildfire severity from maritime pine woodland to contiguous forest types in the mountains of northwestern Portugal. Forest Ecol. Manag. 260, 883-892.

Fernandes, P.M., Loureiro, C., Guiomar, N., Pezzatti, G.B., Manso, F., Lopes, L., 2014. The dynamics and drivers of fuel and fire in the Portuguese public forest. J. Environ. Manag. 146, 373-382.

Fernandes, P.M., Fernandes, M.M., Loureiro, C., 2015. Post-fire live residuals of maritime pine plantations in Portugal: structure, burn severity, and fire recurrence. Forest Ecol. Manag. 347, 170-179.

Fernández-García, V., Santamarta, M., Fernández-Manso, A., Quintano, C., Marcos, E., Calvo, L., 2018. Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat imagery. Remote Sens. Environ. 206, 205-217.

Fernández-García, V., Marcos, E., Huerta, S., Calvo, L., 2021. Soil-vegetation relationships in Mediterranean forests after fire. For. Ecosyst. 8, 18.

Fernández-Guisuraga, J.M., Suárez-Seoane, S., Calvo, L., 2019. Modeling Pinus pinaster forest structure after a large wildfire using remote sensing data at high spatial resolution. Forest Ecol. Manag. 446, 257-271.

Fernández-Guisuraga, J.M., Suárez-Seoane, S., Calvo, L., 2020. Transferability of vegetation recovery models based on remote sensing across different fire regimes. Appl. Veg. Sci. 23, 441-451.

Fernández-Guisuraga, J.M., Suárez-Seoane, S., Calvo, L., 2021a. Radiative transfer modeling to measure fire impact and forest engineering resilience at short-term. ISPRS J. Photogramm. 176, 30-41.

Fernández-Guisuraga, J.M., Suárez-Seoane, S., García-Llamas, P., Calvo, L., 2021b. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape. J. Environ. Manag. 288, 112462.

Fernández-Guisuraga, J.M., Verrelst, J., Calvo, L., Suárez-Seoane, S., 2021c. Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrieval in heterogeneous ecological systems after fire. Remote Sens. Environ. 255, 112304.

Fernández-Guisuraga, J.M., Calvo, L., Fernandes, P.M., Suárez-Seoane, S., 2022. Short-term recovery of the aboveground carbon stock in Iberian shrublands at the extremes of an environmental gradient and as a function of burn severity. Forests 13, 145.

Fernandez-Manso, A., Quintano, C., Roberts, D.A., 2019. Burn severity analysis in Mediterranean forests using maximum entropy model trained with EO-1 Hyperion and LiDAR data. ISPRS J. Photogramm. 155, 102-118.

Ferraz, A., Saatchi, S., Mallet, C., Jacquemoud, S., Gonçalves, G., Silva, C.A., Soares, P., Tomé, M., Pereira, L., 2016. Airborne Lidar estimation of aboveground forest biomass in the absence of field inventory. Remote Sens. -Basel. 8, 653.

García, M., Riaño, D., Chuvieco, E., Danson, F.M., 2010. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens. Environ. 114, 816-830.

Garcia, M., Saatchi, S., Casas, A., Koltunov, A., Ustin, S., Ramirez, C., Garcia-Gutierrez, J., Balzter, H., 2017. Quantifying biomass consumption and carbon release from the California Rim fire by integrating airborne LiDAR and Landsat OLI data. J. Geophys. Res. -Biogeo. 122, 340-353.

García-Llamas, P., Suárez-Seoane, S., Taboada, A., Fernández-Manso, A., Quintano, C., Fernández-García, V., Fernández-Guisuraga, J.M., Marcos, E., Calvo, L., 2019. Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. Forest Ecol. Manag. 433, 24-32.

García-Llamas, P., Suárez-Seoane, S., Fernández-Manso, A., Quintano, C., Calvo, L., 2020. Evaluation of fire severity in fire prone-ecosystems of Spain under two different environmental conditions. J. Environ. Manag. 271, 110706.

Glenn, N.F., Spaete, L.P., Sankey, T.T., Derryberry, D.R., Hardegree, S.P., Mitchell, J.J., 2011. Errors in LiDAR-derived shrub height and crown area on sloped terrain. J. Arid Environ. 75, 377-382.

Gómez-Vázquez, I., Crecente-Campo, F., Diéguez-Aranda, U., Castedo-Dorado, F., 2013. Modelling canopy fuel variables in Pinus pinaster Ait and Pinus radiata D. Don stands in northwestern Spain. Ann. Forest Sci. 70, 161-172.

González-De Vega, S., De las Heras, J., Moya, D., 2016. Resilience of Mediterranean terrestrial ecosystems and fire severity in semiarid areas: Responses of Aleppo pine forests in the short, mid and long term. Sci. Total Environ. 573, 1171-1177.

Greaves, H.E., Vierling, L.A., Eitel, J.U.H., Boelman, N.T., Magney, T.S., Prager, C.M., Griffin, K.L., 2016. High-resolution mapping of aboveground shrub biomass in Arctic tundra using airborne lidar and imagery. Remote Sens. Environ. 184, 361-373.

Guerra-Hernández, J., Pascual, A., 2021. Using GEDI lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in Spain. For. Ecosyst. 8, 14.

Harris, L., Taylor, A.H., 2015. Topography, fuels, and fire exclusion drive fire severity of the rim fire in an old-growth mixed-conifer forest, Yosemite National Park, USA. Ecosystems 18, 1192-1208.

Harris, L., Taylor, A.H., 2017. Previous burns and topography limit and reinforce fire severity in a large wildfire. Ecosphere 8, e02019.

Healey, S.P., Yang, Z., Gorelick, N., Ilyushchenko, S., 2020. Highly local model calibration with a new GEDI LiDAR asset on google earth engine reduces Landsat forest height signal saturation. Remote Sens. -Basel. 12, 2840.

Heiskanen, J., Adhikari, H., Piiroinen, R., Packalen, P., Pellikka, P.K.E., 2019. Do airborne laser scanning biomass prediction models benefit from Landsat time series, hyperspectral data or forest classification in tropical mosaic landscapes? Int. J. Appl. Earth Obs. 81, 176-185.

Hijmans, R.J., 2021. raster: Geographic Data Analysis and Modeling R package version 34-10 https://CRANR-projectorg/package=raster (accessed 13 March 2021).

Hill, R.A., Broughton, R.K., 2009. Mapping the understorey of deciduous woodland from leaf-on and leaf-off airborne LiDAR data: A case study in lowland Britain. ISPRS J. Photogramm. 64, 223-233.

Holden, Z.A., Morgan, P., Evans, J.S., 2009. A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern US wilderness area. Forest Ecol. Manag. 258, 2399-2406.

Hudak, A.T., Strand, E.K., Vierling, L.A., Byrne, J.C., Eitel, J.U.H., Martinuzzi, S., Falkowski, M.J., 2012. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sens. Environ. 123, 25-40.

Jiménez, E., Vega, J.A., Fernández-Alonso, J.M., Vega-Nieva, D., Ortiz, L., López-Serrano, P.M., López-Sánchez, C.A., 2017. Estimation of aboveground forest biomass in Galicia (NW Spain) by the combined use of LiDAR, LANDSAT ETM+ and National Forest Inventory data. iForest 10, 590-596.

Kane, V.R., McGaughey, R.J., Bakker, J.D., Gersonde, R.F., Lutz, J.A., Franklin, J.F., 2010. Comparisons between field- and LiDAR-based measures of stand structural complexity. Can. J. For. Res. 40, 761-773.

Kane, V.R., Lutz, J.A., Roberts, S.L., Smith, D.F., McGaughey, R.J., Povak, N.A., Brooks, M.L., 2013. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park. Forest Ecol. Manag. 287, 17-31.

Kane, V.R., Lutz, J.A., Cansler, C.A., Povak, N.A., Churchill, D.J., Smith, D.F., Kane, J.T., North, M.P., 2015a. Water balance and topography predict fire and forest structure patterns. Forest Ecol. Manag. 338, 1-13.

Kane, V.R., Cansler, C.A., Povak, N.A., Kane, J.T., McGaughey, R.J., Lutz, J.A., Churchill, D.J., North, M.P., 2015b. Mixed severity fire effects within the Rim fire: relative importance of local climate, fire weather, topography, and forest structure. Forest Ecol. Manag. 358, 62-79.

Karlson, M., Ostwald, M., Reese, H., Sanou, J., Tankoano, B., Mattsson, E., 2015. Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian woodlands using Landsat 8 and random forest. Remote Sens. -Basel. 7, 10017-10041.

Keane, R.E., 2016. Spatiotemporal variability of wildland fuels in US Northern rocky mountain forests. Forests 7, 129.

Keeley, J.E., 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116-126.

Key, C.H., 2006. Ecological and sampling constraints on defining landscape fire severity. Fire Ecol. 2. 34-59.

Key, C.H., Benson, N.C., 2006. Landscape Assessment (LA), In: Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J. (Eds. ), FIREMON: Fire effects monitoring and inventory system Gen Tech Rep RMRS-GTR-164-CD. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, United States.

Kleinn, C., Magnussen, S., Nölke, N., Magdon, P., Álvarez-González, J.G., Fehrmann, L., Pérez-Cruzado, C., 2020. Improving precision of field inventory estimation of aboveground biomass through an alternative view on plot biomass. For. Ecosyst. 7, 57.

Kuhn, M., 2020. caret: Classification and Regression Training R package version 60-86 https://CRANR-projectorg/package=caret (accessed 13 March 2021).

Latifi, H., Fassnacht, F., Koch, B., 2012. Forest structure modeling with combined airborne hyperspectral and LiDAR data. Remote Sens. Environ. 121, 10-25.

Latifi, H., Heurich, M., Hartig, F., Muller, J., Krzystek, P., Jehl, H., Dech, S., 2016. Estimating over- and understorey canopy density of temperate mixed stands by airborne LiDAR data. Forestry 89, 69-81.

Lecina-Diaz, J., Alvarez, A., Retana, J., 2014. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests. PloS One 9, e85127.

Lesmeister, D.B., Sovern, S.G., Davis, R.J., Bell, D.M., Gregory, M.J., Vogeler, J.C., 2019. Mixed-severity wildfire and habitat of an old-forest obligate. Ecosphere 10, e02696.

Li, A., Dhakal, S., Glenn, N.F., Spaete, L.P., Shinneman, D.J., Pilliod, D.S., Arkle, R.S., McIlroy, S.K., 2017. Lidar aboveground vegetation biomass estimates in shrublands: Prediction, uncertainties and application to coarser scales. Remote Sens. -Basel. 9, 903.

Liaw, A., Wiener, M., 2002. Classification and regression by RandomForest. R. News 2, 18-22.

López-Serrano, P.M., Cárdenas-Domínguez, J.L., Corral-Rivas, J.J., Jiménez, E., López-Sánchez, C.A., Vega-Nieva, D.J., 2020. Modeling of aboveground biomass with Landsat 8 OLI and machine learning in temperate forests. Forests 11, 11.

Ma, Q., Su, Y., Guo, Q., 2017. Comparison of canopy cover estimations from Airborne LiDAR, aerial imagery, and satellite imagery. IEEE J. Sel. Top Appl. 10, 4225-4236.

Martín-Sotoca, J.J., Saa-Requejo, A., Moratiel, R., Dalezios, N., Faraslis, I., Tarquis, A.M., 2019. Statistical analysis for satellite-index-based insurance to define damaged pasture thresholds. Nat. Hazard Earth Sys. 19, 1685-1702.

Martinuzzi, S., Vierling, L.A., Gould, W.A., Falkowski, M.J., Evans, J.S., Hudak, A.T., Vierling, K.T., 2009. Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens. Environ. 113, 2533-2546.

McGaughey, R.J., 2018. FUSION/LDV: Software for LiDAR Data Analysis and Visualization, version 380. http://forsys.cfr.washington.edu/FUSION/fusion_overview.html (accessed 13 March 2021).

Mitchell, J.J., Glenn, N.F., Sankey, T.T., Derryberry, D.R., Anderson, M.O., Hruska, R.C., 2011. Small-footprint Lidar estimations of sagebrush canopy characteristics. Photogramm Eng. Rem. S. 5, 521-530.

Montealegre, A.L., Lamelas, M.T., de la Riva, J.A., 2015. Comparison of open source LiDAR filtering algorithms in a Mediterranean forest environment. IEEE J. Sel. Top Appl. 8, 4072-4085.

Montealegre, A.L., Lamelas, M.T., Tanase, M.A., De la Riva, J., 2016. Forest fire severity assessment using ALS data in a mediterranean environment. Remote Sens. -Basel. 6, 4240-4265.

Montealegre-Gracia, A.L., Lamelas-Gracia, M.T., García-Martín, A., de la Riva-Fernández, J., Escribano-Bernal, F., 2017. Using low-density discrete Airborne Laser Scanning data to assess the potential carbon dioxide emission in case of a fire event in a Mediterranean pine forest. Gisci. Remote Sens. 54, 721-740.

Montero, G., López-Leiva, C., Ruiz-Peinado, R., López-Senespleda, E., Onrubia, R., Pasalodos, M., 2020. Produccion de biomasa y fijación de carbono por los matorrales españoles y por el horizónte orgánico superficial de los suelos forestales. Ministerio De Agricultura, Pesca Y Alimentación, Madrid.

Morgan, P., Keane, R.E., Dillon, G.K., Jain, T.B., Hudak, A.T., Karau, E.C., Sikkink, P.G., Holden, Z.A., Strand, E.K., 2014. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling. Int. J. Wildland Fire 23, 1045-1060.

Naesset, E., Gobakken, T., 2005. Estimating forest growth using canopy metrics derived from airborne laser scanner data. Remote Sens. Environ. 96, 453-465.

Naesset, E., Gobakken, T., 2008. Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens. Environ. 112, 3079-3090.

Næsset, E., Gobakken, T., Bollandsås, O.M., Gregoire, T.G., Nelson, R., Ståhl, G., 2013. Comparison of precision of biomass estimates in regional field sample surveys and airborne LiDAR - assisted surveys in Hedmark County, Norway. Remote Sens. Environ. 130, 108-120.

Ninyerola, M., Pons, X., Roure, J.M., 2005 Atlas Climático Digital de la Península Ibérica Metodología y aplicaciones en bioclimatología y geobotánica Universidad Autónoma de Barcelona. http://teideastro.com/assets/files/Mares/Atlas%20climatico%20digital%20de%20la%20Peninsula%20Iberica.pdf (accessed 13 March 2021).

Nunes, L., Álvarez-González, J., Alberdi, I., Silva, V., Rocha, M., Rego, F.C., 2019. Analysis of the occurrence of wildfires in the Iberian Peninsula based on harmonised data from national forest inventories. Ann. Forest Sci. 76, 27.

Odion, D.C., Hanson, C.T., Arsenault, A., Baker, W.L., Dellasala, D.A., Hutto, R.L., Klenner, W., Moritz, M.A., Sherriff, R.L., Veblen, T.T., Williams, M.A., 2014. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America. PLoS One 9, e87852.

Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., Pereira, M.C., 2012. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecol. Manag. 275, 117-129.

Parks, S.A., Dillon, G.K., Miller, C.A., 2014. New metric for quantifying burn severity: the relativized burn ratio. Remote Sens. 6, 1827-1844.

Parks, S.A., Holsinger, L.M., Panunto, M.H., Jolly, W.M., Dobrowski, S.Z., Dillon, G.K., 2018. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ Res. Lett. 13, 044037.

Pausas, J.G., 2004. Changes in fire and climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim. Chang. 63, 337-350.

Pausas, J.G., Fernández-Muñoz, S., 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim. Chang. 110, 215-226.

Pausas, J.G., Keeley, J.E., 2014. Abrupt climate-independent fire regime changes. Ecosystems 17, 1109-1120.

Probst, P., Boulesteix, A.L., 2018. To tune or not to tune the number of trees in random forest. J. Mach. Learn. Res. 18, 1-18.

Pu, R., Gong, P., Tian, Y., Miao, X., Carruthers, R.I., Anderson, G.L., 2008. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA. Int. J. Remote Sens. 29, 3987-4011.

Quintano, C., Fernández-Manso, A., Calvo, L., Marcos, E., Valbuena, L., 2015. Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems. Int. J. Appl. Earth Obs. 36, 1-12.

R Core Team, 2020. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. https://wwwR-projectorg/ (accessed 13 March 2021).
Richter, R., Schläpfer, D., 2018. Atmospheric/topographic correction for satellite imagery DLR Report DLR-IB 565-01/2018, Wessling, Germany.

Ruiz-Peinado, R., Del Rio, M., Montero, G., 2011. New models for estimating the carbon sink capacity of Spanish softwood species. Forest Sys. 20, 176-188.

Saarela, S., Wästlund, A., Holmström, E., Mensah, A.A., Holm, S., Nilsson, M., Fridman, J., Ståhl, G., 2020. Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors. For. Ecosyst. 7, 43.

Safford, H.D., Schmidt, D.A., Carlson, C.H., 2009. Effects of fuel treatments on fire severity in an area of wildland-urban interface, Angora Fire, Lake Tahoe Basin, California. Forest Ecol. Manag. 258, 773-787.

Sagra, J., Moya, D., Plaza-Álvarez, P.A., Lucas-Borja, M.E., González-Romero, J., De las Heras, J., Alfaro-Sánchez, R., Ferrandis, P., 2019. Prescribed fire effects on early recruitment of Mediterranean pine species depend on fire exposure and seed provenance. Forest Ecol. Manag. 441, 253-261.

Sánchez-Pinillos, M., De Cáceres, M., Casals, P., Alvarez, A., Beltrán, M., Pausas, J.G., Vayreda, J., Coll, L., 2021. Spatial and temporal variations of overstory and understory fuels in Mediterranean landscapes. Forest Ecol. Manag. 490, 119094.

Santamaría, J.E., 2015. El pino pinaster en la Sierra del Teleno historia, ordenación, crecimiento y producción. Dissertation, University of León, Spain.

Seidl, R., Rammer, W., Spies, T.A., 2014. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl. 24, 2063-2077.

Sheridan, R.D., Popescu, S.C., Gatziolis, D., Morgan, C.L.S., Ku, N. -W., 2015. Modeling forest aboveground biomass and volume using airborne LiDAR metrics and forest inventory and analysis data in the pacific northwest. Remote Sens. -Basel. 7, 229-255.

Skowronski, N., Clark, K., Nelson, R., Hom, J., Patterson, M., 2007. Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey. Remote Sens. Environ. 108, 123-129.

Soverel, N.O., Perrakis, D.D.B., Coops, N.C., 2010. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens. Environ. 114, 1896-1909.

Stocks, B.J., Alexander, M.E., Wotton, B.M., Stefner, C.N., Flannigan, M.D., Taylor, S.W., Lavoie, N., Mason, J.A., Hartley, G.R., Maffey, M.E., Dalrymple, G.N., Blake, T.W., Cruz, M.G., Lanoville, R.A., 2004. Crown fire behaviour in a northern jack pine - black spruce forest. Can. J. For. Res. 34, 1548-1560.

Su, J.G., Bork, E.W., 2007. Characterization of diverse plant communities in Aspen Parkland rangeland using LiDAR data. Appl. Veg. Sci. 10, 407-416.

Swatantran, A., Dubayah, R., Roberts, D., Hofton, M., Blair, J.B., 2011. Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sens. Environ. 115, 2917-2930.

Taboada, A., Fernández-García, V., Marcos, E., Calvo, L., 2018. Interactions between large high-severity fires and salvage logging on a short return interval reduce the regrowth of fire-prone serotinous forests. Forest Ecol. Manag. 414, 54-63.

Tapias, R., Climent, J., Pardos, J.A., Gil, L., 2004. Life histories of Mediterranean pines. Plant Ecol. 171, 53-68.

Tojal, L. -T., Bastarrika, A., Barrett, B., Sanchez Espeso, J.M., Lopez-Guede, J.M., Graña, M., 2019. Prediction of aboveground biomass from low-density LiDAR data: validation over P. radiata Data from a region north of Spain. Forests 10, 819.

Turetsky, M.R., Baltzer, J.L., Johnstone, J.F., Mack, M.C., McCann, K., Schuur, E.A.G., 2017. Losing legacies, ecological release, and transient responses: key challenges for the future of northern ecosystem science. Ecosystems 20, 23-30.

van Ewijk, K.Y., Treitz, P.M., Scott, N.A., 2011. Characterizing forest succession in central ontario using LAS-derived indices. Photogramm. Eng. Rem. S. 77, 261-269.

Van Wagner, C.E., 1977. Conditions for the start and spread of crown fire. Can. J. For. Res. 7, 23-34.

Viedma, O., Quesada, J., Torres, I., De Santis, A., Moreno, J.M., 2015. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 18, 237-250.

Viedma, O., Chico, F., Fernández, J.J., Madrigal, C., Safford, H.D., Moreno, J.M., 2020. Disentangling the role of prefire vegetation vs burning conditions on fire severity in a large forest fire in SE Spain. Remote Sens. Environ. 247, 111891.

Vilà-Cabrera, A., Coll, L., Martínez-Vilalta, J., Retana, J., 2018. Forest management for adaptation to climate change in the Mediterranean basin: A synthesis of evidence. Forest Ecol. Manag. 407, 16-22.

Vogeler, J.C., Cohen, W.B., 2016. A review of the role of active remote sensing and data fusion for characterizing forest in wildlife habitat models. Revista de Teledeteccion 45, 1-14.

Weise, D.R., Wright, C.S., 2014. Wildland fire emissions, carbon and climate: Characterizing wildland fuels. Forest Ecol. Manag. 317, 26-40.

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J.A., Huete, A.R., Ichii, K., Ni, W., Pang, Y., Rahman, A.F., Sun, G., Yuan, W., Zhang, L., Zhang, X., 2019. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233, 111383.

Zald, H.S.J., Dunn, C.J., 2018. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol. Appl. 28, 1068-1080.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 February 2022
Accepted: 24 February 2022
Published: 03 March 2022
Issue date: April 2022

Copyright

© 2022 Beijing Forestry University.

Acknowledgements

Acknowledgements

The authors would like to thank the Spanish Ministry for the Ecological Transition and the Demographic challenge for providing the Third Spanish National Forest Inventory (SNFI-3) data.

Rights and permissions

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return