AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics

N. Mesa-Sierraa,b( )J. LabordecR. Chaplin-Kramerd,eF. Escobarf
Instituto Tecnológico y de Estudios Superiores de Occidente, Centro Interdisciplinario para la Formación y Vinculación Social, Periférico Sur Manuel Gómez Morín 8585, 45604, Tlaquepaque, Jalisco, Mexico
Gnosis - Naturaleza con ciencia, A.C., Lorenzo Barcelata 5101, 45239, Guadalajara, Jalisco, Mexico
Instituto de Ecología, A. C., Ecología Funcional, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
Natural Capital Project, Woods Institute for the Environment, Stanford University, 327 Campus Drive, Stanford, CA, 94305, USA
Institute on the Environment, University of Minnesota, 1954 Buford Ave, St. Paul, Minnesota, 55108, USA
Instituto de Ecología, A.C., Ecoetología, Carretera Antigua a Coatepec 351, El Haya, 91073, Xalapa, Veracruz, Mexico
Show Author Information

Abstract

Background

Global modeling of carbon storage and sequestration often mischaracterizes unique ecosystems such as the seasonally dry tropical forest of the central region of the Gulf of Mexico, because species diversity is usually underestimated, as is their carbon content. In this study, aboveground and soil carbon stocks were estimated to determine the climate mitigation potential of this highly degraded landscape (< 25% of forest cover).

Results

Tree species in the study area had carbon content values that were 30%–40% higher than the standard value proposed by the IPCC (i.e., 50%). Tropical oak forest in the region, despite its restricted distribution and low species richness, accounted for the highest mean carbon stocks per unit area. The main factors driving spatial variability in carbon stocks were: maximum precipitation, soil organic matter, clay and silt content. No strong relationship was found between aboveground carbon stocks and soil organic carbon in the study area. Quantification of carbon stocks is an important consideration in the assessment of the conservation value of remnants of native vegetation in human-modified landscapes.

Conclusions

This study demonstrates the importance of the highly fragmented tropical dry regions of the Neotropics in maintaining landscape functionality and providing key ecosystem services such as carbon sequestration. Our results also highlight how crucial field-based studies are for strengthening the accuracy of global models. Furthermore, this approach reveals the real contribution of ecosystems that are not commonly taken into account in the mitigation of climate change effects.

References

 

Alvarez-Aquino, C., Williams-Linera, G., 2012. Seedling survival and growth of tree species: site condition and seasonality in tropical dry forest restoration. Bot. Sci. 90, 313. https://doi.org/10.17129/botsci.395.

 

Anderegg, W.R.L., Trugman, A.T., Badgley, G., Anderson, C.M., Bartuska, A., Ciais, P., Cullenward, D., Field, C.B., Freeman, J., Goetz, S.J., Hicke, J.A., Huntzinger, D., Jackson, R.B., Nickerson, J., Pacala, S., Randerson, J.T., 2020. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005. https://doi.org/10.1126/science.aaz7005.

 

Arasa-Gisbert, R., Vayreda, J., Roman-Cuesta, R.M., Villela S.A., Mayorga, R., Retana, J., 2018. Forest diversity plays a key role in determining the stand carbon stocks of Mexican forests. For. Ecol. Manag. 415-416, 160-171. https://doi.org/10.1016/j.foreco.2018.02.023.

 
Arriaga, L., Espinoza, J., Aguilar, C., Martinez, E., Gomez, L., 2000. Regiones terrestres prioritarias de Mexico. Comision Nacional para el Conocimiento y uso de la Biodiversidad, Mexico.
 

Arroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J.I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I.R., Melo, F.P.L., Morante-Filho, J.C., Santos, B.A., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M.J., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I.C.G., Slik, J.W.F., Nowakowski, A.J., Tscharntke, T., 2020. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404-1420. https://doi.org/10.1111/ele.13535.

 

Avitabile, V., Herold, M., Heuvelink, G.B.M., Lewis, S.L., Phillips, O.L., Asner, G.P., Armston, J., Ashton, P.S., Banin, L., Bayol, N., Berry, N.J., Boeckx, P., de Jong, B.H.J., DeVries, B., Girardin, C.A.J., Kearsley, E., Lindsell, J.A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E.T.A., Nagy, L., Qie, L., Quinones, M.J., Ryan, C.M., Ferry, S.J.W., Sunderland, T., Laurin, G.V., Gatti, R.C., Valentini, R., Verbeeck, H., Wijaya, A., Willcock, S., 2016. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406-1420. https://doi.org/10.1111/gcb.13139.

 

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., Houghton, R.A., 2017. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230-234. https://doi.org/10.1126/science.aam5962.

 

Bakhoum, N., Fall, D., Fall, F., Diouf, F., Hirsch, A.M., Balachandar, D., Diouf, D., 2018. Senegalia senegal (synonym: Acacia senegal), its importance to sub-Saharan Africa, and its relationship with a wide range of symbiotic soil microorganisms. South Afr. J. Bot. 119, 362-368. https://doi.org/10.1016/j.sajb.2018.10.007.

 

Balderas Torres, A., Lovett, J.C., 2013. Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere's Reserve, Mexico. Forestry 86, 267-281. https://doi.org/10.1093/forestry/cps084.

 

Banda, K., Delgado-Salinas, A., Dexter, K.G., Linares-Palomino, R., Oliveira-Filho, A., Prado, D., Pullan, M., Quintana, C., Riina, R., Rodríguez, M.G.M., Weintritt, J., Acevedo-Rodríguez, P., Adarve, J., Álvarez, E., Aranguren, B.A., Arteaga, J.C., Aymard, G., Castaño, A., Ceballos-Mago, N., Cogollo, Á., Cuadros, H., Delgado, F., Devia, W., Dueñas, H., Fajardo, L., Fernández, Á., Fernández, M. Á., Franklin, J., Freid, E.H., Galetti, L.A., Gonto, R., González-M, R., Graveson, R., Helmer, E.H., Idárraga, Á., López, R., Marcano-Vega, H., Martínez, O.G., Maturo, H.M., McDonald, M., McLaren, K., Melo, O., Mijares, F., Mogni, V., Molina, D., Del Pilar Moreno, N., Nassar, J.M., Neves, D.M., Oakley, L.J., Oatham, M., Olvera-Luna, A.R., Pezzini, F.F., Dominguez, O.J.R., Ríos, M.E., Rivera, O., Rodríguez, N., Rojas, A., Särkinen, T., Sánchez, R., Smith, M., Vargas, C., Villanueva, B., Pennington, R.T., 2016. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353, 1383-1387. https://doi.org/10.1126/science.aaf5080.

 

Bastin, J. -F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.M., Crowther, T.W., 2019. The global tree restoration potential. Science 365, 76-79. https://doi.org/10.1126/science.aax0848.

 

Becknell, J.M., Powers, J.S., 2014. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can. J. For. Res. 44, 604-613. https://doi.org/10.1139/cjfr-2013-0331.

 
Brown, S., 1997. Estimating biomass and biomass change of tropical forests: a primer. Food and Agriculture Organization of the United Nations, Rome.
 

Cairns, M.A., Haggerty, P.K., Alvarez, R., Olmsted, I., 2000. Tropical Mexico's recent land-use change: a region's contribution to the global carbon cycle. Ecol. Appl. 10, 1426-1441.

 

Castellanos Barliza, J., Blanco Rodriguez, O., Leon Pelaez, J.D., Chavez, L.F., 2019. Planted forests for open coal mine spoils rehabilitation in Colombian drylands: contributions of fine litterfall through an age chronosequence. Ecol. Eng. 138, 180-187. https://doi.org/10.1016/j.ecoleng.2019.07.018.

 

Castellanos Barliza, J., León Peláez, J.D., Campo, J., 2018. Recovery of biogeochemical processes in restored tropical dry forest on a coal mine spoil in La Guajira, Colombia. Land Degrad. Dev. 29, 3174-3183. https://doi.org/10.1002/ldr.3069.

 

Chaturvedi, R.K., Pandey, S.K., Rahul, B., Shivam, S., Raghubanshi, A.S., 2018. Woody species in tropical dry forest exhibit plasticity in physiological traits in response to variations in soil properties. MOJ Ecol. Environ. Sci. 3, 364-367. https://doi.org/10.15406/mojes.2018.03.00114.

 

Chaturvedi, R.K., Raghubanshi, A.S., Singh, J.S., 2011. Carbon density and accumulation in woody species of tropical dry forest in India. For. Ecol. Manag. 262, 1576-1588. https://doi.org/10.1016/j.foreco.2011.07.006.

 

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. -P., Nelson, B.W., Ogawa, H., Puig, H., Riera, B., Yamakura, T., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87-99. https://doi.org/10.1007/s00442-005-0100-x.

 

Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351-366. https://doi.org/10.1111/j.1461-0248.2009.01285.x.

 
Chazdon, R.L., 2014. Second growth: the promise of tropical forest regeneration in an age of deforestation. University of Chicago Press, Chicago.
 

Chazdon, R.L., Broadbent, E.N., Rozendaal, D.M.A., Bongers, F., Zambrano, A.M.A., Aide, T.M., Balvanera, P., Becknell, J.M., Boukili, V., Brancalion, P.H.S., Craven, D., Almeida-Cortez, J.S., Cabral, G.A.L., de Jong, B., Denslow, J.S., Dent, D.H., DeWalt, S.J., Dupuy, J.M., Durán, S.M., Espírito-Santo, M.M., Fandino, M.C., César, R.G., Hall, J.S., Hernández-Stefanoni, J.L., Jakovac, C.C., Junqueira, A.B., Kennard, D., Letcher, S.G., Lohbeck, M., Martínez-Ramos, M., Massoca, P., Meave, J.A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes, Y.R.F., Ochoa-Gaona, S., Orihuela-Belmonte, E., Peña-Claros, M., Pérez-García, E.A., Piotto, D., Powers, J.S., Rodríguez-Velazquez, J., Romero-Pérez, I.E., Ruíz, J., Saldarriaga, J.G., Sanchez-Azofeifa, A., Schwartz, N.B., Steininger, M.K., Swenson, N.G., Uriarte, M., van Breugel, M., van der Wal, H., Veloso, M.D.M., Vester, H., Vieira, I.C.G., Bentos, T.V., Williamson, G.B., Poorter, L., 2016. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639. https://doi.org/10.1126/sciadv.1501639.

 

Chazdon, R.L., Letcher, S.G., van Breugel, M., Martínez-Ramos, M., Bongers, F., Finegan, B., 2007. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philos. Trans. R. Soc. B Biol. Sci. 362, 273-289. https://doi.org/10.1098/rstb.2006.1990.

 

Corona-Núñez, R.O., Campo, J., Williams, M., 2018. Aboveground carbon storage in tropical dry forest plots in Oaxaca, Mexico. For. Ecol. Manag. 409, 202-214. https://doi.org/10.1016/j.foreco.2017.11.014.

 

Cuervo-Robayo, A.P., Téllez-Valdés, O., Gómez-Albores, M.A., Venegas-Barrera, C.S., Manjarrez, J., Martínez-Meyer, E., 2014. An update of high-resolution monthly climate surfaces for Mexico. Int. J. Climatol. 34, 2427-2437. https://doi.org/10.1002/joc.3848.

 
Dane, J., Topp, C., Campbell, G., 2002. Methods of soil analysis: Part 4-Physical methods. Soil Science Society of America, Inc Madison, WIS, USA.
 
Dirzo, R., 2011. Seasonally dry tropical forests: ecology and conservation. Island Press, Washington.
 

Dupuy, J.M., Hernández-Stefanoni, J.L., Hernández-Juárez, R.A., Tetetla-Rangel, E., López-Martínez, J.O., Leyequién-Abarca, E., Tun-Dzul, F.J., May-Pat, F., 2012. Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico: tropical dry forest structure and composition. Biotropica 44, 151-162. https://doi.org/10.1111/j.1744-7429.2011.00783.x.

 
FAO, 2011. RED++ Reduccion de las emisiones derivadas de la deforestacion y la degradacion de los bosques. http://www.fao.org/redd/overview/es/ (accessed 15 September 2021).
 
Garcia, E., 2004. Modificaciones al sistema de clasificacion climatica de Koppen. Universidad Nacional Autonoma de Mexico, Mexico.
 

Gavito, M.E., Sandoval-Pérez, A.L., del Castillo, K., Cohen-Salgado, D., Colarte-Avilés, M.E., Mora, F., Santibáñez-Rentería, A., Siddique, I., Urquijo-Ramos, C., 2018. Resilience of soil nutrient availability and organic matter decomposition to hurricane impact in a tropical dry forest ecosystem. For. Ecol. Manag. 426, 81-90. https://doi.org/10.1016/j.foreco.2017.08.041.

 

González Cásares, M., Yerena-Yamallel, J.I., Pompa García, M., 2017. Measuring temporal wood density variation improves carbon capture estimates in Mexican forests. Acta. Univ. 26, 11-14. https://doi.org/10.15174/au.2016.1206.

 
Griffin, E., Hoyle, F.C., Murphy, D.V., 2013. What is soil organic carbon? https://www.agric.wa.gov.au/measuring-and-assessing-soils/what-soil-organic-carbon (accessed 15 September 2021).
 

Griscom, H.P., 2020. The long-term effects of active management and landscape characteristics on carbon accumulation and diversity within a seasonal dry tropical ecosystem. For. Ecol. Manag. 473, 118296. https://doi.org/10.1016/j.foreco.2020.118296.

 

Guevara, S., Laborde, J., Sanchez, G., 1998. Are isolated remnant trees in pastures a fragmented canopy? Selbyana 19, 34-43.

 
Harja, D., Rahayu, S., Pambudi, S., 2010. Tree functional attributes and ecological database. http://db.worldagroforestry.org//wd (accessed 15 September 2021).
 

Heilmayr, R., Echeverría, C., Lambin, E.F., 2020. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 3, 701-709. https://doi.org/10.1038/s41893-020-0547-0.

 

Hernandez-Stefanoni, J.L., Dupuy, J.M., Tun-Dzul, F., May-Pat, F., 2011. Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landscape Ecol. 26, 355-370. https://doi.org/10.1007/s10980-010-9561-3.

 

Ibrahim, M., Chacón, M., Cuartas, C., Naranjo, J., Ponce, G., Vega, P., Casasola, F., Rojas, J., 2006. Almacenamiento de carbono en el suelo y la biomasa arborea en sistemas de usos de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Agroforesteria En Las Americas 45, 27-36.

 
INEGI, 2009. Instituto Nacional de Estadistica y Geografia. http://www.inegi.org.mx/ (accessed 15 September 2021).
 
IPBES, 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, in: Brondizio, E.S., Settele, J., Diaz, S., Ngo, H.T. (Eds. ), IPBES, Bonn, Germany.
 

Jaramillo, V.J., Kauffman, J.B., Rentería-Rodríguez, L., Cummings, D.L., Ellingson, L.J., 2003. Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems 6, 609-629. https://doi.org/10.1007/s10021-002-0195-4.

 

Kalacska, M., Sanchez-Azofeifa, G.A., Calvo-Alvarado, J.C., Quesada, M., Rivard, B., Janzen, D.H., 2004. Species composition, similarity and diversity in three successional stages of a seasonally dry tropical forest. For. Ecol. Manag. 200, 227-247. https://doi.org/10.1016/j.foreco.2004.07.001.

 
Laborde, J., 2018. Explotacion de oro a cielo abierto en Veracruz y sus consecuencias potenciales sobre el capital natural veracruzano, in: En Defensa del Patrimonio Natural y Cultural de Veracruz: el caso del proyecto de la mina La Paila, Municipio de Alto Lucero, Veracruz. SEDEMA, pp 43-68.
 

López-Barrera, F., Manson, R.H., Landgrave, R., 2014. Identifying deforestation attractors and patterns of fragmentation for seasonally dry tropical forest in central Veracruz, Mexico. Land Use Policy 41, 274-283. https://doi.org/10.1016/j.landusepol.2014.06.004.

 

Melo, F.P.L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M., Tabarelli, M., 2013. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28, 462-468. https://doi.org/10.1016/j.tree.2013.01.001.

 
Mesa-Sierra, N., 2020. Capital natural del tropico seco de Veracruz. Dissertation, Instituto de Ecologia, A. C.
 

Mesa-Sierra, N., Escobar, F., Laborde, J., 2020a. Appraising forest diversity in the seasonally dry tropical region of the Gulf of Mexico. Revista Mexicana de Biodiversidad 91, e913175. https://doi.org/10.22201/ib.20078706e.2020.91.3175.

 

Mesa-Sierra, N., Laborde, J., 2017. Insights for the conservation of native tree species gleaned from the advance regeneration community in a seasonally dry tropical landscape. Trop. Conserv. Sci. 10, 1-15. https://doi.org/10.1177/1940082917714228.

 

Mesa-Sierra, N., Laborde, J., Escobar, F., 2020b. Seasonally dry tropical forests of the Gulf of Mexico: a degraded landscape undergoing homogenization or a promising, resilient reservoir? Acta Oecol. 106, 103583. https://doi.org/10.1016/j.actao.2020.103583.

 

Midgley, G.F., 2012. Biodiversity and ecosystem function. Science 335, 174-175.

 

Ordóñez Díaz, J.A.B., Galicia Naranjo, A., Venegas Mancera, N.J., Tejeda, T.H., de Jesús Ordóñez Díaz, M., Dávalos-Sotelo, R., 2015. Densidad de las maderas mexicanas por tipo de vegetacion con base en la clasificacion de J. Rzedowski: compilacion. Madera Bosques 21, 77-216.

 

Pennington, R.T., Lavin, M., Oliveira-Filho, A., 2009. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40, 437-457. https://doi.org/10.1146/annurev.ecolsys.110308.120327.

 

Petrokofsky, G., Kanamaru, H., Achard, F., Goetz, S.J., Joosten, H., Holmgren, P., Lehtonen, A., Menton, M.C.S., Pullin, A.S., Wattenbach, M., 2012. Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environ. Evid. 1, 6. https://doi.org/10.1186/2047-2382-1-6.

 

Poorter, L., Bongers, F., Aide, T.M., Almeyda Zambrano, A.M., Balvanera, P., Becknell, J.M., Boukili, V., Brancalion, P.H.S., Broadbent, E.N., Chazdon, R.L., Craven, D., de Almeida-Cortez, J.S., Cabral, G.A.L., de Jong, B.H.J., Denslow, J.S., Dent, D.H., DeWalt, S.J., Dupuy, J.M., Durán, S.M., Espírito-Santo, M.M., Fandino, M.C., César, R.G., Hall, J.S., Hernandez-Stefanoni, J.L., Jakovac, C.C., Junqueira, A.B., Kennard, D., Letcher, S.G., Licona, J.-C., Lohbeck, M., Marín-Spiotta, E., Martínez-Ramos, M., Massoca, P., Meave, J.A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes, Y.R.F., Ochoa-Gaona, S., de Oliveira, A.A., Orihuela-Belmonte, E., Peña-Claros, M., Pérez-García, E.A., Piotto, D., Powers, J.S., Rodríguez-Velázquez, J., Romero-Pérez, I.E., Ruíz, J., Saldarriaga, J.G., Sanchez-Azofeifa, A., Schwartz, N.B., Steininger, M.K., Swenson, N.G., Toledo, M., Uriarte, M., van Breugel, M., van der Wal, H., Veloso, M.D.M., Vester, H.F.M., Vicentini, A., Vieira, I.C.G., Bentos, T.V., Williamson, G.B., Rozendaal, D.M.A., 2016. Biomass resilience of Neotropical secondary forests. Nature 530, 211-214. https://doi.org/10.1038/nature16512.

 

Portillo-Quintero, C., Sanchez-Azofeifa, A., Calvo-Alvarado, J., Quesada, M., do Espirito Santo, M.M., 2015. The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics: lessons learned and opportunities for its sustainable management. Reg. Environ. Change 15, 1039-1049. https://doi.org/10.1007/s10113-014-0689-6.

 

Powers, J.S., Becknell, J.M., Irving, J., Pèrez-Aviles, D., 2009. Diversity and structure of regenerating tropical dry forests in Costa Rica: geographic patterns and environmental drivers. For. Ecol. Manag. 258, 959-970. https://doi.org/10.1016/j.foreco.2008.10.036.

 

Powers, J.S., Peréz-Aviles, D., 2013. Edaphic factors are a more important control on surface fine roots than stand age in secondary tropical dry forests. Biotropica 45, 1-9. https://doi.org/10.1111/j.1744-7429.2012.00881.x.

 

Powers, J.S., Tiffin, P., 2010. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches: leaf habit and functional traits of dry forest trees. Funct. Ecol. 24, 927-936. https://doi.org/10.1111/j.1365-2435.2010.01701.x.

 

Prado-Junior, J.A., Schiavini, I., Vale, V.S., Arantes, C.S., van der Sande, M.T., Lohbeck, M., Poorter, L., 2016. Conservative species drive biomass productivity in tropical dry forests. J. Ecol. 104, 817-827. https://doi.org/10.1111/1365-2745.12543.

 
R Development Core Team, 2019. R: a language and environment for statistical computing. Version 2.14.10. http://www.r-project.org (accessed 15 September 2021).
 
SARE, 2012. Sustainable agriculture research and education. Organic matter: what it is and why it's so important. https://www.sare.org/Learning-Center/Books/Building-Soils-for-Better-Crops-3rd-Edition/Text-Version/Organic-Matter-What-It-Is-and-Why-It-s-So-Important (accessed 15 September 2021).
 

Schmitt-Harsh, M., Evans, T.P., Castellanos, E., Randolph, J.C., 2012. Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala. Agrofor. Syst. 86, 141-157. https://doi.org/10.1007/s10457-012-9549-x.

 

Soto-Navarro, C., Ravilious, C., Arnell, A., de Lamo, X., Harfoot, M., Hill, S.L.L., Wearn, O.R., Santoro, M., Bouvet, A., Mermoz, S., Le Toan, T, Xia, J, Liu, S., Yuan, W., Spawn, S.A., Gibbs, H.K., Ferrier, S., Harwood, T., Alkemade, R., Schipper, A.M., Schmidt-Traub, G., Strassburg, B., Miles, L., Burgess, N.D., Kapos, V., 2020. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190128. https://doi.org/10.1098/rstb.2019.0128.

 
Sparks, D. L, Page, A., Helmke, P., Loeppert, R.H., 2020. Methods of soil analysis, part 3: chemical methods. John Wiley & Sons, Madison.
 

Stoner, K.E., Sánchez-Azofeifa, G.A., 2009. Ecology and regeneration of tropical dry forests in the Americas: implications for management. For. Ecol. Manag. 258, 903-906. https://doi.org/10.1016/j.foreco.2009.05.019.

 
Travieso-Bello, A.C., Campos, A., 2006. Los componentes del paisaje. Entornos Veracruzanos: la Costa de La Mancha, 245-280.
 

Williams-Linera, G., Lorea, F., 2009. Tree species diversity driven by environmental and anthropogenic factors in tropical dry forest fragments of central Veracruz, Mexico. Biodivers. Conserv. 18, 3269-3293. https://doi.org/10.1007/s10531-009-9641-3.

 
WWF, 2020. Living Planet Report 2020 - Bending the curve of biodiversity loss, in: Almond, R.E.A., Grooten M, Petersen, T. (Eds. ), WWF, Gland, Switzerland.
 
Zanne, A.E., Lopez-Gonzalez, G., Coomes, D., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B., Swenson, N.G., Wiemann, M.C., Chave, J., 2009. Data from: towards a worldwide wood economics spectrum. https://datadryad.org/stash/dataset/https://doi.org/10.5061/dryad.234 (accessed 15 September 2021).
Forest Ecosystems
Article number: 100016
Cite this article:
Mesa-Sierra N, Laborde J, Chaplin-Kramer R, et al. Carbon stocks in a highly fragmented landscape with seasonally dry tropical forest in the Neotropics. Forest Ecosystems, 2022, 9(2): 100016. https://doi.org/10.1016/j.fecs.2022.100016

1156

Views

35

Downloads

6

Crossref

7

Web of Science

6

Scopus

0

CSCD

Altmetrics

Published: 15 March 2022
© 2022 Beijing Forestry University.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return