Journal Home > Volume 9 , Issue 1
Background

Global climate change, characterized by changes in precipitation, prolonged growing seasons, and warming-induced water deficits, is putting increased pressure on forest ecosystems globally. Understanding the impact of climate change on drought-prone forests is a key objective in assessing forest responses to climate change.

Methods

In this study, we assessed tree growth trends and changes in physiological activity under climate change based on measurements of tree ring and stable isotopes. Additionally, structural equation models were used to identify the climate drivers influencing tree growth for the period 1957–2016.

Results

We found that the mean basal area increment decreased first and then increased, while the water use efficiency showed a steady increase. The effects of climate warming on tree growth switched from negative to positive in the period 1957–2016. Adequate water supply, especially snowmelt water available in the early critical period, combined with an earlier arrival of the growing season, allowed to be the key to the reversal of the effects of warming on temperature forests. The analysis of structural equation models (SEM) also demonstrated that the growth response of Pinus tabuliformis to the observed temperature increase was closely related to the increase in water availability.

Conclusions

Our study indicates that warming is not the direct cause of forest decline, but does indeed exacerbate droughts, which generally cause forest declines. Water availability at the beginning of the growing season might be critical in the adaptation to rising temperatures in Asia. Temperate forests may be better able to withstand rising temperatures if they have sufficient water, with boosted growth even possible during periods of rising temperatures, thus forming stronger carbon sinks.


menu
Abstract
Full text
Outline
About this article

Variation in water supply leads to different responses of tree growth to warming

Show Author's information Pengfei ZhengaDandan WangbGuodong Jiaa( )Xinxiao Yua( )Ziqiang LiucYusong WangaYonge Zhanga
Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China

Abstract

Background

Global climate change, characterized by changes in precipitation, prolonged growing seasons, and warming-induced water deficits, is putting increased pressure on forest ecosystems globally. Understanding the impact of climate change on drought-prone forests is a key objective in assessing forest responses to climate change.

Methods

In this study, we assessed tree growth trends and changes in physiological activity under climate change based on measurements of tree ring and stable isotopes. Additionally, structural equation models were used to identify the climate drivers influencing tree growth for the period 1957–2016.

Results

We found that the mean basal area increment decreased first and then increased, while the water use efficiency showed a steady increase. The effects of climate warming on tree growth switched from negative to positive in the period 1957–2016. Adequate water supply, especially snowmelt water available in the early critical period, combined with an earlier arrival of the growing season, allowed to be the key to the reversal of the effects of warming on temperature forests. The analysis of structural equation models (SEM) also demonstrated that the growth response of Pinus tabuliformis to the observed temperature increase was closely related to the increase in water availability.

Conclusions

Our study indicates that warming is not the direct cause of forest decline, but does indeed exacerbate droughts, which generally cause forest declines. Water availability at the beginning of the growing season might be critical in the adaptation to rising temperatures in Asia. Temperate forests may be better able to withstand rising temperatures if they have sufficient water, with boosted growth even possible during periods of rising temperatures, thus forming stronger carbon sinks.

Keywords: Climate change, Drought stress, Temperate forests, Stable isotope, Tree rings, Snowmelt

References(65)

Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G.A., Villegas, J.C., Breshears, D.D., Zou, C.B., Troch, P.A., Huxman, T.E., 2009. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. PNAS 106, 7063-7066. https://doi.org/10.1073/pnas.0901438106

Albert, M., Nagel, R-V., Sutmoller, J., Schmidt, M., 2018. Quantifying the effect of persistent dryer climates on forest productivity and implications for forest planning: a case study in northern Germany. For. Ecosyst. 5, 33. http://doi.org/10.1186/s40663-018-0152-0

AllenC.D.MacaladyA.K.ChenchouniH.BacheletD.McdowellN.VennetierM.KitzbergerT.RiglingA.BreshearsD.D.HoggE.H.GonzalezP.FenshamR.ZhangZ.CastroJ.DemidovaN.LimJ.-H.AllardG.RunningS.W.SemerciA.CobbN.A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forestsFor. Ecol. Manag.201025966068410.1016/j.foreco.2009.09.001

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., Mcdowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J-H., Allard, G., Running, S.W., Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag. 259, 660-684. http://doi.org/10.1016/j.foreco.2009.09.001

Berner, L.T., Beck, P.S.A., Bunn, A.G., Goetz, S.J., 2013. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Glob. Chang. Biol. 19, 3449-3462. http://doi.org/10.1111/gcb.12304

BiondiF.QeadanF.A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area incrementTree-Ring Res.200864819610.3959/2008-6.1

Biondi, F., Qeadan, F., 2008. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res. 64, 81-96. http://doi.org/10.3959/2008-6.1

Choat, B., Jansen, S., Brodribb, T., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Feild, T.S., Gleason, S.M., Hacke, U.G., Jacobsen, A.L., Lens, F., Maherali, H., Martinez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P.J., Nardini, A., Pittermann, J., Pratt, R.B., Sperry, J.S., Westoby, M., Wright, I.J., Zanne, A.E., 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752-755. http://doi.org/10.1038/nature11688

Christensen, L., Adams, H.R., Tai, X.N., Barnard, H.R., Brooks, P.D., 2021. Increasing plant water stress and decreasing summer streamflow in response to a warmer and wetter climate in seasonally snow-covered forests. Ecohydrology 14, e2256. http://doi.org/10.1002/eco.2256

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T., Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529-533. http://doi.org/10.1038/nature03972

Clark, J.S., Bell, D.M., Kwit, M.C., Zhu, K., 2014. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Chang. Biol. 20, 1979-1991. http://doi.org/10.1111/gcb.12425

Cooper, A.E., Kirchner, J.W., Wolf, S., Lombardozzi, D.L., Sullivan, B.W., Tyler, S.W., Harpold, A.A., 2020. Snowmelt causes different limitations on transpiration in a Sierra Nevada conifer forest. Agr. Forest. Meteorol. 291, 108089. http://doi.org/10.1016/j.agrformet.2020.108089

D’Orangeville, L., Duchesne, L., Houle, D., Kneeshaw, D., Cote, B., Pederson, N., 2016. Northeastern North America as a potential refugium for boreal forests in a warming climate. Science 352, 1452-1455. http://doi.org/10.1126/science.aaf4951

Devi, N.M., Kukarskih, V.V., Galimova, A.A., Mazepa, V.S., Grigoriev, A.A., 2020. Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the polar ural mountains. For. Ecosyst. 7, 7. http://doi.org/10.1186/s40663-020-0216-9

Dietrich, L., Kahmen, A., 2019. Water relations of drought-stressed temperate trees benefit from short drought-intermitting rainfall events. Agr. Forest. Meteorol. 265, 70-77. http://doi.org/10.1016/j.agrformet.2018.11.012

Dulamsuren, C., Wommelsdorf, T., Zhao, F.J., Xue, Y.Q., Zhumadilov, B.Z., Leuschner, C., Hauck, M., 2013. Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of eastern Kazakhstan. Ecosystems 16, 1536-1549. http://doi.org/10.1007/s10021-013-9700-1

Elliott, K.J., Miniat, C.F., Pederson, N., Laseter, S.H., 2015. Forest tree growth response to hydroclimate variability in the southern Appalachians. Glob. Chang. Biol. 21, 4627-4641. http://doi.org/10.1111/gcb.13045

FarooqiT.J.A.LiX.H.YuZ.LiuS.R.SunO.J.Reconciliation of research on forest carbon sequestration and water conservationJ. For. Res.20213271410.1007/s11676-020-01138-2

Farooqi, T.J.A., Li, X.H., Yu, Z., Liu, S.R., Sun, O.J., 2021. Reconciliation of research on forest carbon sequestration and water conservation. J. For. Res. 32, 7-14. http://doi.org/10.1007/s11676-020-01138-2

Ferrio, J.P., Voltas, J., 2005. Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus. B. 57, 164-173. http://doi.org/10.3402/tellusb.v57i2.16780

GaoG.ChenD.L.XuC.Y.SimeltonE.Trend of estimated actual evapotranspiration over China during 1960–2002J. Geophys. Res. Atmos.2007112D1112010.1029/2006JD008010

Gao, G., Chen, D.L., Xu, C.Y., Simelton, E., 2007. Trend of estimated actual evapotranspiration over China during 1960-2002. J. Geophys. Res-Atmos. 112, D11120. http://doi.org/10.1029/2006JD008010

Grace, J.B., Anderson, T.M., Olff, H., Scheiner, S.M., 2010. On the specification of structural equation models for ecological systems. Ecol. Monogr. 80, 67-87. http://doi.org/10.1890/09-0464.1

Gradel, A., Ganbaatar, B., Nadaldorj, O., Dovdondemberel, B., Kusbach, A., 2017. Climate-growth relationships and pointer year analysis of a Siberian larch (Larix sibirica Ledeb.) chronology from the Mongolian mountain forest steppe compared to white birch (Betula platyphylla Sukaczev). For. Ecosyst. 4, 22. http://doi.org/10.1186/s40663-017-0110-2

Jucker, T., Grossiord, C., Bonal, D., Bouriaud, O., Gessler, A., Coomes, D.A., 2017. Detecting the fingerprint of drought across Europe’s forests: do carbon isotope ratios and stem growth rates tell similar stories? For. Ecosyst. 4, 24. http://doi.org/10.1186/s40663-017-0111-1

Klos, R.J., Wang, G.G., Bauerle, W.L., Rieck, J.R., 2009. Drought impact on forest growth and mortality in the southeast USA: an analysis using forest health and monitoring data. Ecol. Appl. 19, 699-708. http://doi.org/10.1890/08-0330.1

Li, Y.Q., Wu, X.C., Huang, Y.M., Li, X.Y., Shi, F.Z., Zhao, S.D., Yang, Y.T., Tian, Y.H., Wang, P., Zhang, S.L., Zhang, C.C., Wang, Y., Xu, C.Y., Zhao, P.W., 2021. Compensation effect of winter snow on larch growth in northeast China. Clim. Change. 164, 54. http://doi.org/10.1007/s10584-021-02998-1

Littell, J.S., Peterson, D.L., Tjoelker, M., 2008. Douglas-fir growth in mountain ecosystems: water limits tree growth from stand to region. Ecol. Monogr. 78, 349-368. http://doi.org/10.1890/07-0712.1

Liu, H.Y., Williams, A.P., Allen, C.D., Guo, D.L., Wu, X.C., Anenkhonov, O.A., Liang, E.Y., Sandanov, D.V., Yin, Y., Qi, Z.H., Badmaeva, N.K., 2013. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Glob. Chang. Biol. 19, 2500-2510. http://doi.org/10.1111/gcb.12217

Lu, W.W., Yu, X.X., Jia, G.D., 2019. Instantaneous and long-term CO2 assimilation of Platycladus orientalis estimated from C-13 discrimination. Ecol. Indic. 104, 237-247. http://doi.org/10.1016/j.ecolind.2019.05.007

Martin, J., Looker, N., Hoylman, Z., Jencso, K., Hu, J., 2018. Differential use of winter precipitation by upper and lower elevation douglas fir in the Northern Rockies. Glob. Chang. Biol. 24, 5607-5621. http://doi.org/10.1111/gcb.14435

Maxwell, R.S., Belmecheri, S., Taylor, A.H., Davis, K.J., Ocheltree, T.W., 2020. Carbon isotope ratios in tree rings respond differently to climatic variations than tree-ring width in a mesic temperate forest. Agr. Forest. Meteorol. 288, 108014. http://doi.org/10.1016/j.agrformet.2020.108014

McCarroll, D., Loader, N.J., 2004. Stable isotopes in tree rings. Quatern. Sci. Rev. 23, 771-801. http://doi.org/10.1016/j.quascirev.2003.06.017

Mcdowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G., Yepez, E.A., 2010. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719-739. http://doi.org/10.1111/j.1469-8137.2008.02436.x

McDowell, N.G., 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051-1059. http://doi.org/10.1104/pp.110.170704

Mcdowell, N.G., Beerling, D.J., Breshears, D.D., Fisher, R.A., Raffa, K.F., Stitt, M., 2011. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523-532. http://doi.org/10.1016/j.tree.2011.06.003

MelvinT.M.BriffaK.R.A “signal-free” approach to dendroclimatic standardisationDendrochronologia200826718610.1016/j.dendro.2007.12.001

Melvin, T.M., Briffa, K.R., 2008. A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26, 71-86. http://doi.org/10.1016/j.dendro.2007.12.001

Mina, M., Martin-Benito, D., Bugmann, H., Cailleret, M., 2016. Forward modeling of tree-ring width improves simulation of forest growth responses to drought. Agr. Forest. Meteorol. 221, 13-33. http://doi.org/10.1016/j.agrformet.2016.02.005

Musselman, K.N., Clark, M.P., Liu, C.H., Ikeda, K., Rasmussen, R., 2017. Slower snowmelt in a warmer world. Nat. Clim. Change 7, 214-219. http://doi.org/10.1038/nclimate3225

Palacio, S., Hoch, G., Sala, A., Korner, C., Millard, P., 2014. Does carbon storage limit tree growth? New Phytol. 201, 1096-1100. http://doi.org/10.1111/nph.12602

Pellizzari, E., Camarero, J.J., Gazol, A., Sanguesa-Barreda, G., Carrer, M., 2016. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. Glob. Chang. Biol. 22, 2125-2137. http://doi.org/10.1111/gcb.13227

PengC.H.MaZ.H.LeiX.D.ZhuQ.ChenH.WangW.F.LiuS.R.LiW.Z.FangX.Q.ZhouX.L.A drought-induced pervasive increase in tree mortality across Canada's boreal forestsNat. Clim. Change2011146747110.1038/nclimate1293

Peng, C.H., Ma, Z.H., Lei, X.D., Zhu, Q., Chen, H., Wang, W.F., Liu, S.R., Li, W.Z., Fang, X.Q., Zhou, X.L., 2011. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Change. 1, 467-471. http://doi.org/10.1038/nclimate1293

Piao, S.L., Friedlingstein, P., Ciais, P., Viovy, N., Demarty, J., 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochem. Cy. 21, GB3018. http://doi.org/10.1029/2006GB002888

Poulter, B., Pederson, N., Liu, H.Y., Zhu, Z.C., D’Arrigo, R., Ciais, P., Davi, N., Frank, D., Leland, C., Myneni, R., Piao, S.L., Wang, T., 2013. Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agr. Forest Meteorol. 178, 31-45. http://doi.org/10.1016/j.agrformet.2012.12.006

Reinmann, A.B., Susser, J.R., Demaria, E.M.C., Templer, P.H., 2019. Declines in northern forest tree growth following snowpack decline and soil freezing. Glob. Chang. Biol. 25, 420-430. http://doi.org/10.1111/gcb.14420

Repo, T., Domisch, T., Kilpelainen, J., Makinen, H., 2021. Soil frost affects stem diameter growth of Norway spruce with delay. Trees 35, 761-767. http://doi.org/10.1007/s00468-020-02074-8

Restaino, C.M., Peterson, D.L., Littell, J., 2016. Increased water deficit decreases Douglas fir growth throughout western US forests. PNAS 113, 9557-9562. http://doi.org/10.1073/pnas.1602384113

Rossi, S., Deslauriers, A., Gricar, J., Seo, J.W., Rathgeber, C.B.K., Anfodillo, T., Morin, H., Levanic, T., Oven, P., Jalkanen, R., 2008. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol. Biogeogr. 17, 696-707. http://doi.org/10.1111/j.1466-8238.2008.00417.x

Rotenberg, E., Yakir, D., 2010. Contribution of semi-arid forests to the climate system. Science 327, 451-454. http://doi.org/10.1126/science.1179998

Schaphoff, S., Reyer, C.P.O., Schepaschenko, D., Gerten, D., Shvidenko, A., 2016. Tamm review: observed and projected climate change impacts on Russia’s forests and its carbon balance. Forest Ecol. Manag. 361, 432-444. http://doi.org/10.1016/j.foreco.2015.11.043

Seo, J.W., Eckstein, D., Jalkanen, R., Schmitt, U., 2011. Climatic control of intra- and inter-annual wood-formation dynamics of Scots pine in northern Finland. Environ. Exp. Bot. 72, 422-431. http://doi.org/10.1016/j.envexpbot.2011.01.003

Shestakova, T.A., Voltas, J., Saurer, M., Siegwolf, R.T.W., Kirdyanov, A.V., 2017. Warming effects on Pinus sylvestris in the cold-dry siberian forest-steppe: positive or negative balance of trade? Forests 8, 490. http://doi.org/10.3390/f8120490

Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., Vogt, J., 2014. World drought frequency, duration, and severity for 1951-2010. Int J. Climatol. 34, 2792-2804. http://doi.org/10.1002/joc.3875

SteinkampJ.HicklerT.Is drought-induced forest dieback globally increasing?J. Ecol.2015103314310.1111/1365-2745.12335

Steinkamp, J., Hickler, T., 2015. Is drought-induced forest dieback globally increasing? J. Ecol. 103, 31-43. http://doi.org/10.1111/1365-2745.12335

Stephenson, N.L., Das, A.J., Ampersee, N.J., Cahill, K.G., Caprio, A.C., Sanders, J.E., Williams, A.P., 2018. Patterns and correlates of giant sequoia foliage dieback during California’s 2012-2016 hotter drought. Forest Ecol. Manag. 419, 268-278. http://doi.org/10.1016/j.foreco.2017.10.053

Sun, S.J., He, C.X., Qiu, L.F., Li, C.Y., Zhang, J.S., Meng, P., 2018. Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the Three-North Shelter Forest in Northern China. Agr. Forest. Meteorol. 252, 39-48. http://doi.org/10.1016/j.agrformet.2017.12.264

Tognetti, R., Lasserre, B., Di Febbraro, M., Marchetti, M., 2019. Modeling regional drought-stress indices for beech forests in Mediterranean mountains based on tree-ring data. Agr. Forest Meteorol. 265, 110-120. http://doi.org/10.1016/j.agrformet.2018.11.015

Tumajer, J., Altman, J., Stepanek, P., Treml, V., Dolezal, J., Cienciala, E., 2017. Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. Agr. Forest Meteorol. 247, 56-64. http://doi.org/10.1016/j.agrformet.2017.07.015

van Mantgem, P.J., Stephenson, N.L., Byrne, J.C., Daniels, L.D., Franklin, J.F., Fule, P.Z., Harmon, M.E., Larson, A.J., Smith, J.M., Taylor, A.H., Veblen, T.T., 2009. Widespread increase of tree mortality rates in the Western United States. Science 323, 521-524. http://doi.org/10.1126/science.1165000

Vellend, M., Young, A.B., Letendre, G., Rivest, S., 2017. Thaw circles around tree trunks provide spring ephemeral plants with a big head start on the growing season. Ecology 98, 3224-3226. http://doi.org/10.1002/ecy.2024

Vicente-SerranoS.M.BegueriaS.Lopez-MorenoJ.I.A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration indexJ. Clim.2010231696171810.1175/2009JCLI2909.1

Vicente-Serrano, S.M., Begueria, S., Lopez-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Climate 23, 1696-1718. http://doi.org/10.1175/2009JCLI2909.1

Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook, E.R., Gangodagamage, C., Cai, M., McDowell, N.G., 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Clim. Change 3, 292-297. http://doi.org/10.1038/nclimate1693

Williams, A.P., Allen, C.D., Millarc, C.I., Swetnamd, T.W., Michaelsena, J., Stilla, C.J., Leavitt, S.W., 2010. Forest responses to increasing aridity and warmth in the southwestern united states. PNAS 107, 21289-21294. http://doi.org/10.1073/pnas.0914211107

Xu, K., Wang, X., Jiang, C., Sun, O.J.X., 2020. Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity. For. Ecosyst. 7, 23. http://doi.org/10.1186/s40663-020-00239-y

Yang, X.Y., Zeng, W.S., Chen, X.Y., 2021. Research on developing stand volume, biomass and carbon stock models for major forest types in Beijing. Forest Res. Manag. 02, 124-130. http://doi.org/10.13466/j.cnki.lyzygl.2021.02.017 (in Chinese)

Ye, H.C., Yang, D.Q., Robinson, D., 2008. Winter rain on snow and its association with air temperature in northern Eurasia. Hydrol. Process. 22, 2728-2736. http://doi.org/10.1002/hyp.7094

Zadworny, M., Jagodzinski, A.M., Lakomy, P., Mucha, J., Oleksyn, J., Rodriguez-Calcerrada, J., Ufnalski, K., 2019. Regeneration origin affects radial growth patterns preceding oak decline and death-insights from tree-ring δ13C and δ18O. Agr. Forest Meteorol. 278, 107685. http://doi.org/10.1016/j.agrformet.2019.107685

Zhang, X.L., Manzanedo, R.D., D’Orangeville, L., Radmacher, T.T., Li, J.X., Bai, X.P., Hou, M.T., Chen, Z.J., Zou, F.H., Song, F.B., Pederson, N., 2019. Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests. Glob. Chang. Biol. 25, 3462-3471. http://doi.org/10.1111/gcb.14749

Zhang, X.L., Lv, P.C., Xu, C., Huang, X.R., Rademacher, T., 2021. Dryness decreases average growth rate and increases drought sensitivity of mongolia oak trees in north china. Agr. Forest Meteorol. 308-309, 108611. http://doi.org/10.1016/j.agrformet.2021.108611

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Published: 25 February 2022
Issue date: February 2022

Copyright

© 2022 Beijing Forestry University.

Acknowledgements

Acknowledgements

We thank Erdie Zi and Weiwei Lu for their help with fieldwork.

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/).

Return