AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (719.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Short Communication | Open Access

Natural variations in a barley aldehyde oxidase 1 gene affect seed germination and malting quality

Le XuaPeng WangaXiaoqi ZhangbQisen ZhangcPenghao WangbYanhao XudChengdao Lib( )Wenying Zhanga( )
MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434023, Hubei, China
Western Barley Genetic Alliance, Murdoch University, Perth, WA 6150, Australia
Australian Export Grains Innovation Centre, Perth, WA 6151, Australia
Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
Show Author Information

Abstract

Multiple phytohormones, including gibberellin (GA), abscisic acid (ABA), and indole-3-acetic acid (IAA), regulate seed germination. In this study, a barley aldehyde oxidase 1 (HvAO1) gene was identified, which is located near the SD2 (seed dormancy 2) region at the telomeric end of chromosome 5H. A doubled-haploid population (AC Metcalfe/Baudin) was used to characterize HvAO1 and validated its association with seed germination and malting quality. Aldehyde oxidase is predicted to catalyse the oxidation of various aldehydes, such as indoleacetaldehyde and abscisic aldehyde, into IAA and ABA, which is the final step of IAA/ABA biogenesis. This process influences the final IAA/ABA concentration in the seed, affecting the seed dormancy. Sequence analysis revealed substantial variations in the HvAO1 promoter regions between AC Metcalfe and Baudin. The combining seed germination tests, genetic variation analysis, gene expression, and phytohormone measurements showed that Baudin, which displays strong seed dormancy, has a specific sequence variation in the promoter region of the HvAO1 gene. This variation is associated with a higher expression level of the HvAO1 gene and an increased level of ABA than those in AC Metcalfe, which shows weak dormancy and lacks this sequence variation. In addition to its strong effect on the SD2 gene, HvAO1 shows excellent potential to fine-tune malting quality and seed dormancy, as evidenced by genotyping with HvAO1-specific markers, dormancy phenotypes, and malting quality. Our findings provide a new strategy for introducing favourable HvAO1 alleles to achieve the desired level of seed dormancy and high malting quality in barley.

References

[1]

G. Kaur, P.K. Toora, P.A. Tuan, C.A. McCartney, M.S. Izydorczyk, A. Badea, B.T. Ayele, Genome-wide association and targeted transcriptomic analyses reveal loci and candidate genes regulating preharvest sprouting in barley, Theor. Appl. Genet. 136 (2023) 202.

[2]

Y. Jia, J.M. Barrero, J.R. Wang, M.J. Considine, S. Nakamura, C.D. Li, Seed dormancy, germination, and pre-harvest sprouting, Front. Plant Sci. 15 (2024) 1399510.

[3]

K. Takeda, K. Hori, Geographical differentiation and diallel analysis of seed dormancy in barley, Euphytica 153 (2007) 249–256.

[4]

W.E. Finch-Savage, G. Leubner-Metzger, Seed dormancy and the control of germination, New Phytol. 171 (2006) 501–523.

[5]

X.M. Ji, B.D. Dong, B. Shiran, M.J. Talbot, J.E. Edlington, T. Hughes, R.G. White, F. Gubler, R. Dolferus, Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals, Plant Physiol. 156 (2011) 647–662.

[6]

Y. Bonnardeaux, C.D. Li, R. Lance, X.Q. Zhang, K. Sivasithamparam, R. Appels, Seed dormancy in barley: identifying superior genotypes through incorporating epistatic interactions, Crop Pasture Sci. 59 (2008) 517–526.

[7]

L.T. Hickey, W. Lawson, V.N. Arief, G. Fox, J. Franckowiak, M.J. Dieters, Grain dormancy QTL identified in a doubled haploid barley population derived from two non-dormant parents, Euphytica 188 (2012) 113–122.

[8]

R.D. Horsley, N.L.V. Lapitan, Z. Ma, P.B. Schwarz, QTL mapping of dormancy in barley using the Harrington/Morex and Chevron/Stander mapping populations, Crop Sci. 49 (2009) 841–849.

[9]

S. Nakamura, M. Pourkheirandish, H. Morishige, Y. Kubo, M. Nakamura, K. Ichimura, S. Seo, H. Kanamori, J. Wu, T. Ando, G. Hensel, M. Sameri, N. Stein, K. Sato, T. Matsumoto, M. Yano, T. Komatsuda, Mitogen-activated protein kinase 3 regulates seed dormancy in barley, Curr. Biol. 26 (2016) 775–781.

[10]

H. Hisano, R.E. Hoffie, F. Abe, H. Munemori, T. Matsuura, M. Endo, M. Mikami, S. Nakamura, J. Kumlehn, K. Sato, Regulation of germination by targeted mutagenesis of grain dormancy genes in barley, Plant Biotechnol. J. 20 (2021) 37–46.

[11]

X. Jin, S. Harasymow, Y. Bonnardeaux, T. Allen, R. Appels, R. Lance, G. Zhang, QTLs for malting flavour component associated with pre-harvest sprouting susceptibility in barley (Hordeum vulgare L.), J. Cereal Sci. 53 (2011) 149–153.

[12]

D.W. Sweeney, T.E. Rooney, J.G. Walling, M.E. Sorrells, Interactions of the barley SD1 and SD2 seed dormancy loci influence preharvest sprouting, seed dormancy, and malting quality, Crop Sci. 62 (2021) 120–138.

[13]

M.J. Edney, W.G. Legge, M.S. Izydorczyk, T. Demeke, B.G. Rossnagel, Identification of barley breeding lines combining preharvest sprouting resistance with “Canadian-type” malting quality, Crop Sci. 53 (2013) 1447–1454.

[14]

S.T. Cu, T.J. March, S. Stewart, S. Degner, S. Coventry, A. Box, D. Stewart, B. Skadhauge, R.A. Burton, G.B. Fincher, Genetic analysis of grain and malt quality in an elite barley population, Mol. Breed. 36 (2016) 129.

[15]

S. Akaba, M. Seo, N. Dohmae, K. Takio, H. Sekimoto, Y. Kamiya, N. Furuya, T. Romano, T. Koshiba, Production of homo- and hetero-dimeric isozymes from two aldehyde oxidase genes of Arabidopsis thaliana, J. Biochem. 126 (1999) 395–401.

[16]

M. Seo, S. Akaba, T. Oritani, M. Delarue, C. Bellini, C.T. Koshiba, Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana, Plant Physiol. 4 (1998) 116.

[17]

P. Colasuonno, M.L. Lozito, I. Marcotuli, D. Nigro, A. Giancaspro, G. Mangini, P. De Vita, A.M. Mastrangelo, N. Pecchioni, K. Houston, R. Simeone, A. Gadaleta, A. Blanco, The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments, BMC Genomics 18 (2017) 122.

[18]

X. Shi, Q. Tian, P. Deng, W. Zhang, W. Jing, The rice aldehyde oxidase OsAO3 gene regulates plant growth, grain yield, and drought tolerance by participating in ABA biosynthesis, Biochem. Biophys. Res. Commun. 548 (2021) 189–195.

[19]

S. Srivastava, G. Brychkova, D. Yarmolinsky, A. Soltabayeva, T. Samani, M. Sagi, Aldehyde oxidase 4 plays a critical role in delaying silique senescence by catalyzing aldehyde detoxification, Plant Physiol. 173 (2017) 1977.

[20]

R.T. Omarov, S. Akaba, T. Koshiba, S.H. Lips, Aldehyde oxidase in roots, leaves and seeds of barley (Hordeum vulgare L.), J. Exp. Bot. 50 (1999) 63–69.

[21]

Q.S. Zhang, X.Q. Zhang, F. Pettolino, G.F. Zhou, C.D. Li, Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos, J. Plant Physiol. 191 (2016) 127–139.

[22]

J.F. Panozzo, P.J. Eckermann, D.E. Mather, D.B. Moody, C.K. Black, H.M. Collins, A.R. Barr, P. Lim, B.R. Cullis, QTL analysis of malting quality traits in two barley populations, Aust. J. Agric. Res. 58 (2007) 858–866.

[23]

Z. Xu, H. Wang, LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons, Nucleic Acids Res. 35 (2007) 265–268.

[24]

A. Maruyama-Nakashita, Y. Nakamura, A. Watanabe-Takahashi, E. Inoue, T. Yamaya, H. Takahashi, Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots, Plant J. 42 (2005) 305–314.

[25]

J.C. Loke, E.A. Stahlberg, D.G. Strenski, B.J. Haas, P.C. Wood, Q.Q. Li, Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures, Plant Physiol. 138 (2005) 1457–1468.

[26]

H. Goda, S. Sawa, T. Asami, S. Fujioka, Y. Shimada, S. Yoshida, Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis, Plant Physiol. 134 (2004) 1555–1573.

The Crop Journal
Pages 299-303
Cite this article:
Xu L, Wang P, Zhang X, et al. Natural variations in a barley aldehyde oxidase 1 gene affect seed germination and malting quality. The Crop Journal, 2025, 13(1): 299-303. https://doi.org/10.1016/j.cj.2024.11.008

80

Views

3

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 February 2024
Revised: 14 November 2024
Accepted: 19 November 2024
Published: 21 December 2024
© 2024 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return