AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fine-mapping and characterisation of genes on barley (Hordeum vulgare) chromosome 2H for salinity stress tolerance during germination

Edward Mwandoa,b,cYong Hana,b,cTefera Angessaa,b,cXiao-Qi Zhanga,bChengdao Lia,b,c( )
Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
Show Author Information

Abstract

Salinity causes a detrimental impact on plant growth, particularly when the stress occurs during germination and early development stages. Barley is one of the most salt-tolerant crops; previously we mapped two quantitative trait loci (QTL) for salinity tolerance during germination on the short arm of chromosome 2H using a CM72/Gairdner doubled haploid (DH) population. Here, we narrowed down the major QTL to a region of 0.341 or 0.439 Mb containing 9 or 24 candidate genes belonging to 6 or 20 functional gene families according to barley reference genomes v1 and v3 respectively, using two DH populations of CM72/Gairdner and Skiff/CM72, F2 and F3 generations of CM72/Gairdner/*Spartacus CL. Two Receptor-like kinase 4 (RLPK4) v1 or Receptor-like kinase (RLK) v3 could be the candidates for enhanced germination under salinity stress because of their upregulated expression in salt-tolerant variety CM72. Besides, several insertion/deletion polymorphisms were identified within the 3rd exon of the genes between CM72 and Gairdner. The sequence variations resulted in shifted functional protein domains, which may be associated with differences in salinity tolerance. Two molecular markers were designed for selecting the locus with receptor-like protein kinase 4, and one was inside HORVU2Hr1G111760.1 or HORVU.MOREX.r3.2HG0202810.1. The diagnostic markers will allow for pyramiding of 2H locus in barley varieties and facilitate genetic improvement for saline soils. Further, validation of the genes to elucidate the mechanisms involved in enhancing salinity tolerance at germination and designing RLPK4 specific markers is proposed. For this publication, all the analysis was based on barley reference genome of 2017 (v1), and it was used throughout for consistence. However, the positions of the markers and genes identified were updated according to new genome (v3) for reference.

References

[1]

J.C. Dagar, R.K. Yadav, P.C. Sharma, Research Developments in Saline Agriculture, Springer Singapore, Singapore (2019).

[2]

Q. Shen, L. Fu, T. Su, L. Ye, L.u. Huang, L. Kuang, L. Wu, D. Wu, Z.H. Chen, G. Zhang, Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4, Plant Physiol. 183 (2020) 1650-1662.

[3]
G. Mustafa, M.S. Akhtar, R. Abdullah, Global concern for salinity on various agro-ecosystems, in: M.S. AkhtarSalt (Ed.), Stress, Microbes, and Plant Interactions: Causes and Solution, Springer, Singapore, 2019.
[4]

P. Rengasamy, Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview, Aust. J. Exp. Agric. 42 (2002) 351.

[5]

P.K. Agarwal, P.S. Shukla, K. Gupta, B. Jha, Bioengineering for salinity tolerance in plants: state of the art, Mol. Biotechnol. 54 (2013) 102-123.

[6]

S. Tabatabaei, P. Ehsanzadeh, Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl, Photosynthetica 54 (2016) 340-350.

[7]

E. Mwando, Y. Han, T.T. Angessa, G. Zhou, C.B. Hill, X.Q. Zhang, C. Li, Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.), Front. Plant Sci. 11 (2020) 118.

[8]
N. Bernstein, Plants and salt: Plant response and adaptations to salinity, in: J. Seckbach, P. Rampelotto (Eds.), Model Ecosystems in Extreme Environments, Academic Press, London, UK, 2019, pp. 101–112
[9]

S.J. Roy, S. Negrão, M. Tester, Salt resistant crop plants, Curr. Opin. Biotechnol. 26 (2014) 115-124.

[10]

P.K. Nimbolkar, J. Bajeli, A. Tripathi, A.K. Chaubey, N.M. Kanade, Mechanism of salt tolerance in fruit crops: a review, Agric. Rev. 41 (2020) 25-33.

[11]

S.W. Alan, Essential role of crop landraces for world food security, Mod. Concepts Dev. Agron. 1 (2018) 91-94.

[12]

N.E.G. Forsberg, M.W. Leino, J. Hagenblad, Population structure in landrace barley (Hordeum vulgare L.) during the late 19th century crop failures in Fennoscandia, Heredity 123 (2019) 733-745.

[13]

Z. Chen, T.A. Cuin, M. Zhou, A. Twomey, B.P. Naidu, S. Shabala, Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance, J. Exp. Bot. 58 (2007) 4245-4255.

[14]

J. Zhu, Y. Fan, S. Shabala, C. Li, C. Lyu, B. Guo, R. Xu, M. Zhou, Understanding mechanisms of salinity tolerance in barley by proteomic and biochemical analysis of near-isogenic lines, Int. J. Mol. Sci. 21 (2020) 1516.

[15]

K. Houston, J. Qiu, S. Wege, M. Hrmova, H. Oakey, Y. Qu, P. Smith, A. Situmorang, M. Macaulay, P. Flis, M. Bayer, Barley sodium content is regulated by natural variants of the Na+ transporter HvHKT1; 5, Commun. Biol. 3 (2020) 258.

[16]

A. Monteagudo, A.M. Casas, C.P. Cantalapiedra, B. Contreras-Moreira, M.P. Gracia, E. Igartua, Harnessing novel diversity from landraces to improve an elite barley variety, Front. Plant Sci. 10 (2019) 434.

[17]

D. Xue, Y. Huang, X. Zhang, K. Wei, S. Westcott, C. Li, M. Chen, G. Zhang, R. Lance, Identification of QTLs associated with salinity tolerance at late growth stage in barley, Euphytica 169 (2009) 187-196.

[18]

T.T. Angessa, X.Q. Zhang, G. Zhou, W. Zhang, C. Li, S. Broughton, Early growth stages salinity stress tolerance in CM72 × Gairdner doubled haploid barley population, PLoS ONE 12 (2017) e0179715.

[19]

G. Zhou, P. Johnson, P.R. Ryan, E. Delhaize, M. Zhou, Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.), Mol. Breed. 29 (2012) 427-436.

[20]

Y. Shavrukov, N.K. Gupta, J. Miyazaki, M.N. Baho, K.J. Chalmers, M. Tester, P. Langridge, N.C. Collins, HvNax3-a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum), Funct. Integr. Genomics 10 (2010) 277-291.

[21]

M.E. Rogers, G.M. Noble, G.L. Halloran, M.E. Nicolas, The effect of NaCl on the germination and early seedling growth of white clover population selected for high and low salinity tolerance, Seed Sci. Technol. 23 (1995) 277-287.

[22]
J.D. Bewley, K.J. Bradford, H.W.M. Hilhorst, H. Nonogaki, Physiology of Development, Germination, and Dormancy, Springer, NY, USA, 2013.
[23]

W.J.R. Boyd, C.D. Li, C.R. Grime, M. Cakir, S. Potipibool, L. Kaveeta, S. Men, M.R.J. Kamali, A.R. Barr, D.B. Moody, R.C.M. Lance, S.J. Logue, H. Raman, B.J. Read, Conventional and molecular genetic analysis of factors contributing to variation in the timing of heading among spring barley (Hordeum vulgare L.) genotypes grown over a mild winter growing season, Aust. J. Agric. Res. 54 (2003) 1277.

[24]

Y. El Goumi, M. Fakiri, O. Lamsaouri, M. Benchekroun, Salt stress effect on seed germination and some physiological traits in three Moroccan barley (Hordeum vulgare L.) cultivars, J. Mater Environ. Sci. 5 (2014) 25-632.

[25]
N.B. Inja, R. Lingeswara, K. Beom-Ki, Y. In-Sun, K. Kyung-Hwan, International Grains Council (IGC), Five-year global supply and demand projections, Canada Square, Canary Wharf, London, UK, 2015. https://www.igc.int/en/markets/marketinfo-sd.aspx.
[26]

H. Sbei, K. Sato, T. Shehzad, M. Harrabi, K. Okuno, Detection of QTLs for salt tolerance in Asian barley (Hordeum vulgare L.) by association analysis with SNP markers, Breeding Sci. 64 (2014) 378-388.

[27]
SAS Institute Inc., SAS 9.4 Statements: Reference, SAS Institute Inc, Cary, NC, USA, 2013.
[28]
IBM corporation, IBM SPSS Statistics for Windows, Version 25.0. IBM Corp., Armonk, NY, USA, 2017.
[29]

N. Stein, G. Herren, B. Keller, A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum, Plant Breed. 120 (2013) 54-356.

[30]

M. Mascher, H. Gundlach, A. Himmelbach, S. Beier, S.O. Twardziok, T. Wicker, V. Radchuk, C. Dockter, P.E. Hedley, J. Russell, M. Bayer, L. Ramsay, H. Liu, G. Haberer, X.Q. Zhang, Q. Zhang, R.A. Barrero, L. Li, S. Taudien, M. Groth, M. Felder, A. Hastie, H. Šimková, H. Staňková, J. Vrána, S. Chan, M. Muñoz-Amatriaín, R. Ounit, S. Wanamaker, D. Bolser, C. Colmsee, T. Schmutzer, L. Aliyeva-Schnorr, S. Grasso, J. Tanskanen, A. Chailyan, D. Sampath, D. Heavens, L. Clissold, S. Cao, B. Chapman, F. Dai, Y. Han, H. Li, X. Li, C. Lin, J.K. McCooke, C. Tan, P. Wang, S. Wang, S. Yin, G. Zhou, J.A. Poland, M.I. Bellgard, L. Borisjuk, A. Houben, J. Doležel, S. Ayling, S. Lonardi, P. Kersey, P. Langridge, G.J. Muehlbauer, M.D. Clark, M. Caccamo, A.H. Schulman, K.F.X. Mayer, M. Platzer, T.J. Close, U. Scholz, M. Hansson, G. Zhang, I. Braumann, M. Spannagl, C. Li, R. Waugh, N. Stein, A chromosome conformation capture ordered sequence of the barley genome, Nature 544 (2017) 427-433.

[31]
O.J. Van, R. Voorrips, JoinMap: version 3.0: software for the calculation of genetic linkage maps, Wageningen University and Research Center, Wageningen, the Netherlands, 2001.
[32]

Q. Zhang, X. Zhang, S. Wang, C. Tan, G. Zhou, C. Li, E. Buratti, Involvement of alternative splicing in barley seed germination, PLoS ONE 11 (2016) e0152824.

[33]

Y. Han, S. Yin, L. Huang, X. Wu, J. Zeng, X. Liu, L. Qiu, R. Munns, Z.H. Chen, G. Zhang, A sodium transporter HvHKT1; 1 confers salt tolerance in barley via regulating tissue and cell ion homeostasis, Plant Cell Physiol. 59 (2018) 1976–1989.

[34]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔT method, Methods 25 (2001) 402-408.

[35]

S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, MEGA X: Molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol. 35 (2018) 1547-1549.

[36]

M. Kearse, R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P.L. Meintjes, A.J. Drummond, Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics 28 (2012) 1647-1649.

[37]

F. Corpet, Multiple sequence alignment with hierarchical clustering, Nucl. Acids Res. 16 (1988) 10881-10890.

[38]

C. Colmsee, S. Beier, A. Himmelbach, T. Schmutzer, N. Stein, U. Scholz, M. Mascher, BARLEX the barley draft genome explorer, Mol. Plant 8 (2015) 964-966.

[39]

Q. Jia, J. Zhu, J. Wang, J. Yang, G. Zhang, Genetic mapping and molecular marker development for the gene Pre2 controlling purple grains in barley, Euphytica 208 (2016) 215-223.

[40]

M. Bian, I. Waters, S. Broughton, X.-Q. Zhang, M. Zhou, R. Lance, D. Sun, C. Li, Development of gene-specific markers for acid soil/aluminium tolerance in barley (Hordeum vulgare L.), Mol. Breed. 32 (2013) 155-164.

[41]

S. Anuradha, R. Seeta, S. Rao, Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice, J. Plant Growth Regul. 33 (2001) 151-153.

[42]

S. Baudino, S. Hansen, R. Brettschneider, V.F.G. Hecht, T. Dresselhaus, H. Lörz, C. Dumas, P.M. Rogowsky, Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family, Planta 213 (2001) 1-10.

[43]

B. Singla, J.P. Khurana, P. Khurana, Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum, Plant Cell Rep. 27 (2008) 833-843.

[44]

C. Yang, T. Zhao, D. Yu, J. Gai, Isolation and functional characterization of a SERK gene from soybean (Glycine max (L.) Merr.), Plant Mol. Biol. Rep. 29 (2011) 334-344.

[45]

B. Singla, J.P. Khurana, P. Khurana, Structural characterization and expression analysis of the SERK/SERL gene family in rice (Oryza sativa), Int. J. Plant Genomics 2009 (2009) 1-8.

[46]

D.K. Pandey, B. Chaudhary, Oxidative stress responsive SERK1 gene directs the progression of somatic embryogenesis in cotton (Gossypium hirsutum L. cv. Coker 310), Am. J. Plant Sci. 5 (2014) 80-102.

[47]

V. Hecht, J.P. Vielle-Calzada, M.V. Hartog, E.D.L. Schmidt, K. Boutilier, U. Grossniklaus, S.C. de Vries, The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture, Plant Physiol. 127 (2001) 803–816.

[48]

J. Wang, S. Liu, C. Li, T. Wang, P. Zhang, K. Chen, K. Wu, PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance, PLoS ONE 12 (2017) e0172869.

[49]

Y.W. Qiu, Z. Feng, M.M. Fu, X.H. Yuan, C.C. Luo, Y.B. Yu, Y.Z. Feng, W. Qi, F.L. L, GsMAPK4, a positive regulator of soybean tolerance to salinity stress, J. Integr. Agric. 18 (2019) 372–380.

[50]

S.L. Amarasinghe, W. Huang, N.S. Watson-Haigh, M. Gilliham, S.J. Roy, U. Baumann, AtCIPK16 mediates salt stress potentially through phytohormones and transcription factors, BioRxiv (2020), https://doi.org/10.1101/2020.02.17.953216.

[51]

X. Yang, M.S. Islam, S. Sood, S. Maya, E.A. Hanson, J. Comstock, J. Wang, Identifying quantitative trait loci (QTLs) and developing diagnostic markers linked to orange rust resistance in sugarcane (Saccharum spp.), Front. Plant Sci. 9 (2018) 350.

[52]

L.P. Melese, Marker assisted selection in comparison to conventional plant breeding: review article, Agric. Res. Technol. 14 (2018) 555914.

[53]

M. Ashraf, N.A. Akram, M.R. Foolad, Marker-assisted selection in plant breeding for salinity tolerance, Methods Mol. Biol. 913 (2012) 305-333.

[54]

U. Deinlein, A.B. Stephan, T. Horie, W. Luo, G. Xu, J.I. Schroeder, Plant salt-tolerance mechanisms, Trends Plant Sci. 19 (2014) 371-379.

[55]

C.S. Byrt, R. Munns, R.A. Burton, M. Gilliham, S. Wege, Root cell wall solutions for crop plants in saline soils, Plant Sci. 269 (2018) 47-55.

[56]

F. Yang, H. Chen, C. Liu, L. Li, L. Liu, X. Han, Z. Wan, A. Sha, Transcriptome profile analysis of two Vicia faba cultivars with contrasting salinity tolerance during seed germination, Sci. Rep. 10 (2020) 7250.

[57]

N. Passricha, S.K. Saifi, P. Kharb, N. Tuteja, Rice lectin receptor-like kinase provides salinity tolerance by ion homeostasis, Biotechnol. Bioeng. 117 (2020) 498-510.

[58]

A.K. Nanda, A. El Habti, C. Hocart, J. Masle, Timing seed germination under changing salinity: a key role of the ERECTA receptor-kinases, BioRxiv (2019), https://doi.org/10.1101/576512

[59]

N. Passricha, S.K. Saifi, R. Singh, P. Kharb, N. Tuteja, Receptor-like kinases control the development, stress response, and senescence in plants, in senescence signalling and control in plants, Academic Press, London, UK, 2019, pp. 199–210.

[60]

A.Y. Cueva-Agila, N. Alberca-Jaramillo, R. Cella, L. Concia, Isolation, phylogenetic analysis, and expression of a Somatic Embryogenesis Receptor like Kinase (SERK) gene in Cattleya maxima Lindl, Curr. Plant Biol. 21 (2020) 100139.

[61]

J. Salaj, I.R. von Recklinghausen, V. Hecht, S.C. de Vries, J.H.N. Schel, A.A.M. van Lammeren, AtSERK1 expression precedes and coincides with early somatic embryogenesis in Arabidopsis thaliana, Plant Physiol. Biochem. 46 (2008) 709-714.

[62]

P.T. Do, D.H. Nguyen, H.T. Tang, Analysis of natural variation in OsHKT1; 1 gene sequence and gene expression in relation to salinity in rice (Oryza sativa L.), J. Anim. Plant Sci. 30 (2020) 163-174.

[63]

P.L. Liu, Y. Huang, P.H. Shi, M. Yu, J.B. Xie, L. Xie, Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean, Sci. Rep. 8 (2018) 5861.

[64]

M. Sun, X. Qian, C. Chen, S. Cheng, B. Jia, Y. Zhu, X. Sun, Ectopic expression of GsSRK in Medicago sativa reveals its involvement in plant architecture and salt stress responses, Front. Plant Sci. 9 (2018) 226.

[65]

M. Sharma, G.K. Pandey, Expansion and function of repeat domain proteins during stress and development in plants, Front. Plant Sci. 6 (2016) 1218.

[66]

C. Boulard, J. Thévenin, O. Tranquet, V. Laporte, L. Lepiniec, B. Dubreucq, LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed, Biochim. Biophys. Acta Gene Regul. Mech. 1861 (2018) 443-450.

[67]

M. Huse, J. Kuriyan, The conformational plasticity of protein kinases, Cell 109 (2002) 275-282.

[68]

S.K. Hanks, T. Hunter, The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification 1, FASEB J. 9 (1995) 576-596.

[69]

S.K. Hanks, A.M. Quinn, T. Hunter, The protein kinase family: conserved features and deduced phylogeny of the catalytic domains, Science 241 (1988) 42-52.

[70]

D. de Nardo, K.R. Balka, Y.C. Gloria, V.R. Rao, E. Latz, S.L. Masters, Interleukin-1 receptor–associated kinase 4 (IRAK4) plays a dual role in myddosome formation and toll-like receptor signalling, J. Biol. Chem. 293 (2018) 15195-15207.

[71]

P. Chu, L. He, D. Zhu, L. Chen, R. Huang, L. Liao, Y. Li, Z. Zhu, Y. Wang, Identification, characterisation and preliminary functional analysis of IRAK-M in grass carp (Ctenopharyngodon idella), Fish Shellfish Immunol. 84 (2019) 312-321.

[72]

B. Liu, Y. Gu, S. Pei, Y.U. Peng, J. Chen, L.V. Pham, H.Y. Shen, J. Zhang, H. Wang, Interleukin-1 receptor associated kinase (IRAK)-M-mediated type 2 microglia polarization ameliorates the severity of experimental autoimmune encephalomyelitis (EAE), J. Autoimmun. 102 (2019) 77-88.

[73]

H. Wesche, X. Gao, X. Li, C.J. Kirschning, G.R. Stark, Z. Cao, IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family, J. Biol. Chem. 274 (1999) 19403-19410.

[74]

Y. Zhou, Q. Xia, X.i. Wang, S. Fu, Endotoxin tolerant dendritic cells suppress inflammatory responses in splenocytes via interleukin-1 receptor associated kinase (IRAK)-M and programmed death-ligand 1 (PDL-1), Med. Sci. Monit. 24 (2018) 4798-4806.

[75]

M. Mascher, T. Wicker, J. Jenkins, C. Plott, T. Lux, C.S. Koh, J. Ens, H. Gundlach, L.B. Boston, Z. Tulpová, S. Holden, I. Hernández-Pinzón, U. Scholz, K.F.X. Mayer, M. Spannagl, C.J. Pozniak, A.G. Sharpe, H. Simková, M.J. Moscou, J. Grimwood, J. Schmutz, N. Stein, Long-read sequence assembly: a technical evaluation in barley, Plant Cell 33 (2021) 1888–1906.

The Crop Journal
Pages 754-766
Cite this article:
Mwando E, Han Y, Angessa T, et al. Fine-mapping and characterisation of genes on barley (Hordeum vulgare) chromosome 2H for salinity stress tolerance during germination. The Crop Journal, 2022, 10(3): 754-766. https://doi.org/10.1016/j.cj.2021.10.008

372

Views

6

Downloads

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 07 May 2021
Revised: 12 October 2021
Accepted: 13 October 2021
Published: 06 December 2021
© 2021 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return