AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Genome-wide association studies reveal QTL hotspots for grain brightness and black point traits in barley

Yong Jiaa,bSharon Westcotta,cTianhua Hea,bLee Anne McFawncTefera Angessaa,bCamila Hilla,bCong TandXiaoqi Zhanga,bGaofeng ZhoucChengdao Lia,b,c( )
Western Barley Genetics Alliance, Murdoch, WA 6150, Australia
State Agricultural Biotechnology Centre (SABC), Murdoch University, Murdoch, WA 6150, Australia
Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
China National GeneBank, Shenzhen 518120, Guangdong, China
Show Author Information

Abstract

Grain kernel discoloration (KD) in cereal crops leads to down-grading grain quality and substantial economic losses worldwide. Breeding KD tolerant varieties requires a clear understanding of the genetic basis underlying this trait. Here, we generated a high-density single nucleotide polymorphisms (SNPs) map for a diverse barley germplasm and collected trait data from two independent field trials for five KD related traits: grain brightness (TL), redness (Ta), yellowness (Tb), black point impact (Tbpi), and total black point in percentage (Tbpt). Although grain brightness and black point is genetically correlated, the grain brightness traits (TL, Ta, and Tb) have significantly higher heritability than that of the black point traits (Tbpt and Tbpi), suggesting black point traits may be more susceptible to environmental influence. Using genome-wide association studies (GWAS), we identified a total of 37 quantitative trait loci (QTL), including two major QTL hotspots on chromosomes 4H and 7H, respectively. The two QTL hotspots are associated with all five KD traits. Further genetic linkage and gene transcription analyses identified candidate genes for the grain KD, including several genes in the flavonoid pathway and plant peroxidase. Our study provides valuable insights into the genetic basis for the grain KD in barley and would greatly facilitate future breeding programs for improving grain KD resistance.

References

[1]

C.C.T. Romero, A. Vels, R.E. Niks, Identification of a large-effect QTL associated with kernel discoloration in barley, J. Cereal Sci. 84 (2018) 62–70.

[2]

C.D. Li, R.C.M. Lance, H.M. Collins, A. Tarr, S. Roumeliotis, S. Harasymow, M. Cakir, G.P. Fox, C.R. Grime, S. Broughton, K.J. Young, H. Raman, A.R. Barr, D.B. Moody, B.J. Readf, Quantitative trait loci controlling kernel discoloration in barley (Hordeum vulgare L.), Aust. J. Agric. Res. 54 (2003) 1251–1259.

[3]

M.R. Fernandez, R.L. Conner, Black point and smudge in wheat, Prairie Soils Crops J. 4 (2011).

[4]

M. Sisterna, S. Sarandon, Wheat grain discoloration in Argentina: current status, Am. J. Plant Sci. Biotechnol. 3 (2010) 54–64.

[5]

H.M.I. Arshad, J.A. Khan, N. Sumaira, S.N. Khan, A. Muhammad, Grain discoloration disease complex: a new threat for rice crop and its management, Pakistan J. Phytopathol. 21 (2009) 31–36.

[6]

H. Wang, M.R. Fernandez, T.N. McCaig, Y.T. Gan, R.M. DePauw, J.M. Clarke, Kernel discoloration and downgrading in spring wheat varieties in western Canada, Can. J. Plant Pathol. 25 (2003) 350–361.

[7]

K.R. Walker, J.A. Able, D.E. Mather, A.J. Able, Black point formation in barley: environmental influences and quantitative trait loci, Aust. J. Agric. Res. 59 (2008) 1021–1029.

[8]

M. Khani, J. Cheong, K. Mrva, D. Mares, Wheat black point: role of environment and genotype, J. Cereal Sci. 82 (2018) 25–33.

[9]

Z. Quinde, S.E. Ullrich, B.K. Baik, Genotypic variation in color and discoloration potential of barley-based food products, Cereal Chem. 81 (2004) 752–758.

[10]

J.D. Liu, Z.H. He, L. Wu, B. Bai, W.E. Wen, C.J. Xie, X.C. Xia, Genome-wide linkage mapping of QTL for black point reaction in bread wheat (Triticum aestivum L.), Theor. Appl. Genet. 129 (2016) 2179–2190.

[11]

P.R. Tah, A. Lehmensiek, G.P. Fox, E. Mace, M. Sulman, G. Bloustein, G.E. Daggard, Identification of genetic regions associated with black point in barley, Field Crops Res. 115 (2010) 61–66.

[12]

B.J. Read, H. Raman, G. McMichael, K.J. Chalmers, G.A. Ablett, G.J. Platz, R. Raman, R.K. Genger, W.J.R. Boyd, C.D. Li, C.R. Grime, R.F. Park, H. Wallwork, R. Prangnell, R.C.M. Lance, Mapping and QTL analysis of the barley population Sloop × Halcyon, Aust. J. Agric. Res. 54 (2003) 1145–1153.

[13]

P.C. Canci, L.M. Nduulu, G.J. Muehlbauer, R. Dill-Macky, D.C. Rasmusson, K.P. Smith, Validation of quantitative trait loci for Fusarium head blight and kernel discoloration in barley, Mol. Breed. 14 (2004) 91–104.

[14]

T.J. March, J.A. Able, K. Willsmore, C.J. Schultz, A.J. Able, Comparative mapping of a QTL controlling black point formation in barley, Funct. Plant Biol. 35 (2008) 427–437.

[15]

A. Lehmensiek, A.W. Campbell, P.M. Williamson, M. Michalowitz, M.W. Sutherland, G.E. Daggard, QTLs for black-point resistance in wheat and the identification of potential markers for use in breeding programmes, Plant Breed. 123 (2004) 410–416.

[16]

T.J. March, J.A. Able, C.J. Schultz, A.J. Able, A novel late embryogenesis abundant protein and peroxidase associated with black point in barley grains, Proteomics 7 (2007) 3800–3808.

[17]

Z. Quinde-Axtell, S.E. Ullrich, B.K. Baik, Genotypic and environmental effects on color and discoloration potential of barley in food products, Cereal Chem. 82 (2005) 711–716.

[18]

K.V. Strygina, A. Borner, E.K. Khlestkina, Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone, BMC Plant Biol. 17 (2017) 184.

[19]

Y. Jia, C. Selva, Y.J. Zhang, B. Li, L.A. McFawn, S. Broughton, X.Q. Zhang, S. Westcott, P.H. Wang, C. Tan, T. Angessa, Y.H. Xu, R. Whitford, C.D. Li, Uncovering the evolutionary origin of blue anthocyanins in cereal grains, Plant J. 101 (2020) 1057–1074.

[20]

M. Sharma, C.L. Chai, K. Morohashi, E. Grotewold, M.E. Snook, S. Chopra, Expression of flavonoid 3′-hydroxylase is controlled by P1, the regulator of 3-deoxyflavonoid biosynthesis in maize, BMC Plant Biol. 12 (2012) 196.

[21]

O.Y. Shoeva, H.P. Mock, T.V. Kukoeva, A. Borner, E.K. Khlestkina, Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare, PLoS One 11 (2016) e0163782.

[22]

N. Li, S.M. Li, K.P. Zhang, W.J. Chen, B. Zhang, D.W. Wang, D.C. Liu, B.L. Liu, H.G. Zhang, ThMYC4E, candidate blue aleurone 1 gene controlling the associated trait in Triticum aestivum, PLoS One 12 (2017) e0181116.

[23]
T. Hadaway, H. Collins, A. Able: Black point of barley: a possible enzymatic browning reaction. In: Ing Jaroslav Spunar C, Janikova J. (Ed), 9th International Barley Genetics Symposium: Proceedings, Czech J. Genet. Plant Breed. 6 (2004) 20–26.
[24]

A. Korte, A. Farlow, The advantages and limitations of trait analysis with GWAS: a review, Plant Methods 9 (2013) 29.

[25]

W.N. Yang, Z.L. Guo, C.L. Huang, L.F. Duan, G.X. Chen, N. Jiang, W. Fang, H. Feng, W.B. Xie, X.M. Lian, G.W. Wang, Q.M. Luo, Q.F. Zhang, Q. Liu, L.Z. Xiong, Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice, Nat. Commun. 5 (2014) 5084.

[26]

K. Yano, E. Yamamoto, K. Aya, H. Takeuchi, P.C. Lo, L. Hu, M. Yamasaki, S. Yoshida, H. Kitano, K. Hirano, M. Matsuoka, Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice, Nat. Genet. 48 (2016) 927–934.

[27]

L. Fang, Q. Wang, Y. Hu, Y.H. Jia, J.D. Chen, B.L. Liu, Z.Y. Zhang, X.Y. Guan, S.Q. Chen, B.L. Zhou, G.F. Mei, J.L. Sun, Z.E. Pan, S.P. He, S.H. Xiao, W.J. Shi, W.F. Gong, J.G. Liu, J. Ma, C.P. Cai, X.F. Zhu, W.Z. Guo, X.M. Du, T.Z. Zhang, Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits, Nat. Genet. 49 (2017) 1089–1098.

[28]

C.B. Hill, T.T. Angessa, L.A. McFawn, D. Wong, J. Tibbits, X.Q. Zhang, K. Forrest, D. Moody, P. Telfer, S. Westcott, D. Diepeveen, Y.H. Xu, C. Tan, M. Hayden, C.D. Li, Hybridisation-based target enrichment of phenology genes to dissect the genetic basis of yield and adaptation in barley, Plant Biotechnol. J. 17 (2019) 932–944.

[29]

T. He, C. Hill, T.T. Angessa, X.Q. Zhang, D. Moody, P. Telfer, S. Westcott, C. Li, Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection, J. Exp. Bot. 70 (2019) 5603–5616.

[30]

X. Xu, R. Sharma, A. Tondelli, J. Russell, J. Comadran, F. Schnaithmann, K. Pillen, B. Kilian, L. Cattivelli, W.T.B. Thomas, A.J. Flavell, Genome-wide association analysis of grain yield-associated traits in a pan-European barley cultivar collection, Plant Genome 11 (2018) 170073.

[31]

R. Sharma, F. Draicchio, H. Bull, P. Herzig, A. Maurer, K. Pillen, W.T.B. Thomas, A.J. Flavell, Genome-wide association of yield traits in a nested association mapping population of barley reveals new gene diversity for future breeding, J. Exp. Bot. 69 (2018) 3811–3822.

[32]

S. Gyawali, S. Chao, S.S. Vaish, S.P. Singh, S. Rehman, S.R. Vishwakarma, R.P.S. Verma, Genome wide association studies (GWAS) of spot blotch resistance at the seedling and the adult plant stages in a collection of spring barley, Mol. Breed. 38 (2018) 62.

[33]

Y. Turuspekov, D. Ormanbekova, A. Rsaliev, S. Abugalieva, Genome-wide association study on stem rust resistance in Kazakh spring barley lines, BMC Plant Biol. 16 (2016) 6.

[34]

A.T. Pham, A. Maurer, K. Pillen, C. Brien, K. Dowling, B. Berger, J.K. Eglinton, T.J. March, Genome-wide association of barley plant growth under drought stress using a nested association mapping population, BMC Plant Biol. 19 (2019) 134.

[35]

M. Jabbari, B.A. Fakheri, R. Aghnoum, N.M. Nezhad, R. Ataei, GWAS analysis in spring barley (Hordeum vulgare L.) for morphological traits exposed to drought, PLoS One 13 (2018) e0204952.

[36]

A. Visioni, A. Tondelli, E. Francia, A. Pswarayi, M. Malosetti, J. Russell, W. Thomas, R. Waugh, N. Pecchioni, I. Romagosa, J. Comadran, Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.), BMC Genomics 14 (2013) 424.

[37]

Y. Fan, G.F. Zhou, S. Shabala, Z.H. Chen, S.G. Cai, C.D. Li, M.X. Zhou, Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L.), Front. Plant Sci. 7 (2016) 946.

[38]

G.F. Zhou, S. Broughton, X.Q. Zhang, Y.L. Ma, M.X. Zhou, C.D. Li, Genome-wide association mapping of acid soil resistance in barley (Hordeum vulgare L.), Front. Plant Sci. 7 (2016) 406.

[39]

D. Pauli, G.J. Muehlbauer, K.P. Smith, B. Cooper, D. Hole, D.E. Obert, S.E. Ullrich, T.K. Blake, Association mapping of agronomic QTLs in US spring barley breeding germplasm, Plant Genome 7 (2014) 3.

[40]

I.E. Matthies, M. Malosetti, M.S. Roder, F. van Eeuwijk, Genome-wide association mapping for kernel and malting quality traits using historical european barley records, PLoS One 9 (2014) e110046.

[41]

O. Hammer, D.A.T. Harper, P.D. Ryan, PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron. 4 (2001) 9.

[42]

A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120.

[43]
H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, arXiv (2013) arXiv:1303.3997.
[44]

A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M.A. DePristo, The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res. 20 (2010) 1297–1303.

[45]

J. Yang, A. Bakshi, Z. Zhu, G. Hemani, A.A.E. Vinkhuyzen, S.H. Lee, M.R. Robinson, J.R.B. Perry, I.M. Nolte, J.V. van Vliet-Ostaptchouk, H. Snieder, T. Esko, L. Milani, R. Magi, A. Metspalu, A. Hamsten, P.K.E. Magnusson, N.L. Pedersen, E. Ingelsson, N. Soranzo, M.C. Keller, N.R. Wray, M.E. Goddard, P.M. Visscher, L.C. Study, Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index, Nat. Genet. 47 (2015) 1114–1120.

[46]

J.A. Yang, S.H. Lee, M.E. Goddard, P.M. Visscher, GCTA: a tool for genome-wide complex trait analysis, Am. J. Hum. Genet. 88 (2011) 76–82.

[47]

S.H. Lee, J. Yang, M.E. Goddard, P.M. Visscher, N.R. Wray, Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood, Bioinformatics 28 (2012) 2540–2542.

[48]

J. Listgarten, C. Lippert, C.M. Kadie, R.I. Davidson, E. Eskin, D. Heckerman, Improved linear mixed models for genome-wide association studies, Nat. Methods 9 (2012) 525–526.

[49]

C.C. Chang, C.C. Chow, L.C.A.M. Tellier, S. Vattikuti, S.M. Purcell, J.J. Lee, Second-generation PLINK: rising to the challenge of larger and richer datasets, GigaScience 4 (2015) 7.

[50]

Y. Jia, B. Li, Y.J. Zhang, X.Q. Zhang, Y.H. Xu, C.D. Li, Evolutionary dynamic analyses on monocot flavonoid 3′-hydroxylase gene family reveal evidence of plant-environment interaction, BMC Plant Biol. 19 (2019) 347.

[51]

R.E. Voorrips, MapChart: software for the graphical presentation of linkage maps and QTLs, J. Hered. 93 (2002) 77–78.

[52]

C. Colmsee, S. Beier, A. Himmelbach, T. Schmutzer, N. Stein, U. Scholz, M. Mascher, BARLEX - the barley draft genome explorer, Mol. Plant 8 (2015) 964–966.

[53]

A. Untergasser, I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm, S.G. Rozen, Primer3-new capabilities and interfaces, Nucleic Acids Res. 40 (2012) e115.

[54]

M. Mascher, H. Gundlach, A. Himmelbach, S. Beier, S.O. Twardziok, T. Wicker, V. Radchuk, C. Dockter, P.E. Hedley, J. Russell, M. Bayer, L. Ramsay, H. Liu, G. Haberer, X.Q. Zhang, Q.S. Zhang, R.A. Barrero, L. Li, S. Taudien, M. Groth, M. Felder, A. Hastie, H. Simkova, H. Stankova, J. Vrana, S. Chan, M. Munoz-Amatrian, R. Ounit, S. Wanamaker, D. Bolser, C. Colmsee, T. Schmutzer, L. Aliyeva-Schnorr, S. Grasso, J. Tanskanen, A. Chailyan, D. Sampath, D. Heavens, L. Clissold, S.J. Cao, B. Chapman, F. Dai, Y. Han, H. Li, X. Li, C.Y. Lin, J.K. McCooke, C. Tan, P.H. Wang, S.B. Wang, S.Y. Yin, G.F. Zhou, J.A. Poland, M.I. Bellgard, L. Borisjuk, A. Houben, J. Dolezel, S. Ayling, S. Lonardi, P. Kersey, P. Lagridge, G.J. Muehlbauer, M.D. Clark, M. Caccamo, A.H. Schulman, K.F.X. Mayer, M. Platzer, T.J. Close, U. Scholz, M. Hansson, G.P. Zhang, I. Braumann, M. Spannagl, C.D. Li, R. Waugh, N. Stein, A chromosome conformation capture ordered sequence of the barley genome, Nature 544 (2017) 426–433.

[55]

E.S.M. Abdel-Aal, J.C. Young, I. Rabalski, Anthocyanin composition in black, blue, pink, purple, and red cereal grains, J. Agric. Food Chem. 54 (2006) 4696–4704.

[56]

M.J. Kim, J.N. Hyun, J.A. Kim, J.C. Park, M.Y. Kim, J.G. Kim, S.J. Lee, S.C. Chun, I.M. Chung, Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm, J. Agric. Food Chem. 55 (2007) 4802–4809.

[57]

D.Y. Ma, Y.G. Li, J. Zhang, C.Y. Wang, H.X. Qin, H.N. Ding, Y.X. Xie, T.C. Guo, Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat, Front. Plant Sci. 7 (2016) 528.

[58]

W. Jiang, T. Liu, W. Nan, D. Chamila Jeewani, Y. Niu, C. Li, Y. Wang, X. Shi, C. Wang, J. Wang, Y. Li, X. Gao, Z. Wang, Two transcription factors TaPpm1 and TaPpb1 co-regulate the anthocyanin biosynthesis in purple pericarp of wheat, J. Exp. Bot. 69 (2018) 2555–2567.

[59]

M. Sharma, M. Cortes-Cruz, K.R. Ahern, M. McMullen, T.P. Brutnell, S. Chopra, Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize, Genetics 188 (2011) 69–79.

[60]

J.P. Hu, B. Anderson, S.R. Wessler, Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize, Genetics 142 (1996) 1021–1031.

The Crop Journal
Pages 154-167
Cite this article:
Jia Y, Westcott S, He T, et al. Genome-wide association studies reveal QTL hotspots for grain brightness and black point traits in barley. The Crop Journal, 2021, 9(1): 154-167. https://doi.org/10.1016/j.cj.2020.04.013

300

Views

3

Downloads

11

Crossref

N/A

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 15 November 2019
Revised: 12 February 2020
Accepted: 30 May 2020
Published: 03 July 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return