AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (726.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change

Tianhua HeaChengdao Lia,b,c( )
Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou 434025, Hubei, China

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Crop genetic improvements catalysed population growth, which in turn has increased the pressure for food security. We need to produce 70% more food to meet the demands of 9.5 billion people by 2050. Climate changes have posed challenges for global food supply, while the narrow genetic base of elite crop cultivars has further limited our capacity to increase genetic gain through conventional breeding. The effective utilization of genetic resources in germplasm collections for crop improvement is crucial to increasing genetic gain to address challenges in the global food supply. Genomic selection (GS) uses genome-wide markers and phenotype information from observed populations to establish associations, followed by genome-wide markers to predict phenotypic values in test populations. Characterizing an extensive germplasm collection can serve a dual purpose in GS, as a reference population for predicting model, and mining desirable genetic variants for incorporation into elite cultivars. New technologies, such as high-throughput genotyping and phenotyping, machine learning, and gene editing, have great potential to contribute to genome-assisted breeding. Breeding programmes integrating germplasm characterization, GS and emerging technologies offer promise for accelerating the development of cultivars with improved yield and enhanced resistance and tolerance to biotic and abiotic stresses. Finally, scientifically informed regulations on new breeding technologies, and increased sharing of genetic resources, genomic data, and bioinformatics expertise between developed and developing economies will be the key to meeting the challenges of the rapidly changing climate and increased demand for food.

References

[1]

K. Khoshbakht, K. Hammer, How many plant species are cultivated? Genet. Resour. Crop Evol. 55 (2008) 925–928.

[2]

R.S. Meyer, A.E. DuVal, H.R. Jensen, Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops, New Phytol. 196 (2012) 29–48.

[3]

J.F. Doebley, B.S. Gaut, B.D. Smith, The molecular genetics of crop domestication, Cell 127 (2006) 1309–1321.

[4]

J.G. Wallace, E. Rodgers-Melnick, E.S. Buckler, On the road to Breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics, Ann. Rev. Genet. 52 (2018) 421–444.

[5]

E.S. Lander, D. Botstein, Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics 121 (1989) 185–199.

[6]

M.B. Hufford, X. Xu, J. van Heerwaarden, T. Pyhajarvi, J.M. Chia, R.A. Cartwright, R.J. Elshire, J.C. Glaubitz, K.E. Guill, S.M. Kaeppler, J. Lai, P.L. Morrell, L.M. Shannon, C. Song, N.M. Springer, R.A. Swanson-Wagner, P. Tiffin, J. Wang, G. Zhang, J. Doebley, M.D. McMullen, D. Ware, E.S. Buckler, S. Yang, J. Ross-Ibarra, Comparative genomics of maize domestication and improvement, Nat. Genet. 44 (2012) 808–811.

[7]

C.R. Cavanagh, S. Chao, S. Wang, B.E. Huang, S. Stephen, S. Kiani, K. Forrest, C. Saintenac, G.L. Brown-Guedira, A. Akhunova, D. See, G. Bai, M. Pumphrey, L. Tomar, D. Wong, S. Kong, M. Reynolds, M.L. da Silva, H. Bockelman, L. Talbert, J.A. Anderson, S. Dreisigacker, S. Baenziger, A. Carter, V. Korzun, P.L. Morrell, J. Dubcovsky, M.K. Morell, M.E. Sorrells, M.J. Hayden, E. Akhunov, Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 8057–8062.

[8]

J. Shi, J. Lai, Patterns of genomic changes with crop domestication and breeding, Curr. Opin. Plant Biol. 24 (2015) 47–53.

[9]

M.J. Kovach, S.R. McCouch, Leveraging natural diversity: back through the bottleneck, Curr. Opin. Plant Biol. 11 (2008) 193–200.

[10]

E.S. Mace, S. Tai, E.K. Gilding, Y. Li, P.J. Prentis, L. Bian, B.C. Campbell, W. Hu, D.J. Innes, X. Han, A. Cruickshank, Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum, Nat. Commun. 4 (2013) 2320.

[11]

H.A. Eagles, K. Cane, N. Vallance, The flow of alleles of important photoperiod and vernalisation genes through Australian wheat, Crop Pasture Sci 60 (2009) 646–657.

[12]

X. Li, T. Guo, Q. Mu, X. Li, J. Yu, Genomic and environmental determinants and their interplay underlying phenotypic plasticity, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 6679–6684.

[13]

A.J. Challinor, A.K. Koehler, J. Ramirez-Villegas, S. Whitfield, B. Das, Current warming will reduce yields unless maize breeding and seed systems adapt immediately, Nat. Climat. Chang. 6 (2016) 954.

[14]

B. Mueller, S.I. Seneviratne, Hot days induced by precipitation deficits at the global scale, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 12398–12403.

[15]

T. Cowan, A. Purich, S. Perkins, A. Pezza, G. Boschat, K. Sadler, More frequent, longer, and hotter heat waves for Australia in the twenty-first century, J. Climat. 27 (2014) 5851–5871.

[16]

D.B. Lobell, W. Schlenker, J. Costa-Roberts, Climate trends and global crop production since 1980, Science 333 (2011) 616–620.

[17]

A.J. Challinor, J. Watson, D.B. Lobell, S.M. Howden, D.R. Smith, N. Chhetri, A meta-analysis of crop yield under climate change and adaptation, Nat. Clim. Chang. 4 (2014) 287.

[18]

W. Xie, W. Xiong, J. Pan, T. Ali, Q. Cui, D. Guan, J. Meng, N.D. Mueller, E. Lin, S.J. Davis, Decreases in global beer supply due to extreme drought and heat, Nat. Plants 4 (2018) 964.

[19]

B. Liu, P. Martre, F. Ewert, J.R. Porter, J.A.J. Challinor, C. Müller, A.C. Ruane, K. Waha, P.J. Thorburn, P.K. Aggarwal, M. Ahmed, J. Balkovič, B. Basso, C. Biernath, M. Bindi, D. Cammarano, G. De Sanctis, B. Dumont, M. Espadafor, E.E. Rezaei, R. Ferrise, M. Garcia‐Vila, S. Gayler, Y. Gao, H. Horan, G. Hoogenboom, R.C. Izaurralde, C.D. Jones, B.T. Kassie, K.C. Kersebaum, C. Klein, A. Koehler, A. Maiorano, S. Minoli, M. Montesino, S. Martin, S.N. Kumar, C. Nendel, G.J. O’Leary, T. Palosuo, E. Priesack, D. Dominique Ripoche, R. Rötter, M. Semenov, C. Stöckle, T. Streck, I. Supit, F. Tao, M. Van der Velde, D. Wallach, E. Wang, H. Webber, J. Wolf, L. Xiao, Z. Zhang, Z. Zhao, Y. Zhu, M. Asseng, Global wheat production with 1.5 and 2.0℃ above pre-industrial warming, Glob. Chang. Biol. 25 (2019) 1428–1444.

[20]

Z. Hochman, D.L. Gobbett, H. Horan, Climate trends account for stalled wheat yields in Australia since 1990, Glob. Chang. Biol. 23 (2017) 2071–2081.

[21]

P.W. Wambugu, M. Ndjiondjop, R.J. Henry, Role of genomics in promoting the utilization of plant genetic resources in genebanks, Brief. Funct. Genomics 17 (2018) 198–206.

[22]

M. Mascher, M. Schreiber, U. Scholz, A.G. Jochen, C. Reif, N. Stein, Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding, Nat. Genet. 51 (2019) 1076–1081.

[23]

N.L. Anglin, A. Amri, Z. Kehel, D. Ellis, A case of need: linking traits to Genebank accessions, Biopreserv. Biobanking 16 (2018) 337–349.

[24]

M.G. Verlaan, S.F. Hutton, R.M. Ibrahem, R. Kormelink, R.G. Visser, J.W. Scott, J.D. Edwards, Y. Bai, The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA–dependent RNA polymerases, PLoS Genet. 9 (2013) e1003399.

[25]

K. Xu, X. Xu, T. Fukao, P. Canlas, R. Maghirang-Rodriguez, S. Heuer, A.M. Ismail, J. Bailey-Serres, P.C. Ronald, D.J. Mackill, Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice, Nature 442 (2006) 705.

[26]

R. Büschges, K. Hollricher, R. Panstruga, G. Simons, M. Wolter, A. Frijters, R. van Daelen, T. van der Lee, P. Diergaarde, J. Groenendijk, S. Töpsch, The barley Mlo gene: a novel control element of plant pathogen resistance, Cell 88 (1997) 695–705.

[27]

C. Wang, S. Hu, C. Gardner, T. Lübberstedt, Emerging avenues for utilization of exotic germplasm, Trend. Plant Sci. 22 (2017) 624–637.

[28]
T.H. Mulesa, O.T. Westengen, Against the Grain? A Historical Institutional Analysis of Access Governance of Plant Genetic Resources for Food and Agriculture in Ethiopia, J. World Intellectual Property (2020)https://doi.org/10.1111/jwip.12142.
[29]

M. Brink, T. van Hintum, Genebank operation in the arena of access and benefit-sharing policies, Front. Plant Sci. 10 (2020) 1712.

[30]

J.K. Haile, A. N’Diaye, F. Clarke, J. Clarke, R. Knox, J. Rutkoski, F.M. Bassi, C.J. Pozniak, Genomic selection for grain yield and quality traits in durum wheat, Mol. Breed. 38 (2018) 75.

[31]

J. Crossa, P. Pérez-Rodríguez, J. Cuevas, O. Montesinos-López, D. Jarquín, G. de los Campos, J. Burgueño, J.M. González-Camacho, S. Pérez-Elizalde, Y. Beyene, S. Dreisigacker, Genomic selection in plant breeding: methods, models, and perspectives, Trend. Plant Sci. 22 (2017) 961–975.

[32]

M. Georges, C. Charlier, B. Hayes, Harnessing genomic information for livestock improvement, Nat. Rev. Genet. 20 (2019) 135–156.

[33]

R.A. Fisher, XV—the correlation between relatives on the supposition of Mendelian inheritance, Trans. Roy. Soc. Edinburgh. 52 (1918) 399–433.

[34]
S.A. Clark, J. van der Werf, Genomic best linear unbiasedprediction (gBLUP) for the estimation of genomic breeding values, in: C. Gondro, J. van der Werf, B. Hayes (Eds.), Genome-Wide Association Studies and Genomic Prediction, Humana Press, Totowa, NJ, USA 2013, pp. 321–330.
[35]

J. Burgueño, G. de los Campos, K. Weigel, J. Crossa, genomic prediction of breeding values when modeling genotype× environment interaction using pedigree and dense molecular markers, Crop Sci. 52 (2012) 707–719.

[36]

D. Jarquín, J. Crossa, X. Lacaze, P. Du Cheyron, J. Daucourt, J. Lorgeou, F. Piraux, L. Guerreiro, P. Pérez, M. Calus, J. Burgueño, A reaction norm model for genomic selection using high-dimensional genomic and environmental data, Theor. Appl. Genet. 127 (2014) 595–607.

[37]

N. Heslot, D. Akdemir, M.E. Sorrells, J.L. Jannink, Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions, Theor. Appl. Genet. 127 (2014) 463–480.

[38]

M. López-Cruz, J. Crossa, D. Bonnett, S. Dreisigacker, J. Poland, J.L. Jannink, R.P. Singh, E. Autrique, G. de los Campos, Increased prediction accuracy in wheat breeding trials using a marker× environment interaction genomic selection model, G3-Genes Genomes Genet. 5 (2015) 569–582.

[39]

J. Cuevas, J. Crossa, O.A. Montesinos-López, J. Burgueño, P. Pérez-Rodríguez, G. de los Campos, Bayesian genomic prediction with genotype× environment interaction kernel models, G3-Gene Genomes Genet. 7 (2017) 41–53.

[40]

O.A. Montesinos-López, J. Crossa, J. Burgueño, K.M. Eskridge, E. Falconi-Castillo, X. He, P. Singh, K. Cichy, Genomic bayesian prediction model for count data with genotype × environment interaction, G3-Genes Genomes Genet. 6 (2016) 1165–1177.

[41]

O.A. Montesinos-López, J. Crossa, F.H. Toledo, J.C. Montesinos-López, P. Singh, P. Juliana, J. Salinas-Ruiz, A Bayesian Poisson-lognormal model for count data for multiple-trait multiple-environment genomic-enabled prediction, G3-Genes Genomes Genet. 7 (2017) 1595–1606.

[42]

M.E. Goddard, B.J. Hayes, Mapping genes for complex traits in domestic animals and their use in breeding programmes, Nat. Rev. Genet. 10 (2009) 381.

[43]

Y. Xu, X. Wang, X. Ding, X. Zheng, Z. Yang, C. Xu, Z. Hu, Genomic selection of agronomic traits in hybrid rice using an NCII population, Rice 11 (2018) 32.

[44]

K.T. Muleta, G. Pressoir, G.P. Morris, Optimizing genomic selection for a sorghum breeding program in Haiti: a simulation study, G3-Genes Genomes Genet. 9 (2019) 391–401.

[45]

J. Crossa, D. Jarquín, J. Franco, P. Pérez-Rodríguez, J. Burgueño, C. Saint-Pierre, P. Vikram, C. Sansaloni, C. Petroli, D. Akdemir, C. Sneller, Genomic prediction of gene bank wheat landraces, G3-Genes Genomes Genet. 6 (2016) 1819–1834.

[46]

D. Jarquín, K. Kocak, L. Posadas, K. Hyma, J. Jedlicka, G. Graef, A. Lorenz, Genotyping by sequencing for genomic prediction in a soybean breeding population, BMC Genomics 15 (2014) 740.

[47]

R.K. Varshney, M. Thudi, M.K. Pandey, F. Tardieu, C. Ojiewo, V. Vadez, A.M. Whitbread, K.H.M. Siddique, H.T. Nguyen, P.S. Carberry, B.D. Bergvinson, Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy, J. Exp. Bot. 69 (2018) 3293–3312.

[48]

D. Zeng, Z. Tian, Y. Rao, G. Dong, Y. Yang, L. Huang, Y. Leng, J. Xu, C. Sun, G. Zhang, J. Hu, Rational design of high-yield and superior-quality rice, Nat. Plants 3 (2017) 17031.

[49]

J.K. Haile, A.N. Diaye, F. Clarke, J. Clarke, R. Knox, J. Rutkoski, F.M. Bassi, C.J. Pozniak, Genomic selection for grain yield and quality traits in durum wheat, Mol. Breed. 38 (2018) 75.

[50]

D.L. Larkin, D.N. Lozada, R.E. Mason, Genomic selection—considerations for successful implementation in wheat breeding programs, Agronomy 9 (2019) 479.

[51]

A.T. Mastrodomenico, M.O. Bohn, A.E. Lipka, F.E. Below, Genomic selection using maize ex-plant variety protection germplasm for the prediction of nitrogen-use traits, Crop Sci. 59 (2019) 212–220.

[52]

Y. Beyene, K. Semagn, S. Mugo, A. Tarekegne, R. Babu., B. Meisel, P. Sehabiague, D. Makumbi, C. Magorokosho, S. Oikeh, J. Gakunga, M. Vargas, Mi. Olsen, B.M. Prasanna, M. Banziger, J. Crossa, Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress, Crop Sci. 55 (2015) 154.

[53]

A. Allier, S. Teyssèdre, C. Lehermeier, A. Charcosset, L. Moreau, Genomic prediction with a maize collaborative panel: identification of genetic resources to enrich elite breeding programs, Theor. Appl. Genet. 133 (2020) 201–215.

[54]

M. Bhatta, L. Gutierrez, L. Cammarota, F. Cardozo, S. Germán, B. Gómez-Guerrero, M.F. Pardo, V. Lanaro, M. Sayas, A.J. Castro, Multi-trait genomic prediction model increased the predictive ability for agronomic and malting quality traits in Barley (Hordeum vulgare L.), G3-Genes Genom Genet. 10 (2020) 1113–1124.

[55]

Z. Liang, S.K. Gupta, C.T. Yeh, Y. Zhang, D.W. Ngu, R. Kumar, H.T. Patil, K.D. Mungra, D.V. Yadav, A. Rathore, R.K. Srivastava, R. Gupta, J. Yang, R.K. Varshney, P.S. Schnable, J.C. Schnable, Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids, G3-Genes Genomes Genet. 8 (2018) 2513–2522.

[56]

M. Nyine, B. Uwimana, N. Blavet, E. Hřibová, H. Vanrespaille, M. Batte, V. Akech, A. Brown, J. Lorenzen, R. Swennen, J. Doležel, Genomic prediction in a multiploid crop: genotype by environment interaction and allele dosage effects on predictive ability in banana, Plant Genome 11 (2018) 170090.

[57]

M.S. McElroy,, G. Mustiga, C. Stack, S. Gezan, G. Peña, W. Sarabia, D. Saquicela, I. Sotomayor, G.M. Douglas, Z. Migicovsky, F. Amores, O. Tarqui, S. Myles, J.C. Motamayor, Prediction of cacao (Theobroma cacao) resistance to Moniliophthora spp. diseases via genome-wide association analysis and genomic selection, Front. Plant Sci. 9 (2018) 343.

[58]

K.E. Corak, S.L. Ellison, P.W. Simon, D.M. Spooner, J.C. Dawson, Comparison of representative and custom methods of generating core subsets of a carrot germplasm collection, Crop Sci. 59 (2019) 1107–1121.

[59]

E.J. de Oliveira, M.D. de Resende, V. da Silva Santos, C.F. Ferreira, G.A. Oliveira, M.S. da Silva, L.A. de Oliveira, C.I. Aguilar-Vildoso, Genome-wide selection in cassava, Euphytica 187 (2012) 263–276.

[60]

A. Xavier, W.M. Muir, K.M. Rainey, Assessing predictive properties of genome-wide selection in soybeans, G3-Genes Genomes Genet. 6 (2016) 2611–2616.

[61]

S.A. Gezan, L.F. Osorio, S. Verma, V.M. Whitaker, An experimental validation of genomic selection in octoploid strawberry, Hort. Res. 4 (2017) 16027.

[62]

J. Yao, D. Zhao, X. Chen, Y. Zhang, J. Wang, Use of genomic selection and breeding simulation in cross prediction for improvement of yield and quality in wheat (Triticum aestivum L.), Crop J. 6 (2018) 353–365.

[63]

Y. Cui, R. Li, G. Li, F. Zhang, T. Zhu, Q. Zhang, J. Ali, Z. Li, S. Xu, Hybrid breeding of rice via genomic selection, Plant Biotechnol. J. 18 (2020) 57–67.

[64]

Y. Hao, H. Wang, X. Yang, H. Zhang, C. He, D. Li, H. Li, G. Wang, J. Wang, J. Fu, Genomic prediction using existing historical data contributing to selection in biparental populations: a study of kernel oil in maize, Plant Genome 12 (2019) 180025.

[65]

N.W. Simmonds, Yields of cereal grain and protein, Exp. Agric. 32 (1996) 351–356.

[66]

S. Michel, F. Löschenberger, C. Ametz, B. Pachler, E. Sparry, Simultaneous selection for grain yield and protein content in genomics-assisted wheat breeding, Theor. Appl. Genet. 132 (2019) 1745–1760.

[67]

P. Juliana, R.P. Singh, J. Poland, S. Mondal, J. Crossa, O.A. Montesinos-López, S. Dreisigacker, P. Pérez-Rodríguez, J. Huerta-Espino, L. Crespo-Herrera, V. Govindan, Prospects and challenges of applied genomic selection—a new paradigm in breeding for grain yield in bread wheat, Plant Genome 11 (2018) 180017.

[68]

F. Hospital, L. Moreau, F. Lacoudre, A. Charcosset, A. Gallais, More on the efficiency of marker-assisted selection, Theor. Appl. Genet. 95 (1997) 1181–1189.

[69]

D.N. Lozada, R.E. Mason, J.M. Sarinelli, G. Brown-Guedira, Accuracy of genomic selection for grain yield and agronomic traits in soft red winter wheat, BMC Genet. 20 (2019) 82.

[70]

J. Poland, J. Rutkoski, Advances and challenges in genomic selection for disease resistance, Ann. Rev. Phytopath. 54 (2016) 79–98.

[71]

R.A. Fischer, G.J. Rebetzke, Indirect selection for potential yield in early-generation, spaced plantings of wheat and other small-grain cereals: a review, Crop Pasture Sci. 69 (2018) 439–459.

[72]

A.A. Boligon, N. Long, L.G. de Albuquerque, K.A. Weigel, D. Gianola, G.J.M. Rosa, Comparison of selective genotyping strategies for prediction of breeding values in a population undergoing selection, J. Animal Sci. 90 (2012) 4716–4722.

[73]

J. Isidro, J.L. Jannink, D. Akdemir, J. Poland, N. Heslot, M.E. Sorrells, Training set optimization under population structure in genomic selection, Theor. Appl. Genet. 128 (2015) 145–158.

[74]

D. Jarquín, J. Specht, A. Lorenz, Prospects of genomic prediction in the USDA Soybean Germplasm Collection: historical data creates robust models for enhancing selection of accessions, G3-Genes Genomes Genet. 6 (2016) 2329–2341.

[75]

T.H. Meuwissen, B.J. Hayes, M.E. Goddard, Prediction of total genetic value using genome-wide dense marker maps, Genetics 157 (2001) 1819–1829.

[76]

A.C. Syvänen, Toward genome-wide SNP genotyping, Nat. Genet. 37 (2005) S5-S10.

[77]

M. Gholami, W.A. Bekele, J. Schondelmaier, R.J. Snowdon, A tailed PCR procedure for cost-effective, two-order multiplex sequencing of candidate genes in polyploid plants, Plant Biotechnol. J. 10 (2012) 635–645.

[78]

L.J. Clarke, P. Czechowski, J. Soubrier, M.I. Stevens, A. Cooper, Modular tagging of amplicons using a single PCR for high-throughput sequencing, Mol. Ecol. Resour. 14 (2014) 117–121.

[79]

M. Mascher, G.J. Muehlbauer, D.S. Rokhsar, J. Chapman, J. Schmutz, K. Barry, M. Muñoz-Amatriaín, T.J. Close, R.P. Wise, A.H. Schulman, A. Himmelbach, Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ), Plant J. 76 (2013) 718–727.

[80]

S. Schiessl, B. Samans, B. Hüttel, R. Reinhard, R.J. Snowdon, Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus, Front. Plant Sci. 5 (2014) 404.

[81]

T.W. Rife, S. Wu, R.L. Bowden, J.A. Poland, Spiked GBS: a unified, open platform for single marker genotyping and whole-genome profiling, BMC Genomics 16 (2015) 248.

[82]

E. Rodgers-Melnick, D.L. Vera, H.W. Bass, E.S. Buckler, Open chromatin reveals the functional maize genome, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E3177-E3184.

[83]

J.N. Cobb, G. DeClerck, A. Greenberg, R. Clark, S. McCouch, Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement, Theor. Appl. Genet. 126 (2013) 867–887.

[84]

J.L. Araus, J.E. Cairns, Field high-throughput phenotyping: the new crop breeding frontier, Trend. Plant Sci. 19 (2014) 52–61.

[85]

L. McAusland, J.A. Atkinson, T. Lawson, E.H. Murchie, High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions, Plant Methods 15 (2019) 109.

[86]

V.S. Weber, J.L. Araus, J.E. Cairns, C. Sanchez, A.E. Melchinger, E. Orsini, Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes, Field Crops Res. 128 (2012) 82–90.

[87]

M. Kim, J. Ko, S. Jeong, J. Yeom, H. Kim, Monitoring canopy growth and grain yield of paddy rice in South Korea by using the GRAMI model and high spatial resolution imagery, GIScience Remote Sens. 54 (2017) 534–551.

[88]

P.J. Zarco-Tejada, V. González-Dugo, L.E. Williams, L. Suárez, J.A.J. Berni, D. Goldhamer, E. Fereres, A PRI-based water stress index combining structural and chlorophyll effects: assessment using diurnal narrow-band airborne imagery and the CWSI thermal index, Remote Sens. Environ. 138 (2013) 38–50.

[89]

W.H. Maes, K. Steppe, Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture, Trends Plant Sci. 24 (2019) 152–164.

[90]

K. Watanabe, W. Guo, K. Arai, H. Takanashi, H. Kajiya-Kanegae, M. Kobayashi, K. Yano, T. Tokunaga, T. Fujiwara, N. Tsutsumi, H. Iwata, High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling, Front. Plant Sci. 8 (2017) 421.

[91]

M.A. Hassan, M. Yang, L. Fu, A. Rasheed, B. Zheng, X. Xia, Y. Xiao, Z. He, Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat, Plant Methods 15 (2019) 37.

[92]

Y. Rouphael, L. Spíchal, K. Panzarová, R. Casa, G. Colla, High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? Front. Plant Sci. 14 (2018) 1197.

[93]

A.M. Mutka, R.S. Bart, Image-based phenotyping of plant disease symptoms, Front. Plant Sci. 5 (2015) 734.

[94]

Y. Fang, R.P. Ramasamy, Current and prospective methods for plant disease detection, Biosensors 5 (2015) 537–561.

[95]

J.L. Araus, S.C. Kefauver, M. Zaman-Allah, M.S. Olsen, J.E. Cairns, Translating high-throughput phenotyping into genetic gain, Trend. Plant Sci. 23 (2018) 451–466.

[96]

T. Wang, H. Zhang, H. Zhu, CRISPR technology is revolutionizing the improvement of tomato and other fruit crops, Hort. Res. 6 (2019) 77.

[97]

G. Song, M. Jia, K. Chen, X. Kong, B. Khattak, C. Xie, A. Li, L. Mao, CRISPR/Cas9: a powerful tool for crop genome editing, Crop J. 4 (2016) 75–82.

[98]

A. Scheben, F. Wolter, J. Batley, H. Puchta, D. Edwards, Towards CRISPR/Cas crops–bringing together genomics and genome editing, New Phytol. 216 (2017) 682–698.

[99]

F. Wolter, P. Schindele, H. Puchta, Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites, BMC Plant Biol. 19 (2019) 176.

[100]

A. Scheben, D. Edwards, Bottlenecks for genome-edited crops on the road from lab to farm, Genome Biol. 19 (2018) 178.

[101]

D. Rodríguez-Leal, Z.H. Lemmon, J. Man, M.E. Bartlett, Z.B. Lippman, Engineering quantitative trait variation for crop improvement by genome editing, Cell 171 (2017) 470–480.

[102]

K.P. Voss-Fels, M. Cooper, B.J. Hayes, Accelerating crop genetic gains with genomic selection, Theor. Appl. Genet. 132 (2019) 669–686.

[103]

G. Rizal, S. Karki, M. Alcasid, F. Montecillo, K. Acebron, N. Larazo, R. Garcia, I.H. Slamet-Loedin, W.P. Quick, Shortening the breeding cycle of sorghum, a model crop for research, Crop Sci. 54 (2014) 520–529.

[104]

J. Tanaka, T. Hayashi, H. Iwata, A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system, Breed. Sci. 66 (2016) 542–551.

[105]

A. Watson, S. Ghosh, M.J. Williams, W.S. Cuddy, J. Simmonds, M.D. Rey, M.A. Hatta, A. Hinchliffe, A. Steed, D. Reynolds, N.M. Adamski, Speed breeding is a powerful tool to accelerate crop research and breeding, Nat. Plants 4 (2018) 23–29.

[106]

H. Li, A. Rasheed, L.T. Hickey, Z. He, Fast-forwarding genetic gain, Trends Plant Sci. 23 (2018) 184–186.

[107]

M.B. Scholz, C.C. Lo, P.S. Chain, Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis, Current Opin. Biotechnol. 23 (2012) 9–15.

[108]

P.J. Bradbury, Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss, E.S. Buckler, TASSEL: software for association mapping of complex traits in diverse samples, Bioinformatics 23 (2007) 2633–2635.

[109]

A.L. Price, N.J. Patterson, R.M. Plenge, M.E. Weinblatt, N.A. Shadick, D. Reich, Principal components analysis corrects for stratification in genome-wide association studies, Nat. Genet. 38 (2006) 904.

[110]

C.C. Chang, C.C. Chow, L.C. Tellier, S. Vattikuti, S.M. Purcell, J.J. Lee, Second-generation PLINK: rising to the challenge of larger and richer datasets, Gigascience 4 (2015) 7.

[111]

C. Lippert, J. Listgarten, Y. Liu, C.M. Kadie, R.I. Davidson, D. Heckerman, FaST linear mixed models for genome-wide association studies, Nat. Methods 8 (2011) 833.

[112]

J. Yang, S.H. Lee, M.E. Goddard, P.M. Visscher, GCTA: a tool for genome-wide complex trait analysis, Am. J. Hum. Genet. 88 (2011) 76–82.

[113]

B. Pasaniuc, A.L. Price, Dissecting the genetics of complex traits using summary association statistics, Nat. Rev. Genet. 18 (2017) 117.

[114]

D. Nam, J. Kim, S.Y. Kim, S. Kim, GSA-SNP, a general approach for gene set analysis of polymorphisms, Nucleic Acids Res. 38 (2010) 749–754.

[115]

T. He, C.B. Hill, T.T. Angessa, X.Q. Zhang, D. Moody, P. Telfer, S. Westcott, C. Li, Gene-set association and epistatic analyses reveal complex gene interaction networks affecting flowering time in a worldwide barley collection, J. Expt. Bot. 20 (2019) 5603–5616.

[116]

A.N. Doust, L. Lukens, K.M. Olsen, M. Mauro-Herrera, A. Meyer, K. Rogers, Beyond the single gene, how epistasis and gene-by-environment effects influence crop domestication, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 6178–6183.

[117]

G. Pei, H. Sun, Y. Dai, X. Liu, Z. Zhao, P. Jia, Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics, BMC Genomics 20 (2019) 79.

[118]

M. Roorkiwal, A. Rathore, R.R. Das, M.K. Singh, A. Jain, S. Srinivasan, P.M. Gaur, B. Chellapilla, S. Tripathi, Y. Li, J.M. Hickey, Genome-enabled prediction models for yield related traits in chickpea, Front. Plant Sci. 7 (2016) 1666.

[119]

V. Boerner, B. Tier, BESSiE: a software for linear model BLUP and Bayesian MCMC analysis of large-scale genomic data, Genet. Sel. Evol. 48 (2016) 63.

[120]

I. Granato, J. Cuevas, F. Luna-Vázquez, J. Crossa, O. Montesinos-López, J. Burgueño, R. Fritsche-Neto, BGGE: a new package for genomic-enabled prediction incorporating genotype × environment interaction models, G3-Genes Genomes Genet. 8 (2018) 3039–3047.

[121]

P. Pérez, G. de los Campos, J. Crossa, D. Gianola, Genomicenabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R, Plant Genome 3 (2010) 106–116.

[122]

W. Ma, Z. Qiu, J. Song, J. Li, Q. Cheng, J. Zhai, C. Ma, A deep convolutional neural network approach for predicting phenotypes from genotypes, Planta 248 (2018) 1307–1318.

[123]

J. Wang, Z. Zhou, Z. Zhang, H. Li, D. Liu, Q. Zhang, P.J. Bradbury, E.S. Buckler, Z. Zhang, Expanding the BLUP alphabet for genomic prediction adaptable to the genetic architectures of complex traits, Heredity 121 (2018) 648.

[124]

R. Maier, G. Moser, G.B. Chen, S. Ripke, D. Absher, I. Agartz, H. Akil, F. Amin, O.A. Andreassen, A. Anjorin, R. Anney, Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder and major depression disorder, Am. J. Hum. Genet. 96 (2015) 283–294.

[125]

J.B. Endelman, Ridge regression and other kernels for genomic selection with R package rrBLUP, Plant Genome 4 (2011) 250–255.

[126]

A. Onogi, H. Iwata, VIGoR: variational Bayesian inference for genome-wide regression, J. Open Res. Software 4 (2016) e11.

[127]

A.L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Dev. 3 (1959) 211–229.

[128]

J. Zou, M. Huss, A. Abid, P. Mohammadi, A. Torkamani, A. Telenti, A primer on deep learning in genomics, Nat. Genet. 51 (2018) 12–18.

[129]

M. Blondel, A. Onogi, H. Iwata, N. Ueda, A ranking approach to genomic selection, PLoS One 10 (2015) e0128570.

[130]

G.P. Ramstein, J. Evans, S.M. Kaeppler, R.B. Mitchell, K.P. Vogel, C.R. Buell, M.D. Casler, Accuracy of genomic prediction in switchgrass (Panicum virgatum L.) improved by accounting for linkage disequilibrium, G3-Genes Genomes Genet. 6 (2016) 1049–1062.

[131]

M. Roorkiwal, A. Rathore, R.R. Das, M.K. Singh, A. Jain, S. Srinivasan, P.M. Gaur, B. Chellapilla, S. Tripathi, Y. Li, J.M. Hickey, A. Lorenz, T. Sutton, J. Crossa, J.L. Jannink, R.K. Varshney, Genome-enabled prediction models for yield related traits in chickpea, Front. Plant Sci. 7 (2016) 1666.

[132]

J.O. Ogutu, H.P. Piepho, T. Schulz-Streeck, A comparison of random forests, boosting and support vector machines for genomic selection, BMC Proc. 5 (2011) S11.

[133]

A. Montesinos-López, O.A. Montesinos-López, D. Gianola, J. Crossa, C.M. Hernández-Suárez, Multi-environment genomic prediction of plant traits using deep learners with dense architecture, G3-Genes Genomes Genet. 8 (2018) 3813–3828.

[134]

C.B. Azodi, E. Bolger, A. McCarren, M. Roantree, G. de los Campos, S.H. Shiu, Benchmarking parametric and machine learning models for genomic prediction of complex traits, G3-Genes Genomes Genet. 9 (2019) 3691–3702.

[135]

C. Riedelsheimer, F. Technow, A.E. Melchinger, Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines, BMC Genomics 13 (2013) 452.

[136]

J. Spindel, H. Begum, D. Akdemir, P. Virk, B. Collard, E. Redoña, G. Atlin, J.L. Jannink, S.R. McCouch, Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines, PLoS Genet. 11 (2015) e1004982.

[137]

A. Norman, J. Taylor, J. Edwards, H. Kuchel, Optimising genomic selection in wheat: effect of marker density, population size and population structure on prediction accuracy, G3-Genes Genomes Genet. 8 (2018) 2889–2899.

[138]

A. Iglesias, L. Garrote, S. Quiroga, M. Moneo, A regional comparison of the effects of climate change on agricultural crops in Europe, Climat. Chang. 112 (2012) 29–46.

[139]

G.C. Nelson, H. Valin, R.D. Sands, P. Havlík, H. Ahammad, D. Deryng, J. Elliott, S. Fujimori, T. Hasegawa, E. Heyhoe, P. Kyle, Climate change effects on agriculture: economic responses to biophysical shocks, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 3274–3279.

[140]

J.R. Hunt, J.M. Lilley, B. Trevaskis, B.M. Flohr, A. Peake, A. Fletcher, A.B. Zwart, D. Gobbett, J.A. Kirkegaard, Early sowing systems can boost Australian wheat yields despite recent climate change, Nat. Climat. Chang. 9 (2019) 244.

[141]

B. Parent, M. Leclere, S. Lacube, M.A. Semenov, C. Welcker, P. Martre, F. Tardieu, Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 10642–10647.

[142]

S.S. Zaidi, H. Vanderschuren, M. Qaim, M.M. Mahfouz, A. Kohli, S. Mansoor, M. Tester, New plant breeding technologies for food security, Science 363 (2019) 1390–1391.

[143]

A. Nicolia, A. Manzo, F. Veronesi, D. Rosellini, An overview of the last 10 years of genetically engineered crop safety research, Crit. Rev. Biotechnol. 34 (2014) 77–88.

[144]

R.L. Phillips, Mobilizing science to break yield barriers, Crop Sci. 50 (2010) S99-S108.

[145]

P.R. Ehrlich, J. Harte, Opinion: to feed the world in 2050 will require a global revolution, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 14743–14744.

[146]

R.K. Varshney, J.M. Ribaut, E.S. Buckler, R. Tuberosa, J.A. Rafalski, P. Langridge, Can genomics boost productivity of orphan crops? Nat. Biotechnol. 30 (2012) 1172.

[147]

M. Halewood, T. Chiurugwi, H.R. Sackville, B. Kurtz, E. Marden, E. Welch, F. Michiels, J. Mozafari, M. Sabran, N. Patron, P. Kersey, Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution, New Phytol. 217 (2018) 1407–1419.

The Crop Journal
Pages 688-700
Cite this article:
He T, Li C. Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change. The Crop Journal, 2020, 8(5): 688-700. https://doi.org/10.1016/j.cj.2020.04.005

403

Views

4

Downloads

69

Crossref

N/A

Web of Science

58

Scopus

4

CSCD

Altmetrics

Received: 20 September 2019
Revised: 30 December 2019
Accepted: 23 April 2020
Published: 05 June 2020
© 2020 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return