AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (959 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes

Le Xu1Aiai Wang1Jun WangQiao WeiWenying Zhang( )
Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China

1 These authors contributed equally to this work.

Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.

Show Author Information

Abstract

Drought stress is one of the most severe environmental constraints to plant growth and crop productivity. Plant growth is greatly affected by drought stress, and plants, to survive, adapt to this stress by invoking different pathways. Piriformospora indica, a root-colonizing endophytic fungus of Sebacinales, promotes plant growth and confers resistance to biotic and abiotic stresses, including drought stress, by affecting the physiological properties of the host plant. The fungus strongly colonizes the roots of maize (Zea mays L.) and promotes shoot and root growth under both normal growth conditions and drought stress. We used polyethylene glycol (PEG-6000) to mimic drought stress and found that root fresh and dry weight, leaf area, SPAD value, and leaf number were increased in P. indica-colonized plants. The antioxidative activities of catalases and superoxide dismutases were upregulated within 24h in the leaves of P. indica-colonized plants. Drought-related genes DREB2A, CBL1, ANAC072, and RD29A were upregulated in drought-stressed leaves of P. indica-colonized plants. Furthermore, after drought treatment, proline content increased, whereas accumulation of malondialdehyde (MDA), an indicator of membrane damage, decreased in P. indica-colonized maize. We conclude that P. indica-mediated plant protection against the detrimental effects of drought may result from enhanced antioxidant enzyme activity, proline accumulation, and expression of drought-related genes and lower membrane damage in maize plants.

References

[1]

M. Khayatnezhad, M. Hasanuzzaman, R. Gholamin, Assessment of yield and yield components and drought tolerance at end-of season drought condition on corn hybrids (Zea mays L.), Aust. J. Crop. Sci. 5 (2015) 1493–1500.

[2]

M.S. Lopes, J.L. Araus, P.D. van Heerden, C.H. Foyer, Enhancing drought tolerance in C crops, J. Exp. Bot. 62 (2011) 3135–3153.

[3]

S. Verma, A. Varma, K.H. Rexer, A. Hassel, G. Kost, A. Sarbhoy, P. Bisen, B. Bütehorn, P. Franken, Piriformospora indica, gen. et sp. nov, a new root-colonizing fungus, Mycologia 90 (1998) 896–903.

[4]

R. Oelmüller, I. Sherameti, S. Tripathi, A. Varma, Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications, Symbiosis 49 (2009) 1–17.

[5]

A. Varma, S. Verma, Sudha, N. Sahay, B. Bütehorn, P. Franken, Piriformospora indica, a cultivable plant-growth-promoting root endophyte, Appl. Environ. Microbiol. 65 (1999) 2741–2744.

[6]

K. Apel, H. Hirt, Reactive oxygen species, metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol. 55 (2004) 373–399.

[7]

R. Mittler, S. Vanderauwera, M. Gollery, F. Van Breusegem, Reactive oxygen gene network of plants, Trends Plant Sci. 9 (2004) 490–498.

[8]

R. Sairam, G. Srivastava, S. Agarwal, R. Meena, Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes, Biol. Plant. 49 (2005) 85–91.

[9]

V. Shulaev, Metabolomics technology and bioinformatics, Brief. Bioinform. 7 (2006) 128–139.

[10]

C.H. Foyer, G. Noctor, Oxygen processing in photosynthesis, regulation and signaling, New Phytol. 146 (2000) 359–388.

[11]

C. Sun, J.M. Johnson, D.G. Cai, I. Sherameti, R. Oelmuller, B.G. Lou, Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein, J. Plant Physiol. 16712 (2010) 1009–1017.

[12]

I. Sherameti, Y. Venus, C. Drzewiecki, S. Tripathi, V.M. Dan, I. Nitz, A. Varma, F.M. Grundler, R. Oelmüller, PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica, Plant J. 54 (2008) 428–439.

[13]

G. Ghanem, A. Ewald, S. Zerche, F. Hennig, Effect of root colonization with Piriformospora indica and phosphate availability on the growth and reproductive biology of a Cyclamen persicum cultivar, Sci. Hortic. 172 (2014) 233–241.

[14]

L. Bækgaard, L. Luoni, M.I. De Michelis, M.G. Palmgren, The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains, J. Biol. Chem. 281 (2006) 1058–1065.

[15]

C.N. Giannopolitis, S.K. Ries, Superoxide dismutases: I. Occurrence in higher plants, Plant Physiol. 59 (1977) 309–314.

[16]

T.E. Kraus, R.A. Fletcher, Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved? Plant Cell Physiol. 35 (1994) 45–52.

[17]

I. Cakmak, H. Marschner, Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves, Plant Physiol. 98 (1992) 1222–1227.

[18]

D.M. Hodges, J.M. DeLong, C.F. Forney, R.K. Prange, Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds, Planta 207 (1999) 604–611.

[19]

M. Ashraf, M. Foolad, Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environ. Exp. Bot. 59 (2007) 206–216.

[20]

D. Del Rio, A.J. Stewart, N. Pellegrini, A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress, Nutr. Metab. Cardiovas. 15 (2005) 316–328.

[21]

W.A. Pryor, J. Stanley, Suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymic production of prostaglandin endoperoxides during autoxidation, J. Org. Chem. 40 (1975) 3615–3617.

[22]

H. Baltruschat, J. Fodor, B.D. Harrach, E. Niemczyk, B. Barna, G. Gullner, A. Janeczko, K.H. Kogel, P. Schäfer, I. Schwarczinger, Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants, New Phytol. 180 (2008) 501–510.

[23]

J. Vadassery, S. Ranf, C. Drzewiecki, A. Mithöfer, C. Mazars, D. Scheel, J. Lee, R. Oelmüller, A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots, Plant J. 59 (2009) 193–206.

[24]

L.S. Phan Tran, K. Nakashima, Y. Sakuma, S.D. Simpson, Y. Fujita, K. Maruyama, M. Fujita, M. Seki, K. Shinozaki, K. Yamaguchi-Shinozaki, Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter, Plant Cell 16 (2004) 2481–2498.

[25]

Y. Sakuma, Q. Liu, J.G. Dubouzet, H. Abe, K. Shinozaki, K. Yamaguchi-Shinozaki, DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression, Biochem. Biophys. Res. Commun. 290 (2002) 998–1009.

[26]

Y.Y. Zhang, C.W. Yang, Y. Li, N.Y. Zheng, H. Chen, Q.Z. Zhao, T. Gao, H.S. Guo, Q. Xie, SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis, Plant Cell 19 (2007) 1912–1929.

[27]

P.D. Moore, Proline implicated in halophyte osmotic adjustment, Nature 253 (1975) 399–400.

[28]

M.J. Zarea, S. Hajinia, N. Karimi, E.M. Goltapeh, F. Rejali, A. Varma, Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl, Soil Biol. Biochem. 45 (2011) 139–146.

[29]

F. Waller, B. Achatz, H. Baltruschat, J. Fodor, K. Becker, M. Fischer, T. Heier, R. Hückelhoven, C. Neumann, D. von Wettstein, The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 13386–13391.

[30]

C.H. Foyer, S. Shigeoka, Understanding oxidative stress and antioxidant functions to enhance photosynthesis, Plant Physiol. 300 (2011) 429–434.

[31]

J.F. White, M.S. Torres, Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol. Plant. 138 (2010) 440–446.

[32]

C.E. Hamilton, P.E. Gundel, M. Helander, K. Saikkonen, Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review, Fungal Divers. 54 (2011) 1–10.

[33]

Y. Yaghoubian, E.M. Goltapeh, H. Pirdashti, E. Esfandiari, V. Feiziasl, H.K. Dolatabadi, A. Varma, M.H. Hassim, Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress, Agric. Res. 3 (2014) 239–245.

[34]

N.C. Gassner, C.M. Tamble, J.E. Bock, N. Cotton, K.N. White, K. Tenney, R.P. St. Onge, M.J. Proctor, G. Giaever, C. Nislow, Accelerating the discovery of biologically active small molecules using a high-throughput yeast halo assay, J. Nat. Prod. 70 (2007) 383–390.

[35]

F.C. Peterson, E.S. Burgie, S.Y. Park, D.R. Jensen, J.J. Weiner, C.A. Bingman, C.E.A. Chang, S.R. Cutler,, B.F. Volkman, Structural basis for selective activation of ABA receptors, Nat. Struct. Mol. Biol. 17 (2010) 1109–1113.

[36]

A. Mosquna, F.C. Peterson, S.Y. Park, J. Lozano-Juste, B.F. Volkman, S.R. Cutler, Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 20838–20843.

[37]

T. Peskan-Berghöfer, A. Vilches-Barro, T.M. Müller, E. Glawischnig, M. Reichelt, J. Gershenzon, T. Rausch, Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots, New Phytol. 208 (2015) 873–886.

[38]

P. Ohri, R. Bhardwaj, S. Bali, R. Kaur, S. Jasrotia, A. Khajuria, R.D. Parihar, The common molecular players in plant hormone crosstalk and signaling, Curr. Protein Pept. Sci. 16 (2015) 369–388.

The Crop Journal
Pages 251-258
Cite this article:
Xu L, Wang A, Wang J, et al. Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. The Crop Journal, 2017, 5(3): 251-258. https://doi.org/10.1016/j.cj.2016.10.002

331

Views

5

Downloads

109

Crossref

N/A

Web of Science

119

Scopus

14

CSCD

Altmetrics

Received: 20 May 2016
Revised: 13 September 2016
Accepted: 02 November 2016
Published: 12 November 2016
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return