Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The urgent global challenges of climate change and resource overconsumption highlight the need for sustainable innovations in the construction industry. Ordinary Portland cement, a vital construction material, significantly contributes to carbon emissions. Alkali-activated materials have emerged as promising alternatives. Three-dimensional printing (3DP) has gained attention in construction, because it offers efficiency and sustainability benefits. This study addresses the integration of alkali-activated materials and 3DP, focusing on circular economy implications. This study examines 1200 research articles from the Scopus database and comprehensively reviews 47 articles on 3DP of geopolymer structures. This study identifies critical research gaps, including a lack of focus on 3DP for alkali-activated materials, circular economy models, optimal mixtures, anisotropy mitigation, reinforcement strategies, and scalability. These insights highlight the transformative potential of 3DP with alkali-activated materials in sustainable construction, fostering a circular economy.
Adeleke, B. O., Kinuthia, J. M., Oti, J., & Ebailila, M. (2023). Physico-mechanical evaluation of geopolymer concrete activated by sodium hydroxide and silica fume-synthesised sodium silicate solution. Materials, 16, 2400.
Adesanya, E., Aladejare, A., Adediran, A., Lawal, A., & Illikainen, M. (2021). Predicting shrinkage of alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN). Cement and Concrete Composites, 124, Article 104265.
Agyekum, K., Amudjie, J., Pittri, H., Dompey, A. M. A., & Botchway, E. A. (2023). Prioritizing the principles of circular economy among built environment professionals. Built Environment Project and Asset Management. https://doi.org/10.1108/BEPAM-04-2023-0077
Ai, T., Zhong, D., Zhang, Y., Zong, J., Yan, X., & Niu, Y. (2021). The effect of red mud content on the compressive strength of geopolymers under different curing systems. Buildings, 11, 298.
Al-Hokabi, A., Hasan, M., Amran, M., Fediuk, R., Vatin, N. I., & Klyuev, S. (2021). Improving the early properties of treated soft Kaolin clay with palm oil fuel ash and gypsum. Sustainability, 13, Article 10910.
Al-Noaimat, Y. A., Ghaffar, S. H., Chougan, M., & Al-Kheetan, M. J. (2023). A review of 3D printing low-carbon concrete with one-part geopolymer: Engineering, environmental and economic feasibility. Case Studies in Construction Materials, 18, Article e01818.
Al-Qutaifi, S., Nazari, A., & Bagheri, A. (2018). Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing. Construction and Building Materials, 176, 690–699.
Alfani, R., & Guerrini, G. L. (2005). Rheological test methods for the characterization of extrudable cement-based materials—a review. Materials and Structures, 38, 239–247.
Alghamdi, H., Nair, S. A. O., & Neithalath, N. (2019). Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders. Materials & Design, 167, Article 107634.
Alghamdi, H., & Neithalath, N. (2019). Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials. Cement and Concrete Composites, 104, Article 103377.
Alsalman, A., Assi, L. N., Kareem, R. S., Carter, K., & Ziehl, P. (2021). Energy and CO2 emission assessments of alkali-activated concrete and ordinary Portland cement concrete: A comparative analysis of different grades of concrete. Cleaner Environmental Systems, 3, Article 100047.
Amran, M., Fediuk, R., Murali, G., Vatin, N., Karelina, M., Ozbakkaloglu, T., Krishna, R. S., Sahoo, A. K., Das, S. K., & Mishra, J. (2021). Rice husk ash-based concrete composites: A critical review of their properties and applications. Crystals, 11, 168.
Amran, M., Lee, Y. H., Fediuk, R., Murali, G., Ali Mosaberpanah, M., Ozbakkaloglu, T., Lee, Y., Vatin, N., Klyuev, S., & Karelia, M. (2021). Palm oil fuel ash-based eco- friendly concrete composite: A critical review of the long-term properties. Materials, 14, 7074.
Amran, M., Murali, G., Fediuk, R., Vatin, N., Vasilev, Y., & Abdelgader, H. (2021). Palm oil fuel ash-based eco-efficient concrete: A critical review of the short-term properties. Materials, 14, 332.
Arbi, K., Palomo, A., & Fernández-Jiménez, A. (2013). Alkali-activated blends of calcium aluminate cement and slag/diatomite. Ceramics International, 39, 9237–9245.
Archez, J., Texier Mandoki, N., Bourbon, X., Caron, J. F., & Rossignol, S. (2021). Shaping of geopolymer composites by 3D printing. Journal of Building Engineering, Article 101894.
Atabey, İ.İ., Karahan, O., Bilim, C., & Atiş , C. D. (2020). The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Con- struction and Building Materials, 264, Article 120268.
Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60, 677–688.
Błaszczyński, T. Z., & Król, M. R. (2017). Alkaline activator impact on the geopolymer binders. IOP Conference Series: Materials Science and Engineering, 245, Article 022036.
Bai, M., Wu, Y., Xiao, J., Ding, T., & Yu, K. (2023). Workability and hardened properties of 3D printed engineered cementitious composites incorporating recycled sand and PE fibers. Journal of Building Engineering, 71, Article 106477.
Bondar, D., Lynsdale, C. J., & Milestone, N. B. (2013). Alkali-activated natural pozzolan concrete as new construction material. ACI Materials Journal, 110, 331–338.
Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., & Ramezanianpour, A. A. (2011). Engineering properties of alkali-activated natural pozzolan concrete. ACI Materials Journal, 108, 64–72.
Bong, S. H., Nematollahi, B., Nazari, A., Xia, M., & Sanjayan, J. (2019). Method of optimisation for ambient temperature cured sustainable geopolymers for 3D printing construction applications. Materials, 12, 902.
Bong, S. H., Nematollahi, B., Xia, M., Ghaffar, S. H., Pan, J., & Dai, J. G. (2022). Properties of additively manufactured geopolymer incorporating mineral wollastonite microfibers. Construction and Building Materials, 331, Article 127282.
Bong, S. H., Xia, M., Nematollahi, B., & Shi, C. (2021). Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications. Cement and Concrete Composites, 121, Article 104060.
Buswell, R. A., Leal de Silva, W. R., Jones, S. Z., & Dirrenberger, J. (2018). 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, 112, 37–49.
Chen, Y., Jia, L., Liu, C., Zhang, Z., Ma, L., Chen, C., Banthia, N., & Zhang, Y. (2022). Mechanical anisotropy evolution of 3D-printed alkali-activated materials with different GGBFS/FA combinations. Journal of Building Engineering, 50, Article 104126.
Cheng, H., Lin, K. L., Cui, R., Hwang, C. L., Chang, Y. M., & Cheng, T. W. (2015). The effects of SiO2/Na2O molar ratio on the characteristics of alkali-activated waste catalyst–emetakaolin based geopolymers. Construction and Building Materials, 95, 710–720.
Chougan, M., Ghaffar, S. H., Sikora, P., Chung, S. Y., Rucinska, T., Stephan, D., et al. (2021). Investigation of additive incorporation on rheological, microstructural and mechanical properties of 3D printable alkali-activated materials. Materials & Design, 202, Article 109574.
Chougan, M., Hamidreza Ghaffar, S., Jahanzat, M., Albar, A., Mujaddedi, N., & Swash, R. (2020). The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites. Construction and Building Materials, 250, Article 118928.
Colangelo, F., Cioffi, R., Roviello, G., Capasso, I., Caputo, D., Aprea, P., et al. (2017). Thermal cycling stability of fly ash based geopolymer mortars. Composites Part B: Engineering, 129, 11–17.
Craveiro, F., Duarte, J. P., Bartolo, H., & Bartolo, P. J. (2019). Additive manufacturing as an enabling technology for digital construction: A perspective on construction 4.0. Automation in Construction, 103, 251–267.
Dal Poggetto, G., Fortunato, M., Cardinale, A. M., & Leonelli, C. (2023). Thermal, chemical and mechanical characterization of recycled corundum powder in metakaolin-based geopolymer binder. Applied Clay Science, 237, Article 106875.
Demiral, N. C., Ozkan Ekinci, M., Sahin, O., Ilcan, H., Kul, A., Yildirim, G., et al. (2022). Mechanical anisotropy evaluation and bonding properties of 3D-printable construction and demolition waste-based geopolymer mortars. Cement and Concrete Composites, 134, Article 104814.
Dhasindrakrishna, K., Ramakrishnan, S., Pasupathy, K., & Sanjayan, J. (2022). Synthesis and performance of intumescent alkali-activated rice husk ash for fire-resistant applications. Journal of Building Engineering, 51, Article 104281.
El Fadili, H., Ben Ali, M., El Mahdi Safhi, A., El Mahi, M., Aziz, A., & Lotfi, E. M. (2023). Effects of encapsulating cellulose acetate microfibers on the mechanical, thermal and environmental properties of geopolymers: A new solution to mitigate the cigarettes pollution. Journal of Building Engineering, 72, Article 106627.
El-Eswed, B., Dawoud, J. N., Mahmoud, W. F., & Abu Salha, Y. (2022). Stabilization/solidification of wastes containing oxyanionic metals: Reactions of alkali-activated aluminosilicate binders with chromium, arsenic, and antimony in comparison with zinc. Water, Air, & Soil Pollution, 233, 367.
Elsayed, H., Gobbin, F., Picicco, M., Italiano, A., & Colombo, P. (2022). Additive manufacturing of inorganic components using a geopolymer and binder jetting. Additive Manufacturing, 56, Article 102909.
Estellé, P., Lanos, C., Perrot, A., & Servais, C. (2006). Slipping zone location in squeeze flow. Rheologica Acta, 45, 444–448.
Farina, I., Modano, M., Zuccaro, G., Goodall, R., & Colangelo, F. (2018). Improving flexural strength and toughness of geopolymer mortars through additively manufactured metallic rebars. Composites Part B: Engineering, 145, 155–161.
Geng, Z., She, W., Zuo, W., Lyu, K., Pan, H., Zhang, Y., et al. (2020). Layer-interface properties in 3D printed concrete: Dual hierarchical structure and micromechanical characterization. Cement and Concrete Research, 138, Article 106220.
Giannaros, P., Kanellopoulos, A., & Al-Tabbaa, A. (2016). Sealing of cracks in cement using microencapsulated sodium silicate. Smart Materials and Structures, 25, Article 084005.
Giroudon, M., Patapy, C., Peyre Lavigne, M., Andriamiandroso, M., Cartier, R., Dubos, S., et al. (2023). Potential of low carbon materials facing biodeterioration in concrete biogas structures. Materials and Structures, 56, 80.
Guamán-Rivera, R., Martínez-Rocamora, A., García-Alvarado, R., Muñoz-Sanguinetti, C., González-Böhme, L. F., & Auat-Cheein, F. (2022). Recent developments and challenges of 3D-printed construction: A review of research fronts. Buildings, 12, 229.
Hajimohammadi, A., Provis, J. L., & van Deventer, J. S. J. (2011). The effect of silica availability on the mechanism of geopolymerisation. Cement and Concrete Research, 41, 210–216.
Hamid, W., & Alnuaim, A. (2023). Sustainable geopolymerization approach to stabilize sabkha soil. Journal of Materials Research and Technology, 24, 9030–9044.
Hong, J., Shen, G. Q., Feng, Y., Lau, W. S. T., & Mao, C. (2015). Greenhouse gas emissions during the construction phase of a building: A case study in China. Journal of Cleaner Production, 103, 249–259.
Huang, S., Xu, W., & Li, Y. (2022). The impacts of fabrication systems on 3D concrete printing building forms. Frontiers of Architectural Research, 11, 653–669.
Hughes, D. C., & Amtsbüchler, R. (1986). Pore structure and permeability of hardened cement paste. Magazine of Concrete Research, 38, 230–231.
Ionescu, B. A., Barbu, A. M., Lăzărescu, A. V., Rada, S., Gabor, T., & Florean, C. (2023). The influence of substitution of fly ash with marble dust or blast furnace slag on the properties of the alkali-activated geopolymer paste. Coatings, 13, 403.
Irshidat, M. R., Al-Nuaimi, N., & Rabie, M. (2021). Sustainable utilization of waste carbon black in alkali-activated mortar production. Case Studies in Construction Materials, 15, Article e00743.
Jun, Y., & Oh, J. E. (2015). Microstructural characterization of alkali-activation of six Korean Class F fly ashes with different geopolymeric reactivity and their zeolitic precursors with various mixture designs. KSCE Journal of Civil Engineering, 19, 1775–1786.
Kazemian, A., Gholizadeh Vayghan, A., & Rajabipour, F. (2015). Quantitative assessment of parameters that affect strength development in alkali activated fly ash binders. Construction and Building Materials, 93, 869–876.
Ke, X., Baki, V. A., Large, A. I., Held, G., Walkley, B., & Li, J. (2022). Atomic-scale characterisation of sodium aluminosilicate hydrates (N-A-S-H) and Mg-substituted N (-M)-A-S-H using XANES. Applied Geochemistry, 147, Article 105515.
Khan, S. A., Jassim, M., Ilcan, H., Sahin, O., Bayer, İ. R., Sahmaran, M., et al. (2023). 3D printing of circular materials: Comparative environmental analysis of materials and construction techniques. Case Studies in Construction Materials, 18, Article e02059.
Khanday, S. A., Hussain, M., & Das, A. K. (2021). Rice husk ash–based geopolymer stabilization of Indian peat: Experimental investigation. Journal of Materials in Civil Engineering, 33, Article 04021347.
Khater, H. M. (2013). Effect of cement kiln dust on geopolymer composition and its resistance to sulfate attack. Green Materials, 1, 36–46.
Khater, H. M. (2019). Hybrid slag geopolymer composites with durable character- istics activated by cement kiln dust. Construction and Building Materials, 228, Article 116708.
Kim, Y. Y., Lee, B. J., Saraswathy, V., & Kwon, S. J. (2014). Strength and durability performance of alkali-activated rice husk ash geopolymer mortar. The Scientific World Journal, 2014, Article 209584.
Kondepudi, K., Subramaniam, K. V. L., Nematollahi, B., Bong, S. H., & Sanjayan, J. (2022). Study of particle packing and paste rheology in alkali activated mixtures to meet the rheology demands of 3D Concrete Printing. Cement and Concrete Composites, 131, Article 104581.
Kong, X., Dai, L., Wang, Y., Qiao, D., Hou, S., & Wang, S. (2022). Influence of kenaf stalk on printability and performance of 3D printed industrial tailings based geopolymer. Construction and Building Materials, 315, Article 125787.
Krakauer, N. Y. (2023). Amplification of extreme hot temperatures over recent decades. Climate, 11, 42.
Kuenzel, C., & Ranjbar, N. (2019). Dissolution mechanism of fly ash to quantify the reactive aluminosilicates in geopolymerisation. Resources, Conservation and Recycling, 150, Article 104421.
Kumar, S., Singh, R., Singh, T. P., & Batish, A. (2021). On investigation of rheological, mechanical and morphological characteristics of waste polymer-based feedstock filament for 3D printing applications. Journal of Thermoplastic Composite Materials, 37, 902–928.
Kumar Sinha, A., & Talukdar, S. (2023). Mechanical and bond behaviour of high volume Ultrafine-slag blended fly ash based alkali activated concrete. Construction and Building Materials, 383, Article 131368.
La Scalia, G., Saeli, M., Adelfio, L., & Micale, R. (2021). From lab to industry: Scaling up green geopolymeric mortars manufacturing towards circular economy. Journal of Cleaner Production, 316, Article 128164.
Labaran, Y., Mathur, V. S., Muhammad, S. U., & Musa, A. A. (2022). Carbon footprint management: A review of construction industry. Cleaner Engineering and Technology, 9, Article 100531.
Lao, J. C., Huang, B. T., Fang, Y., Xu, L. Y., Dai, J. G., & Shah, S. P. (2023). Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility. Cement and Concrete Research, 165, Article 107075.
Laskar, S. M., & Talukdar, S. (2017). Preparation and tests for workability, compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent. Construction and Building Materials, 154, 176–190.
Lazorenko, G., & Kasprzhitskii, A. (2022). Geopolymer additive manufacturing: A review. Additive Manufacturing, 55, Article 102782.
Li, Y., Shen, J., Lin, H., & Li, Y. (2023). Optimization design for alkali-activated slag-fly ash geopolymer concrete based on artificial intelligence considering compressive strength, cost, and carbon emission. Journal of Building Engineering, 75, Article 106929.
Li, Y., Shen, L., Mirmoghtadaei, R., & Ai, L. (2017). A design of experiment approach to study the effects of raw material on the performance of geopolymer concrete. Advances in Civil Engineering Materials, 6, 526–549.
Li, Z., Wang, L., & Ma, G. (2020). Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions. Composites Part B: Engineering, 187, Article 107796.
Li, Z., Wang, L., Ma, G., Sanjayan, J., & Feng, D. (2020). Strength and ductility enhancement of 3D printing structure reinforced by embedding continuous micro-cables. Construction and Building Materials, 264, Article 120196.
Liang, X., & Ji, Y. (2021). Mechanical properties and permeability of red mud-blast furnace slag-based geopolymer concrete. SN Applied Sciences, 3, 23.
Lim, J. H., Panda, B., & Pham, Q. C. (2018). Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement. Construction and Building Materials, 178, 32–41.
Liu, X., Li, Q., & Li, J. (2022). Shrinkage and mechanical properties optimization of spray-based 3D printed concrete by PVA fiber. Materials Letters, 319, Article 132253.
Lloyd, R. R., Provis, J. L., & Van Deventer, J. S. J. (2009). Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder. Journal of Materials Science, 44, 620–631.
Luo, Y., Brouwers, H. J. H., & Yu, Q. (2023). Understanding the gel compatibility and thermal behavior of alkali activated Class F fly ash/ladle slag: The underlying role of Ca availability. Cement and Concrete Research, 170, Article 107198.
Luukkonen, T., Olsen, E., Turkki, A., & Muurinen, E. (2023). Ceramic-like membranes without sintering via alkali activation of metakaolin, blast furnace slag, or their mixture: Characterization and cation-exchange properties. Ceramics Interna- tional, 49, 10645–10651.
Lv, X., Qin, Y., Liang, H., & Cui, X. (2021). Effects of modifying agent on rheology and workability of alkali-activated slag paste for 3D extrusion forming. Construction and Building Materials, 302, Article 124062.
Ly, O., Yoris-Nobile, A. I., Sebaibi, N., Blanco-Fernandez, E., Boutouil, M., Castro-Fresno, D., et al. (2021). Optimisation of 3D printed concrete for artificial reefs: Biofouling and mechanical analysis. Construction and Building Materials, 272, Article 121649.
Ma, S., Fu, S., Wang, Q., Xu, L., He, P., Sun, C., et al. (2022). 3D Printing of damage-tolerant martian regolith simulant-based geopolymer composites. Additive Manufacturing, 58, Article 103025.
Ma, S., Fu, S., Zhao, S., He, P., Ma, G., Wang, M., et al. (2021). Direct ink writing of geopolymer with high spatial resolution and tunable mechanical properties. Additive Manufacturing, 46, Article 102202.
Ma, Y., Hu, J., & Ye, G. (2013). The pore structure and permeability of alkali activated fly ash. Fuel, 104, 771–780.
Ma, G., Li, Z., Wang, L., & Bai, G. (2019). Micro-cable reinforced geopolymer composite for extrusion-based 3D printing. Materials Letters, 235, 144–147.
Ma, S., Yang, H., Zhao, S., He, P., Zhang, Z., Duan, X., et al. (2021). 3D-printing of architectured short carbon fiber-geopolymer composite. Composites Part B: Engineering, 226, Article 109348.
McLellan, B. C., Williams, R. P., Lay, J., van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. Journal of Cleaner Production, 19, 1080–1090.
Mejía, J. M., Rodríguez, E., Mejía de Gutiérrez, R., & Gallego, N. (2015). Preparation and characterization of a hybrid alkaline binder based on a fly ash with no commercial value. Journal of Cleaner Production, 104, 346–352.
Muñiz-Villarreal, M. S., Manzano-Ramírez, A., Sampieri-Bulbarela, S., Gasca-Tirado, J. R., Reyes-Araiza, J. L., Rubio-Ávalos, J. C., et al. (2011). The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Materials Letters, 65, 995–998.
Mudgal, M., Singh, A., Chouhan, R. K., Acharya, A., & Srivastava, A. K. (2021). Fly ash red mud geopolymer with improved mechanical strength. Cleaner Engineering and Technology, 4, Article 100215.
Murri, A. N., Medri, V., Papa, E., Laghi, L., Mingazzini, C., & Landi, E. (2017). Porous geopolymer insulating core from a metakaolin/biomass ash composite. Environments, 4, 86.
Muthukrishnan, S., Ramakrishnan, S., & Sanjayan, J. (2021). Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete. Cement and Concrete Composites, 116, Article 103899.
Muthukrishnan, S., Ramakrishnan, S., & Sanjayan, J. (2022). Set on demand geopolymer using print head mixing for 3D concrete printing. Cement and Concrete Composites, 128, Article 104451.
Nikolov, A., Nugteren, H., Petrov, O., Rostovsky, I., Petrova, T., & Delcheva, Z. (2019). Synthesis of natural zeolite agglomerates: Clinoptilolite-based geopolymers through aluminate activation. Clay Minerals, 54, 393–400.
Nodehi, M., & Taghvaee, V. M. (2022). Alkali-activated materials and geopolymer: A review of common precursors and activators addressing circular economy. Circular Economy and Sustainability, 2, 165–196.
Norouzi, M., Chàfer, M., Cabeza, L. F., Jiménez, L., & Boer, D. (2021). Circular economy in the building and construction sector: A scientific evolution analysis. Journal of Building Engineering, 44, Article 102704.
Occhicone, A., Vukčević, M., Bosković, I., & Ferone, C. (2021). Red mud-blast furnace slag-based alkali-activated materials. Sustainability, 13, Article 11298.
Ossio, F., Salinas, C., & Hernández, H. (2023). Circular economy in the built environment: A systematic literature review and definition of the circular construction concept. Journal of Cleaner Production, 414, Article 137738.
Pan, Z., Tao, Z., Cao, Y. F., George, L., & Wuhrer, R. (2023). High-temperature performance of alkali-activated binders of fly ash and calcium aluminate. Ceramics International, 49, 14389–14398.
Panda, B., Chandra Paul, S., & Jen Tan, M. (2017). Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Materials Letters, 209, 146–149.
Panda, B., Lim, J. H., & Tan, M. J. (2019). Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Composites Part B: Engineering, 165, 563–571.
Panda, B., Paul, S. C., Hui, L. J., Tay, Y. W. D., & Tan, M. J. (2017). Additive manufacturing of geopolymer for sustainable built environment. Journal of Cleaner Production, 167, 281–288.
Panda, B., Paul, S. C., Mohamed, N. A. N., Tay, Y. W. D., & Tan, M. J. (2018). Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement, 113, 108–116.
Panda, B., Ruan, S., Unluer, C., & Tan, M. J. (2020). Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing. Composites Part B: Engineering, 186, Article 107826.
Panda, B., Singh, G. B., Unluer, C., & Tan, M. J. (2019). Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. Journal of Cleaner Production, 220, 610–619.
Panda, B., & Tan, M. J. (2018). Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceramics International, 44, 10258–10265.
Panda, B., Unluer, C., & Tan, M. (2018). Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cement and Concrete Composites, 94, 307–314.
Panda, B., Unluer, C., & Tan, M. (2019). Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Composites Part B: Engineering, 176, Article 107290.
Perrot, A., Lanos, C., Estellé, P., & Melinge, Y. (2006). Ram extrusion force for a frictional plastic material: Model prediction and application to cement paste. Rheologica Acta, 45, 457–467.
Perrot, A., Mélinge, Y., Rangeard, D., Micaelli, F., Estellé, P., & Lanos, C. (2012). Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheologica Acta, 51, 743–754.
Prochon, P., Zhao, Z., Courard, L., Piotrowski, T., Michel, F., & Garbacz, A. (2020). Influence of activators on mechanical properties of modified fly ash based geopolymer mortars. Materials, 13, 1033.
Provis, J. L., Rose, V., Bernal, S. A., & van Deventer, J. S. J. (2009). High-resolution nanoprobe X-ray fluorescence characterization of heterogeneous calcium and heavy metal distributions in alkali-activated fly ash. Langmuir, 25, 11897–11904.
Qaidi, S., Yahia, A., Tayeh, B. A., Unis, H., Faraj, R., & Mohammed, A. (2022). 3D printed geopolymer composites: A review. Materials Today Sustainability, 20, Article 100240.
Rahul, A. V., Santhanam, M., Meena, H., & Ghani, Z. (2019). Mechanical characterization of 3D printable concrete. Construction and Building Materials, 227, Article 116710.
Raju, T., Ramaswamy, K. P., Saraswathy, B., & Skariah Thomas, B. (2023). Workability and strength characteristics of alkali activated mortar with various binder systems. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.134
Raza, M. H., Zhong, R. Y., & Khan, M. (2022). Recent advances and productivity analysis of 3D printed geopolymers. Additive Manufacturing, 52, Article 102685.
Refaat, M., Mohsen, A., Nasr, E. S. A. R., & Kohail, M. (2021). Minimizing energy consumption to produce safe one-part alkali-activated materials. Journal of Cleaner Production, 323, Article 129137.
Revathi, T., Vanitha, N., Jeyalakshmi, R., Sundararaj, B., Jegan, M., & Kannan Rajkumar, P. R. (2022). Adoption of alkali-activated cement-based binders (geopolymers) from industrial by-products for sustainable construction of utility buildings-A field demonstration. Journal of Building Engineering, 52, Article 104450.
Robayo-Salazar, R., Mejía de Gutiérrez, R., Villaquirán-Caicedo, M. A., & Delvasto Arjona, S. (2023). 3D printing with cementitious materials: Challenges and opportunities for the construction sector. Automation in Construction, 146, Article 104693.
Şahin, O., İlcan, H., Ateşli, A. T., Kul, A., Yıldırım, G., & Şahmaran, M. (2021). Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing. Cement and Concrete Composites, 121, Article 104088.
Sabrin, S., Siddiqua, S., & Muhammad, N. (2019). Understanding the effect of heat treatment on subgrade soil stabilized with bentonite and magnesium alkalinization. Transportation Geotechnics, 21, Article 100287.
Santana, H. A., Amorim, N. S., Jr., Ribeiro, D. V., Cilla, M. S., & Dias, C. M. R. (2021). 3D printed mesh reinforced geopolymer: Notched prism bending. Cement and Concrete Composites, 116, Article 103892.
Schuldt, S. J., Jagoda, J. A., Hoisington, A. J., & Delorit, J. D. (2021). A systematic review and analysis of the viability of 3D-printed construction in remote environments. Automation in Construction, 125, Article 103642.
Shehata, N., Mohamed, O. A., Sayed, E. T., Ali Abdelkareem, M., & Olabi, A. G. (2022). Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Science of the Total Environment, 836, Article 155577.
Shen, J., Li, Y., Lin, H., & Li, Y. (2023). Development of autogenous shrinkage prediction model of alkali-activated slag-fly ash geopolymer based on machine learning. Journal of Building Engineering, 71, Article 106538.
Sonebi, M., Dedenis, M., Amziane, S., Abdalqader, A., & Perrot, A. (2021). Effect of red mud, nanoclay, and natural fiber on fresh and rheological properties of three-dimensional concrete printing. ACI Materials Journal, 118, 97–110.
Srinivasa, A. S., Swaminathan, K., & Yaragal, S. C. (2023). Microstructural and optimization studies on novel one-part geopolymer pastes by Box-Behnken response surface design method. Case Studies in Construction Materials, 18, Article e01946.
Stahel, W. R. (2016). The circular economy. Nature, 531, 435–438.
Su, M., Zhong, Q., & Peng, H. (2021). Regularized multivariate polynomial regression analysis of the compressive strength of slag-metakaolin geopolymer pastes based on experimental data. Construction and Building Materials, 303, Article 124529.
Sun, Q., Liu, J., Cheng, H., Mou, Y., Liu, J., Peng, Y., et al. (2019). Fabrication of 3D structures via direct ink writing of Kaolin/graphene oxide composite suspensions at ambient temperature. Ceramics International, 45, 18972–18979.
Sun, Q., Peng, Y., Cheng, H., Mou, Y., Yang, Z., Liang, D., et al. (2019). Direct ink writing of 3D cavities for direct plated copper ceramic substrates with Kaolin suspensions. Ceramics International, 45, 12535–12543.
Sun, C., Xiang, J., Xu, M., He, Y., Tong, Z., & Cui, X. (2020). 3D extrusion free forming of geopolymer composites: Materials modification and processing optimization. Journal of Cleaner Production, 258, Article 120986.
Teh, S. H., Wiedmann, T., Castel, A., & de Burgh, J. (2017). Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. Journal of Cleaner Production, 152, 312–320.
Thwe, E., Khatiwada, D., & Gasparatos, A. (2021). Life cycle assessment of a cement plant in Naypyitaw, Myanmar. Cleaner Environmental Systems, 2, Article 100007.
Tian, B., Li, X., Lv, Y., Xu, J., Ma, W., He, C., et al. (2023). Effect of rice husk ash on the properties of alkali-activated slag pastes: Shrinkage, hydration and mechanical property. Materials, 16, 3148.
Toutou, Z., Roussel, N., & Lanos, C. (2005). The squeezing test: A tool to identify firm cement-based material's rheological behaviour and evaluate their extrusion ability. Cement and Concrete Research, 35, 1891–1899.
Tramontin Souza, M., Simão, L., Guzi de Moraes, E., Senff, L., de Castro Pessôa, J. R., Ribeiro, M. J., et al. (2021). Role of temperature in 3D printed geopolymers: Evaluating rheology and buildability. Materials Letters, 293, Article 129680.
Tran, M. V., Cu, Y. T. H., & Le, C. V. H. (2021). Rheology and shrinkage of concrete using polypropylene fiber for 3D concrete printing. Journal of Building Engineering, 44, Article 103400.
Uvarova, I., Atstaja, D., Volkova, T., Grasis, J., & Ozolina-Ozola, I. (2023). The typology of 60R circular economy principles and strategic orientation of their application in business. Journal of Cleaner Production, 409, Article 137189.
Vázquez-Rodríguez, F., Elizondo, N., Montes-González, M., Gómez-Rodríguez, C., González-Carranza, Y., Guzmán, A. M., et al. (2023). Microstructural and mechanical characteristics of alkali-activated binders composed of milled fly ash and granulated blast furnace slag with μ-limestone addition. Materials, 16, 3818.
Weng, Y., Ruan, S., Li, M., Mo, L., Unluer, C., Tan, M. J., et al. (2019). Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing. Construction and Building Materials, 221, 595–603.
Wolfs, R. J. M., Bos, F. P., & Salet, T. A. M. (2018). Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cement and Concrete Research, 106, 103–116.
Wolfs, R. J. M., Bos, F. P., & Salet, T. A. M. (2019). Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research, 119, 132–140.
Xia, M., Nematollahi, B., & Sanjayan, J. (2019). Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications. Automation in Construction, 101, 179–189.
Xia, M., & Sanjayan, J. (2016). Method of formulating geopolymer for 3D printing for construction applications. Materials & Design, 110, 382–390.
Xia, M., & Sanjayan, J. G. (2018). Methods of enhancing strength of geopolymer produced from powder-based 3D printing process. Materials Letters, 227, 281–283.
Yang, H., Ma, S., Zhao, S., Wang, Q., Liu, X., He, P., et al. (2023). Mechanistic understanding of geopolymerization at the initial stage: Ab initio molecular dynamics simulations. Journal of the American Ceramic Society, 106, 4425–4442.
Yost, J. R., Radlińska, A., Ernst, S., Salera, M., & Martignetti, N. J. (2013). Structural behavior of alkali activated fly ash concrete. Part 2: Structural testing and experimental findings. Materials and Structures, 46, 449–462.
Yousaf, A., Al Rashid, A., & Koç, M. (2024). Parameter tuning for sustainable 3D Printing(3DP) of clay structures. Journal of Engineering Research. https://doi.org/10.1016/j.jer.2024.05.027
Yousaf, A., Kayvanfar, V., Mazzoni, A., & Elomri, A. (2023). Artificial intelligence-based decision support systems in smart agriculture: Bibliometric analysis for operational insights and future directions. Frontiers in Sustainable Food Systems, 6, Article 1053921.
Yousefi, E., & Majidi, B. (2011). Effects of free quartz on mechanical behaviour of kaolinite based geopolymers. Materials Technology, 26, 96–99.
Yu, L., Zhang, Z., Huang, X., Jiao, B., & Li, D. (2017). Enhancement experiment on cementitious activity of copper-mine tailings in a geopolymer system. Fibers, 5, 47.
Zakira, U., Zheng, K., Xie, N., & Birgisson, B. (2023). Development of high-strength geopolymers from red mud and blast furnace slag. Journal of Cleaner Production, 383, Article 135439.
Zhang, C., Jia, Z., Luo, Z., Deng, Z., Wang, Z., Chen, C., et al. (2023). Printability and pore structure of 3D printing low carbon concrete using recycled clay brick powder with various particle features. Journal of Sustainable Cement-Based Materials, 12, 808–817.
Zhang, C., Nerella, V. N., Krishna, A., Wang, S., Zhang, Y., Mechtcherine, V., et al. (2021). Mix design concepts for 3D printable concrete: A review. Cement and Concrete Composites, 122, Article 104155.
Zhang, D. W., Wang, D. M., Lin, X. Q., & Zhang, T. (2018). The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes. Construction and Building Materials, 184, 575–580.
Zhao, Z., Chen, M., Xu, J., Li, L., Huang, Y., Yang, L., et al. (2021). Mix design and rheological properties of magnesium potassium phosphate cement composites based on the 3D printing extrusion system. Construction and Building Materials, 284, Article 122797.
Zhao, W., Ji, C., Sun, Q., & Gu, Q. (2022). Preparation and microstructure of alkali-activated rice husk ash-granulated blast furnace slag tailing composite cemented paste backfill. Materials, 15, 4397.
Zheleznova, I., Gushchina, D., Meiramov, Z., & Olchev, A. (2022). Temporal and spatial variability of dryness conditions in Kazakhstan during 1979–2021 based on reanalysis data. Climate, 10, 144.
Zheng, G., Cui, X., Zhang, W., & Tong, Z. (2009). Preparation of geopolymer precursors by sol–gel method and their characterization. Journal of Materials Science, 44, 3991–3996.
Zhong, H., & Zhang, M. (2022). 3D printing geopolymers: A review. Cement and Concrete Composites, 128, Article 104455.
Zhou, X., & Li, Z. (2005). Characterization of rheology of fresh fiber reinforced cementitious composites through ram extrusion. Materials and Structures, 38, 17–24.
Zhou, G. X., Li, C., Zhao, Z., Qi, Y. Z., Yang, Z. H., Jia, D. C., et al. (2020). 3D printing geopolymer nanocomposites: Graphene oxide size effects on a reactive matrix. Carbon, 164, 215–223.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).