AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Research | Open Access

The biofactories: Quantifying environmental benefits of the wastewater circular economy in Chile using life cycle assessment

Madeline Frances Furnessa,b( )Ricardo Bello-MendozaaLeonor Patricia GüerecabRolando Chamy Maggic
Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8041, New Zealand
Institute of Engineering, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
School of Biochemical Engineering, Pontificia Universidad Católica de Valparaiso, Valparaiso 2340025, Chile
Show Author Information

Abstract

The wastewater circular economy promises improved environmental impacts within the food-water-energy nexus. This requires verification as the global sanitation sectors seek to improve environmental impacts and achieve integrated water management. Life cycle assessment (LCA) has been used to compare novel technologies for wastewater treatment and recovery, but research addressing plant-wide improvements of co-product resource recovery using real data from full-scale plants is still needed, particularly in a Latin American context. In Chile, two wastewater treatment plants (WWTPs) have embraced the circular economy configuration, recovering treated effluent, biosolids, and biogas, in addition to implementing advanced nitrogen removal using different technologies. The LCA of these two WWTPs demonstrated that Plant A improved 8 out of 10 impact categories compared to the baseline conventional scenario, while Plant B improved 5 categories out of 10. The analysis of the two plants showed the influence of influent quality on environmental impacts and the trade-off that occurs between the different technologies implemented. Plant B generated larger environmental credits through increased biogas and biosolids recovery due to thermal hydrolysis pre-treatment and anaerobic digestion, combined with cogeneration of heat and power. Plant A implemented water recovery, which provided benefits on a smaller magnitude but to more impact categories. Therefore, both plants improved environmental impacts through the wastewater circular economy, but further improvements in system configurations are recommended in each.

Electronic Supplementary Material

Download File(s)
cec-3-3-100091_ESM.zip (2.8 MB)

References

 

Alengebawy, A., Mohamed, B. A., Ghimire, N., Jin, K., Liu, T., Samer, M., & Ai, P. (2022). Understanding the environmental impacts of biogas utilization for energy production through life cycle assessment: An action towards reducing emissions. Environmental Research, 213, Article 113632.

 

Ardolino, F., Cardamone, G. F., Parrillo, F., & Arena, U. (2021). Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective. Renewable and Sustainable Energy Reviews, 139, Article 110588.

 

Ardolino, F., Parrillo, F., & Arena, U. (2018). Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. Journal of Cleaner Production, 174, 462–476.

 

Arias, A., Behera, C. R., Feijoo, G., Sin, G., & Moreira, M. T. (2020). Unravelling the environmental and economic impacts of innovative technologies for the enhancement of biogas production and sludge management in wastewater systems. Journal of Environmental Management, 270, Article 110965.

 

Arias, A., Feijoo, G., & Moreira, M. T. (2021). Benchmarking environmental and economic indicators of sludge management alternatives aimed at enhanced energy efficiency and nutrient recovery. Journal of Environmental Management, 279, Article 111594.

 

Arthur, M., Liu, G., Hao, Y., Zhang, L., Liang, S., Asamoah, E. F., & Lombardi, G. V. (2019). Urban food-energy-water nexus indicators: A review. Resources, Conservation and Recycling, 151, Article 104481.

 
Balasubramanian, S., & Tyagi, R. D. (2017). Value-added bio-products from sewage sludge. In J. W. C. Wong, R. D. Tyagi, & A. Pandey (Eds.), Current developments in biotechnology and bioengineering (pp. 27–42). Amsterdam: Elsevier.
 

Bisinella de Faria, A. B., Spérandio, M., Ahmadi, A., & Tiruta-Barna, L. (2015). Evaluation of new alternatives in wastewater treatment plants based on dynamic modelling and life cycle assessment (DM–LCA). Water Research, 84, 99–111.

 

Bolong, N., Ismail, A., Salim, M., & Matsuura, T. (2008). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239, 229–246.

 

Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water, 2, 15.

 

Borzooei, S., Amerlinck, Y., Panepinto, D., Abolfathi, S., Nopens, I., Scibilia, G., Meucci, L., & Zanetti, M. (2020). Energy optimization of a wastewater treatment plant based on energy audit data: Small investment with high return. Environmental Science and Pollution Research, 27, 17972–17985.

 

Brunner, P. H., & Rechberger, H. (2003). Practical handbook of material flow analysis. Florida, USA: CRC Press.

 

Campos, J. L., Valenzuela-Heredia, D., Pedrouso, A., Val del Río, A., Belmonte, M., & Mosquera-Corral, A. (2016). Greenhouse gases emissions from wastewater treatment plants: Minimization, treatment, and prevention. Journal of Chemistry, 2016, Article 3796352.

 

Capodaglio, A. (2017). Integrated, decentralized wastewater management for resource recovery in rural and peri-urban areas. Resources, 6, 22.

 

Carlson-Ekvall, C. A., & Morrison, G. M. (1995). Toxicity of copper in the presence of organic substances in sewage sludge. Environmental Technology, 16, 243–251.

 

Chrispim, M. C., Scholz, M., & Nolasco, M. A. (2021). Biogas recovery for sustainable cities: A critical review of enhancement techniques and key local conditions for implementation. Sustainable Cities and Society, 72, Article 103033.

 
CNE. (2018). Greenhouse gas emissions factor of the national energy system in Chile, environmental indicators. Comisión Nacional de Energía (CNE). Available at https://www.cne.cl/resumen_ejecutivo_geis/.
 

Collivignarelli, M. C., Canato, M., Abbà, A., & Carnevale Miino, M. (2019). Biosolids: What are the different types of reuse? Journal of Cleaner Production, 238, Article 117844.

 

Cornejo, P. K., Zhang, Q., & Mihelcic, J. R. (2013). Quantifying benefits of resource recovery from sanitation provision ina developing world setting. Journal of Environmental Management, 131, 7–15.

 

Corominas, L., Byrne, D. M., Guest, J. S., Hospido, A., Roux, P., Shaw, A., & Short, M. D. (2020). The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review. Water Research, 184, Article 116058.

 

Corominas, L., Foley, J., Guest, J. S., Hospido, A., Larsen, H. F., Morera, S., & Shaw, A. (2013). Life cycle assessment applied to wastewater treatment: State of the art. Water Research, 47, 5480–5492.

 
da Costa Gomez, C. (2013). Biogas as an energy option: An overview. In A. Wellinger, J. Murphy, & D. Baxter (Eds.), The biogas handbook - science, production and applications. Angerbrunnernsr: Woodhead Publishing.
 

de Feo, G., & Ferrara, C. (2017). Investigation of the environmental impacts of municipal wastewater treatment plants through a life cycle assessment software tool. Environmental Technology, 38, 1943–1948.

 
de Haas, D., Wallace, E., Rouman, R., Dempsey, N., Springer, A., & Russell, E. (2021). Carbon accounting guidelines for wastewater treatment: CH4 and N2O, carbon accounting guidelines. Wellington. https://doi.org/10.1201/9780203739310.
 

Devos, P., Haddad, M., & Carrère, H. (2021). Thermal hydrolysis of municipal sludge: Finding the temperature sweet spot: A review. Waste and Biomass Valorization, 12, 2187–2205.

 
EIA. (2021). International energy outlook 2021 (IEO 2021). Energy Information Administration (EIA). Available at https://www.eia.gov/outlooks//ieo/ppt/IEO2021_ReleasePresentation.pptx.
 
Eggelston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. Available at https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/.
 
FAO. (2018). The future of food and agriculture - Alternative pathways to 2050. Food and Agriculture Organization of the United Nations (FAO). Available at https://www.fao.org/global-perspectives-studies/resources/detail/en/c/1157074/.
 
FAO. (2019). World fertilizer trends and outlook to 2022. Food and Agriculture Organization of the United Nations (FAO). Available at https://openknowledge.fao.org/server/api/core/bitstreams/42d5a668-f44c-4976-8540-8efdb0f4d17b/content.
 

Foley, J., de Haas, D., Hartley, K., & Lant, P. (2010). Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Research, 44, 1654–1666.

 

Fu, Q., Malchi, T., Carter, L. J., Li, H., Gan, J., & Chefetz, B. (2019). Pharmaceutical and personal care products: From wastewater treatment into agro-food systems. Environmental Science & Technology, 53, 14083–14090.

 

Furness, M., Bello-Mendoza, R., Dassonvalle, J., & Chamy-Maggi, R. (2021). Building the ‘bio-factory’: A bibliometric analysis of circular economies and life cycle sustainability assessment in wastewater treatment. Journal of Cleaner Production, 323, Article 129127.

 

Gherghel, A., Teodosiu, C., & Gisi, S. D. (2019). A review on wastewater sludge valorisation and its challenges in the context of circular economy. Journal of Cleaner Production, 228, 244–263.

 

Godin, D., Bouchard, C., & Vanrolleghem, P. A. (2012). Net environmental benefit: Introducing a new LCA approach on wastewater treatment systems. Water Science and Technology, 65, 1624–1631.

 

Gouel, C., & Guimbard, H. (2019). Nutrition transition and the structure of global food demand. American Journal of Agricultural Economics, 101, 383–403.

 

Hao, X., Wang, X., Liu, R., Li, S., van Loosdrecht, M. C. M., & Jiang, H. (2019). Environmental impacts of resource recovery from wastewater treatment plants. Water Research, 160, 268–277.

 

Heijungs, R., Henriksson, P. J., & Guinée, J. B. (2016). Measures of difference and significance in the era of computer simulations, meta-analysis, and big data. Entropy, 18, 361.

 
IEA. (2020). Electricity consumption in the water sector by process, 2014-2040. Available at: https://www.iea.org/data-and-statistics/charts/electricity-consumption-in-the-water-sector-by-process-2014-2040.
 
ISO 14040. (2006). Environmental management d Life cycle assessment d Principles and framework. Available at https://www.iso.org/standard/37456.html.
 

Kampschreur, M. J., van der Star, W. R. L., Wielders, H. A., Mulder, J. W., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2008). Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research, 42, 812–826.

 

Lee, M., Keller, A. A., Chiang, P. C., Den, W., Wang, H., Hou, C. H., Wu, J., Wang, X., & Yan, J. (2017). Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Applied Energy, 205, 589–601.

 

Lenka, S. P., Kah, M., & Padhye, L. P. (2021). A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Research, 199, Article 117187.

 

Lin, Y., Guo, M., Shah, N., & Stuckey, D. C. (2016). Economic and environmental evaluation of nitrogen removal and recovery methods from wastewater. Bioresource Technology, 215, 227–238.

 

Lorenzo-Toja, Y., Vázquez-Rowe, I., Amores, M. J., Termes-Rifé, M., Marín-Navarro, D., Moreira, M. T., & Feijoo, G. (2016). Benchmarking wastewater treatment plants under an eco-efficiency perspective. Science of the Total Environment, 566–567, 468–479.

 

Marchuk, S., Tait, S., Sinha, P., Harris, P., Antille, D. L., & McCabe, B. K. (2023). Biosolids-derived fertilisers: A review of challenges and opportunities. Science of the Total Environment, 875, Article 162555.

 
Mcnamara, G., Phelan, T., Fitzsimons, L., Delaure, Y., Corcoran, B., Doherty, E., & Clifford, E. (2015). Performance metrics in life cycle assessment of wastewater treatment plants; the effect of the choice of functional unit. In Proceedings of 10th South East European Conference on Sustainable Development of Energy, Water and Environment Systems, Dubrovnik, Croatia.
 

Mendoza Beltran, A., Prado, V., Font Vivanco, D., Henriksson, P. J. G., Guinée, J. B., & Heijungs, R. (2018). Quantified uncertainties in comparative life cycle assessment: What can be concluded? Environmental Science & Technology, 52, 2152–2161.

 
Metcalf & Eddy, Inc., Tchobanoglous, G., Burton, F., Tsuchihashi, R., & Stensel, H. D. (2013). Wastewater engineering : Treatment and resource recovery (5th ed.). New York: McGraw-Hill.
 
Ministeria Secretaria General de la Presidencia. (2009). Decreto 4. Reglamento para el manejo de lodos generados en plantas de tratamiento de aguas servidas. Available at: https://www.bcn.cl/leychile/navegar?idNorma¼1007456.
 

Mills, N., Pearce, P., Farrow, J., Thorpe, R. B., & Kirkby, N. F. (2014). Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Management, 34, 185–195.

 

Monteith, H. D., Sahely, H. R., MacLean, H. L., & Bagley, D. M. (2005). A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants. Water Environment Research, 77, 390–403.

 
Nemecek, T., Bengoa, X., Lansche, K., Mouron, P., Rossi, V., & Humbert, S. (2014). In Methodological guidelines for the life cycle inventory of agricultural products. Available at https://ira.agroscope.ch/en-US/publication/34029.
 

Neumann, P., Riquelme, C., Cartes, J., Kuschel-Otárola, M., Hospido, A., & Vidal, G. (2022). Relevance of sludge management practices and substance modeling in LCA for decision-making: A case study in Chile. Journal of Environmental Management, 324, Article 116357.

 

Nguyen, M. K., Hadi, M., Lin, C., Nguyen, H. L., Thai, V. B., Hoang, H. G., Vo, D. V. N., & Tran, H. T. (2022). Microplastics in sewage sludge: Distribution, toxicity, identification methods, and engineered technologies. Chemosphere, 308, Article 136455.

 

Padilla-Rivera, A., Morgan-Sagastume, J. M., & Güereca-Hernández, L. P. (2019). Sustainability assessment of wastewater systems: An environmental and economic approach. Journal of Environmental Protection, 10, 241–259.

 

Paolini, V., Petracchini, F., Segreto, M., Tomassetti, L., Naja, N., & Cecinato, A. (2018). Environmental impact of biogas: A short review of current knowledge. Journal of Environmental Science and Health, Part A, 53, 899–906.

 

Parida, V. K., Saidulu, D., Majumder, A., Srivastava, A., Gupta, B., & Gupta, A. K. (2021). Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives. Journal of Environmental Chemical Engineering, 9, Article 105966.

 

Pasciucco, F., Francini, G., Pecorini, I., Baccioli, A., Lombardi, L., & Ferrari, L. (2023). Valorization of biogas from the anaerobic co-treatment of sewage sludge and organic waste: Life cycle assessment and life cycle costing of different recovery strategies. Journal of Cleaner Production, 401, Article 136762.

 

Raghuvanshi, S., Bhakar, V., Sowmya, C., & Sangwan, K. S. (2017). Waste water treatment plant life cycle assessment: Treatment process to reuse of water. Procedia CIRP, 61, 761–766.

 
Ritche, H., & Roser, M. (2022). Environmental impacts of food production. Our World Data. Available at https://ourworldindata.org/environmental-impacts-of-food.
 
Rodriguez-garcia, G., Molinos, M., Hospido, A., & Moreira, M. T. (2011). Environmental and economic performance of wastewater treatment plants : Comparison between Atlantic and Mediterranean scenarios. Proceedings of the IWA Specialist Conference Water & Industry, Valladolid, Spain.
 

Shiu, H. Y., Lee, M., & Chiueh, P. T. (2017). Water reclamation and sludge recycling scenarios for sustainable resource management in a wastewater treatment plant in Kinmen Islands, Taiwan. Journal of Cleaner Production, 152, 369–378.

 

Stefano, B., Mika, R., Aki, S., Anu, S., & Paola, B. (2021). Mathematical analysis and update of ADM1 model for biomethane production by anaerobic digestion. Fermentation, 7, 237.

 

Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B. J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21–37.

 
The United Nations world water development report 2018: Nature-based solutions for water. (2018). United Nations (UN). Available at https://www.unwater.org/publications/world-water-development-report-2018.
 
UN-Water. (2021). Summary progress update 2021 : SDG 6 – water and sanitation for all. Available at https://www.unwater.org/publications/summary-progress-update-2021-sdg-6-water-and-sanitation-all.
 

Ventura, A. (2022). Transition life cycle assessment: A new method to face ecological transition. Frontiers in Sustainability, 3, Article 801668.

 

Von Sperling, M. (2007). Basic principles of wastewater treatment. UK: IWA Publishing.

 

Wang, X., Liu, J., Ren, N. Q., Yu, H. Q., Lee, D. J., & Guo, X. (2012). Assessment of multiple sustainability demands for wastewater treatment alternatives: A refined evaluation scheme and case study. Environmental Science & Technology, 46, 5542–5549.

 

Wang, X. H., Wang, X., Huppes, G., Heijungs, R., & Ren, N. Q. (2015). Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: Case study of a cool area of China. Journal of Cleaner Production, 94, 278–283.

 

Wei, W., Larrey-Lassalle, P., Faure, T., Dumoulin, N., Roux, P., & Mathias, J. D. (2015). How to conduct a proper sensitivity analysis in life cycle assessment: Taking into account correlations within LCI data and interactions within the LCA calculation model. Environmental Science & Technology, 49, 377–385.

 

Yoshida, H., Mønster, J., & Scheutz, C. (2014). Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant. Water Research, 61, 108–118.

 
Zhang, H. (2017). Using biosolids as a plant nutrient source. Available at https://extension.okstate.edu/fact-sheets/using-biosolids-as-a-plant-nutrient-source.html.
Circular Economy
Article number: 100091
Cite this article:
Furness MF, Bello-Mendoza R, Güereca LP, et al. The biofactories: Quantifying environmental benefits of the wastewater circular economy in Chile using life cycle assessment. Circular Economy, 2024, 3(3): 100091. https://doi.org/10.1016/j.cec.2024.100091

173

Views

3

Crossref

3

Scopus

Altmetrics

Received: 10 December 2023
Revised: 25 April 2024
Accepted: 01 May 2024
Published: 13 June 2024
© 2024 The Author(s).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return