AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Are urbanization, biotic and social factors associated with the song frequency and song entropy attributes of three urban syntopic passerines?

Xhareni Díaz-LezamaaAlejandro Ariel Ríos-Chelénb ( )Jorge Castellanos-AlborescPaula L. Enríquezc ( )
Programa de Posgrado en Ciencias en Recursos Naturales y Desarrollo Rural, El Colegio de la Frontera Sur. Carr. Panamericana y Periférico Sur s/n Barrio Ma. Auxiliadora, 29290. San Cristóbal de Las Casas, Chiapas, Mexico
Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Universidad 1, La Loma Xicohtencatl, Centro, 90000, Tlaxcala, Mexico
Departamento Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Carr. Panamericana y Periférico Sur s/n Barrio Ma. Auxiliadora, 29290 San Cristóbal de Las Casas, Chiapas, Mexico
Show Author Information

Abstract

Urban environments have challenging characteristics for bird acoustic communication. High levels of anthropogenic noise, as well as vegetation structure (e.g., in urban parks), can potentially affect the song frequency characteristics of several bird species. An additional factor such as the abundance of conspecific and heterospecific vocalizing birds may play an important role in determining the structure of bird songs. In this study, we analyzed whether noise levels, vegetation percentage, and abundance of conspecifics and heterospecifics influence the song characteristics of three syntopic songbird species: House Finch (Haemorhous mexicanus), Rufous-collared Sparrow (Zonotrichia capensis), and House Sparrow (Passer domesticus) living in urban sites. We recorded songs of these species and measured the peak frequency and entropy of their songs at 14 sites in the city of San Cristobal de Las Casas, Chiapas, Mexico. We found that the song peak frequency of House Finch and House Sparrow’s songs was negatively related to the vegetation. The peak frequency of neither of the three species correlated with the average noise level. However, the abundances of conspecific and heterospecific were related to the peak frequency of the three species’ songs. The entropy of the House Finch and House Sparrow songs was positively and negatively related, respectively, to noise levels. House Sparrow song entropy was negatively related to the percentage of vegetation. Song entropy of House Finches was negatively associated to conspecific and House Sparrow abundance. Song entropy of Rufous-collared Sparrows was positively related to conspecific abundance. In conclusion, the song peak frequency and song entropy of the three songbird species were differentially related to urban noise, vegetation, and conspecific and heterospecific abundance, suggesting these factors influence bird song characteristics.

References

 

Azar, J.F., Bell, B.D., 2016. Acoustic features within a forest bird community of native and introduced species in New Zealand. Emu 116, 22–31. https://doi.org/10.1071/MU14095.

 
Badyaev, A.V., Belloni, V., Hill, G.E., 2020. House finch (Haemorhous mexicanus), version 1.0. In: Poole, A.F. (Ed.), Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.houfin.01.
 

Barker, N.K., 2008. Bird song structure and transmission in the Neotropics: trends, methods and future directions. Ornitol. Neotrop. 19, 175–199.

 

Benedict, L., Warning, N., 2017. Rock wrens preferentially use song types that improve long distance signal transmission during natural singing bouts. J. Avian Biol. 48, 1254–1262.

 

Berigan, L.A., Greig, E.I., Bonter, D.N., 2020. Urban house sparrow (Passer domesticus) populations decline in North America. Wilson J. Ornithol. 132, 248–258. https://doi.org/10.1676/1559-4491-132.2.248.

 

Bermúdez-Cuamatzin, E., Ríos-Chelén, A., Gil, D., Garcia, C.M., 2009. Strategies of song adaptation to urban noise in the house finch: syllable pitch plasticity or differential syllable use? Behaviour 146, 1269–1286. https://doi.org/10.1163/156853909X423104.

 

Bermúdez-Cuamatzin, E., Ríos-Chelén, A., Gil, D., Garcia, C.M., 2010. Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biol. Lett. 7, 36–38.

 

Boncoraglio, G., Saino, N., 2007. Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. Funct. Ecol. 21, 134–142.

 

Brumm, H., 2004. The impact of environmental noise on song amplitude in a territorial bird. J. Anim. Ecol. 73, 434–440. https://doi.org/10.1111/j.0021-8790.2004.00814.x.

 

Cadena-Ortiz, H., 2018. Anidación del gorrionx criollo Zonotrichia capensis (Emberizidae) en Quito, Ecuador. Rev. Ecuat. Ornit. 3, 10–15. https://doi.org/10.18272/reo.v0i3.748.

 

Cardoso, G.C., Price, T.D., 2010. Community convergence in bird song. Evol. Ecol. 24, 447–461.

 

Catchpole, C.K., Slater, P.J.B., 2008. Bird Song Biological Themes and Variations, second ed. Cambridge University Press, New York.

 

Chavez-Mendoza, N.E., José-Ramírez, S., Ríos-Chelén, A.A., 2023. Evidence that traffic noise increases territorial response in vermilion flycatchers. Front. Ecol. Evol. 11, 1175732. https://doi.org/10.3389/fevo.2023.1175732.

 

Colino-Rabanal, V.J., Mendes, S., Peris, S.J., Pescador, M., 2016. Does the song of the wren Troglodytes troglodytes change with different environmental sounds? Acta Ornith. 51, 13–22. https://doi.org/10.3161/00016454AO2016.51.1.002.

 

de Kort, S.R., Porcedda, G., Slabbekoorn, H., Mossman, H.L., Sierro, J., Hartley, I.R., 2024. Noise impairs the perception of song performance in blue tits and increases territorial response. Anim. Behav. 215, 131–141.

 

Deoniziak, K., Osiejuk, T.S., 2021. Seasonality and social factors, but not noise pollution, influence the song characteristics of two leaf warbler species. PLoS One 16, e0257074.

 

Dorado-Correa, A., Rodríguez-Rocha, M., Brumm, H., 2016. Anthropogenic noise, but not artificial light levels predicts song behaviour in an equatorial bird. R. Soc. Open Sci. 3, 160231. https://doi.org/10.1098/rsos.160231.

 

Doutrelant, C., Leitao, A., Otter, K., Lambrechts, M.M., 2000. Effect of blue tit song syntax on great tit territorial responsiveness – an experimental test of the character shift hypothesis. Behav. Ecol. Sociobiol. 48, 119–124.

 

Ey, E., Fischer, J., 2009. The "acoustic adaptation hypothesis"—a review of the evidence from birds, anurans, and mammals. Bioacoustics 19, 21–48. https://doi.org/10.1080/09524622.2009.9753613.

 

Furutani, A., Mori, C., Okanoya, K., 2018. Trill-calls in Java sparrows: repetition rate determines the category of acoustically similar calls in different behavioral contexts. Behav. Process. 157, 68–72.

 
Gil, D., Brumm, H., 2014. Acoustic communication in the urban environment: patterns, mechanisms, and potential consequences of avian song adjustments. In: Gil, D., Brumm, H. (Eds.), Avian Urban Ecology: Behavioural and Physiological Adaptations. Oxford University Press, United Kingdom, pp. 69–70.
 

Grabarczyk, E.E., Gill, S.A., 2019. Anthropogenic noise affects male house wren response to but not detection of territorial intruders. PLoS One 14, e0220576.

 

Grabarczyk, E.E., Gill, S.A., 2020. Anthropogenic noise masking diminishes house wren (Troglodytes aedon) song transmission in urban natural areas. Bioacoustics 29, 518–532. https://doi.org/10.1080/09524622.2019.1621209.

 

Grabarczyk, E.E., Vonhof, M.J., Gill, S.A., 2020. Social context and noise affect within and between male song adjustments in a common passerine. Behav. Ecol. 315, 1150–1158.

 

Groffman, P.M., Cavender-Bares, J., Bettez, N.D., Grove, J.M., Hall, S.J., Heffernan, J.B., et al., 2014. Ecological homogenization of urban USA. Front. Ecol. Environ. 12, 74–81.

 

Haavie, J., Borge, T., Bures, S., Garamszegi, L.Z., Lampe, H.M., Moreno, J., et al., 2004. Flycatcher song in allopatry and sympatry – convergence, divergence, and reinforcement. J. Evol. Biol. 17, 227–237.

 

Halfwerk, W., Bot, S., Buikx, J., van der Velde, M., Komdeur, J., ten Cate, C., et al., 2011a. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. USA 108, 14549–14554. https://doi.org/10.1073/pnas.1109091108.

 

Halfwerk, W., Holleman, L.J.M., Lessells, C.M., Slabbekoorn, H., 2011b. Negative impact of traffic noise on avian reproductive success. J. Appl. Ecol. 48, 210–219.

 

Hanford, P., Lougheed, S.C., 1991. Variation in duration and frequency characters in the song of the Rufous-collared sparrow, Zonotrichia capensis, with respect to habitat, trill dialects and body size. Condor 93, 644–658.

 

Hanna, D., Blouin-Demers, G., Wilson, D.R., Mennill, D.J., 2011. Anthropogenic noise affects song structure in red-winged blackbirds (Agelaius phoeniceus). J. Exp. Biol. 214, 3549–3556.

 

Hansen, P., 1979. Vocal learning: its role in adapting sound structures to long-distance propagation and a hypothesis on its evolution. Anim. Behav. 27, 1270–1271. https://doi.org/10.1016/0003-3472(79)90073-3.

 

Hart, K.M., Iverson, A.R., Fujisaki, I., Lamont, M.M., Bucklin, D., Shaver, D.J., 2018. Sympatry or syntopy? Investigating drivers of distribution and co-occurrence for two imperiled sea turtle species in Gulf of Mexico neritic waters. Ecol. Evol. 8, 12656–12669. https://doi.org/10.1002/ece3.4691.

 

Hu, Y., Cardoso, G.C., 2009. Are bird species that vocalize at higher frequencies preadapted to inhabit noisy urban areas? Behav. Ecol. 20, 1268–1273. https://doi.org/10.1093/beheco/arp131.

 

Hutto, R.L., Stutzman, R.J., 2009. Humans versus autonomous recording units: a comparison of point-count results. J. Field Ornithol. 80, 387–398. https://doi.org/10.1111/j.1557-9263.2009.00245.x.

 
IBM Corp., 2021. IBM SPSS Statistics for Windows (Version 28.0). IBM Corp, Armonk, NY.
 
INEGI, 2017. Anuario Estadístico y Geográficox de Chiapas 2017. Instituto Nacional de Estadística y Geografía. INEGI, México.
 

Job, J.R., Kohler, S.L., Gill, S.A., 2016. Song adjustments by an open habitat bird to anthropogenic noise, urban structure, and vegetation. Behav. Ecol. 27, 1734–1744. https://doi.org/10.1093/beheco/arw105.

 

Kennedy, A.G., Ahmad, A.H., Klinck, H., Johnson, L.M., Clink, D.J., 2023. Evidence for acoustic niche partitioning depends on the temporal scale in two sympatric Bornean hornbill species. Biotropica 55, 517–528. https://doi.org/10.1111/btp.13205.

 

King, J.R., 1972. Notes on geographical variation and the annual cycle in Patagonian populations of the Rufous-collared Sparrow Zonotrichia capensis. Ibis 116, 74–83.

 

Kirschel, A.N.G., Blumstein, D.T., Smith, T.B., 2009. Character displacement of song and morphology in African tinkerbirds. Proc. Natl. Acad. Sci. USA 106, 8256–8261. https://doi.org/10.1073/pnas.0810124106.

 

Kleist, N.J., Guralnick, R.P., Cruz, A., Francis, C.D., 2016. Anthropogenic noise weakens territorial response to intruder’s songs. Ecosphere 7, e01259.

 

Konishi, M., 1970. Evolution of design features in the coding of species-specificity. Am. Zool. 10, 67–72.

 

Krause, B., 1993. The Niche Hypothesis: a virtual symphony of animal sounds, the origins of musical expression and the health of habitats. Soundscape Newslett. 6, 1–5.

 

Laiolo, P., 2011. The rufous-collared sparrow Zonotrichia capensis utters higher frequency songs in urban habitats. Rev. Cat. Ornitol. 27, 25–30.

 

LaZerte, S.E., Otter, K.A., Slabbekoorn, H., 2015. Relative effects of ambient noise and habitat openness on signal transfer for chickadee vocalizations in rural and urban green-spaces. Bioacoustics 24, 233–252. https://doi.org/10.1080/09524622.2015.1060531.

 

Lohr, B., Wright, T.F., Dooling, R.J., 2003. Detection and discrimination of natural calls in masking noise by birds: estimating the active space of a signal. Anim. Behav. 65, 763–777.

 
Lowther, P.E., Cink, C.L., 2020. House sparrow (Passer domesticus), version 1.0. In: Billerman, S.M. (Ed.), Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.houspa.01.
 

Luther, D., 2009. The influence of the acoustic community on songs of birds in a neotropical rain forest. Behav. Ecol. 20, 864–871. https://doi.org/10.1093/beheco/arp074.

 

Luther, D.A., Wiley, R.H., 2009. Production and perception of communicatory signals in a noisy environment. Biol. Lett. 5, 183–187. https://doi.org/10.1098/rsbl.2008.0733.

 

McGillivray, W.B., 1980. Nest grouping and productivity in the house sparrow. Auk 97, 396–399.

 

McKinney, M.L., 2006. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260. https://doi.org/10.1016/j.biocon.2005.09.005.

 

Menacho, K., Salinas, L., Arana, C., 2018. Diet overlap of the invasive house sparrow and the native rufous-collared sparrow in an agroecosystem of central coast of Peru. Rev. Peru. Biol. 25, 111–116.

 

Mendes, S., Colino-Rabanal, V.J., Peris, S.J., 2011. Changes in the vocalization of the Southern House Wren (Troglodytes musculus) in environments with different levels of human disturbance. Hornero 26, 85–93.

 

Mendes, S., Colino-Rabanal, V.J., Peris, S.J., 2017. Adaptación acústica del canto de turdus leucomelas (Passeriformes: Turdidae) a diferentes niveles de ruido antrópico, en el área metropolitana de Belém, Pará, Brasil. Rev. Biol. Trop. 65, 633–642. https://doi.org/10.15517/rbt.v65i2.25721.

 

Mennill, D., Badyaev, A., Jonart, L.M., Hill, G.E., 2006. Male house finches with elaborate songs have higher reproductive performance. Ethology 112, 174–180. https://doi.org/10.1111/j.1439-0310.2006.01145.x.

 

Mikula, P., Valcu, M., Brumm, H., Bulla, M., Forstmeier, W., Petrusková, T., et al., 2021. A global analysis of song frequency in passerines provides no support for the acoustic adaptation hypothesis but suggests a role for sexual selection. Ecol. Lett. 24, 477–486. https://doi.org/10.1111/ele.13662.

 

Morton, E.S., 1975. Ecological sources of selection on avian sounds. Am. Nat. 109, 17–34.

 

Murgui, E., Macías, A., 2010. Changes in the house sparrow Passer domesticus population in Valencia (Spain) from 1998 to 2008. Hous. Theor. Soc. 5, 281–288. https://doi.org/10.1080/00063651003716762.

 

Nemeth, E., Brumm, H., 2009. Blackbirds sing higher-pitched songs in cities: adaptation to habitat acoustics or side-effect of urbanization? Anim. Behav. 78, 637–641.

 

Nemeth, E., Brumm, H., 2010. Birds and anthropogenic noise: are urban songs adaptive? Am. Nat. 176, 465–475.

 

Nemeth, E., Pieretti, N., Zollinger, S.A., Geberzahn, N., Partecke, J., Miranda, A.C., et al., 2013. Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities. Proc. R. Soc. B 280, 20122798. https://doi.org/10.1098/rspb.2012.2798.

 

Nicholls, J., Goldizen, A., 2006. Habitat type and density influence vocal signal design in satin bowerbirds. J. Anim. Ecol. 75, 549–558. https://doi.org/10.1111/j.1365-2656.2006.01075.x.

 

Nolan, P.M., Hill, G.E., 2004. Female choice for song characteristics in the house finch. Anim. Behav. 67, 403–410.

 

Nottebohm, F., 1975. Continental patterns of song variability in Zonotrichia capensis: some possible ecological correlates. Am. Nat. 109, 605–624.

 

Patricelli, G.L., Blickley, J.L., 2006. Avian communication in urban noise: causes and consequences of vocal adjustment. Auk 123, 639–649. https://doi.org/10.1093/auk/123.3.639.

 

Phillips, J.N., Derryberry, E.P., 2018. Urban sparrows respond to a sexually selected trait with increased aggression in noise. Sci. Rep. 8, 7505.

 

Potvin, D.A., Mulder, R.A., Parris, K.M., 2014. Silvereyes decrease acoustic frequency but increase efficacy of alarm calls in urban noise. Anim. Behav. 98, 27–33.

 

Rhodes, M., Ryder, B., Evans, B., To, J., Neslund, E., Will, C., et al., 2023. The effects of anthropogenic noise and urban habitats on song structure in a vocal mimic; the gray catbird (Dumetella carolinensis) sings higher frequencies in noisier habitats. Front. Ecol. Evol. 11, 1252632. https://doi.org/10.3389/fevo.2023.1252632.

 

Ríos-Chelén, A.A., 2009. Bird song: the interplay between urban noise and sexual selection. Oecol. Aust. 13, 153–164.

 

Sandoval, L., Barrantes, G., Wilson, D., 2018. Conceptual and statistical problems with the use of the Shannon-Weiner entropy index in bioacoustic analyses. Bioacoustics 28, 297–311.

 

Shannon, C.E., Weaver, W., 1964. The Mathematical Theory of Communication. The University of Illinois Press, IL USA.

 

Slabbekoorn, H., den Boer-Visser, A., 2006. Cities change the songs of birds. Curr. Biol. 16, 2326–2331. https://doi.org/10.1016/j.cub.2006.10.008.

 

Slabbekoorn, H., Yeh, P., Hunt, K., 2007. Sound transmission and song divergence: a comparison of urban and forest acoustics. Condor 109, 67–78. https://doi.org/10.1093/condor/109.1.67.

 

Swaddle, J.P., Page, L.C., 2007. High levels of environmental noise erode pair preferences in zebra finches: implications for noise pollution. Anim. Behav. 74, 363–368.

 

Templeton, C.N., Zollinger, S.A., Brumm, H., 2016. Traffic noise drowns out great tit alarm calls. Curr. Biol. 26, R1167–R1176. https://doi.org/10.1016/j.cub.2016.09.058.

 

Tobias, J.A., Sheard, C., Seddon, N., Meade, A., Cotton, A.J., Nakagawa, S., 2016. Territoriality, social bonds, and the evolution of communal signaling in birds. Front. Ecol. Evol. 4, 74. https://doi.org/10.3389/fevo.2016.00074.

 

Tubaro, P., Segura, E., 1994. Dialect differences in the song of Zonotrichia capensis in the southern Pampas: a test of the acoustic adaptation hypothesis. Condor 96, 1084–1088. https://doi.org/10.2307/1369117.

 
United Nations Educational Scientific and Cultural Organization (UNESCO), 2006. Universal Declaration on Bioethics and Human Rights, p. 12. http://portal.unesco.org/shs/en/filedownload.php/46133eIf469Ie4c6e575667634BioethicsDeclarationEN.pdf.
 

Walters, M.J., Guralnick, R.P., Kleist, N.J., Robinson, S.K., 2019. Urban background noise affects breeding song frequency and syllable-type composition in the Northern Mockingbird. Condor 121, duz002. https://doi.org/10.1093/condor/duz002.

 

Winandy, G.S.M., Félix, R., Sacramento, R.A., Mascarenhas, R., Batalha-Filho, H., Japyassú, H.F., et al., 2021. Urban noise restricts song frequency bandwidth and syllable diversity in bananaquits: increasing audibility at the expense of signal quality. Front. Ecol. Evol. 9, 570420. https://doi.org/10.3389/fevo.2021.570420.

 

Wolfenden, A.D., Slabbekoorn, H., Kluk, K., de Kort, S.E., 2019. Aircraft sound exposure leads to song frequency decline and elevated aggression in wild chiffchaffs. J. Anim. Ecol. 88, 1720–1731. https://doi.org/10.1111/1365-2656.13059.

Avian Research
Cite this article:
Díaz-Lezama X, Ríos-Chelén AA, Castellanos-Albores J, et al. Are urbanization, biotic and social factors associated with the song frequency and song entropy attributes of three urban syntopic passerines?. Avian Research, 2025, 16(1). https://doi.org/10.1016/j.avrs.2024.100219

141

Views

13

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 09 May 2024
Revised: 27 November 2024
Accepted: 03 December 2024
Published: 06 December 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return