Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Avian extinctions have been relatively well documented in modern history, and in the past millennia, more bird species are known to have gone extinct than species in any other vertebrate class. We examined the biological correlates of extinction timing among 216 bird species that recently were either observed to go extinct or disappeared since 1500 CE, performing a novel analysis for examining the extinction trends of birds by modelling traits against the number of years since present day during which species have been extinct. We analyzed a broad range of traits and characteristics that have previously been associated with extinction and extinction risk in birds and compared the effects of these traits simultaneously against one another. In order to provide a more comprehensive and robust assessment of trait-based drivers of global bird loss in comparison to prior studies, we included extinct species recognized by any of the three major avian taxonomies as well as those birds that lack recent confirmed sightings and are at least functionally extinct. We found that insular, flightless, larger-bodied, ecologically specialized species, as well as those with high aspect ratio wings, were likely to go extinct earlier in time. Besides identifying the key locations and time periods over the past five centuries where birds have gone extinct, and highlighting specific extinction-prone taxonomic groups, we provide a complete and unified dataset of traits used in this study that helps address the lack of extensive public data on modern extinct species.
Andermann, T., Faurby, S., Cooke, R., Silvestro, D., Antonelli, A., 2021. iucn_sim: a new program to simulate future extinctions based on IUCN threat status. Ecography 44, 162-176.
Bellard, C., Cassey, P., Blackburn, T.M., 2016. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623.
Bennett, P.M., Owens, I.P.F., 1997. Variation in extinction risk among birds: chance or evolutionary predisposition? Proc. R. Soc. B 264, 401-408.
Berio Fortini, L., Kaiser, L.R., LaPointe, D.A., 2020. Fostering real-time climate adaptation: analyzing past, current, and forecast temperature to understand the dynamic risk to Hawaiian honeycreepers from avian malaria. Global Ecol. Conserv. 23, e01069.
Bird, J.P., Martin, R., Akçakaya, H.R., Gilroy, J., Burfield, I.J., Garnett, S.T., et al., 2020. Generation lengths of the world's birds and their implications for extinction risk. Conserv. Biol. 34, 1252-1261.
Blackburn, T.M., Cassey, P., Duncan, R.P., Evans, K.L., Gaston, K.J., 2004. Avian extinction and mammalian introductions on Oceanic Islands. Science 305, 1955-1958.
Boyer, A.G., 2008. Extinction patterns in the avifauna of the Hawaiian islands. Divers. Distrib. 14, 509-517.
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., et al., 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9, 378.
Cade, B.S., 2015. Model averaging and muddled multimodel inferences. Ecology 96, 2370-2382.
Callaghan, C.T., Benedetti, Y., Wilshire, J.H., Morelli, F., 2020. Avian trait specialization is negatively associated with urban tolerance. Oikos 129, 1541-1551.
Ceballos, G., Ehrlich, P.R., 2018. The misunderstood sixth mass extinction. Science 360, 1080-1081.
Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M., Palmer, T.M., 2015. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, 9-13.
Ceballos, G., Ehrlich, P.R., Raven, P.H., 2020. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. P. Natl. Acad. Sci. USA 117, 13596-13602.
Cooke, R., Sayol, F., Andermann, T., Blackburn, T.M., Steinbauer, M.J., Antonelli, A., et al., 2023. Undiscovered bird extinctions obscure the true magnitude of human-driven extinction waves. Nat. Commun. 14, 8116.
Cowie, R.H., Bouchet, P., Fontaine, B., 2022. The Sixth Mass Extinction: fact, fiction or speculation? Biol. Rev. 97, 640-663.
Curnutt, J., Pimm, S.L., 2001. How many bird species in Hawaii and the Central Pacific before first contact? Stud. Avian Biol. 22, 15-30.
Davies, K.F., Margules, C.R., Lawrence, J.F., 2004. A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85, 265-271.
Duncan, R.P., Boyer, A.G., Blackburn, T.M., 2013. Magnitude and variation of prehistoric bird extinctions in the Pacific. P. Natl. Acad. Sci. USA 110, 6436-6441.
Fromm, A., Meiri, S., 2021. Big, flightless, insular and dead: characterising the extinct birds of the Quaternary. J. Biogeogr. 48, 2350-2359.
Gallerani, E.M., Burgett, J., Vaughn, N., Berio Fortini, L., Fricker, G.A., Mounce, H., et al., 2023. High resolution lidar data shed light on inter‐island translocation of endangered bird species in the Hawaiian Islands. Ecol. Appl. 33, e2889.
Gaston, K.J., Blackburn, T.M., 1995. Birds, body size and the threat of extinction. Phil. Trans. Roy. Soc. Lond. B 347, 205-212.
Harrison, X.A., Donaldson, L., Correa-Cano, M.E., Evans, J., Fisher, D.N., Goodwin, C.E.D., et al., 2018. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794.
Henle, K., Davies, K.F., Kleyer, M., Margules, C., Settele, J., 2004. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207-251.
Judge, S.W., Warren, C.C., Camp, R.J., Berthold, L.K., Mounce, H.L., Hart, P.J., et al., 2021. Population estimates and trends of three Maui Island‐endemic Hawaiian Honeycreepers. J. Field Ornithol. 92, 115-126.
Kaushik, M., Pejchar, L., Crampton, L.H., 2018. Potential disruption of seed dispersal in the absence of a native Kauai thrush. PLoS One 13, e0191992.
Kirchman, J.J., 2012. Speciation of flightless rails on islands: a DNA-based phylogeny of the typical rails of the Pacific. Auk 129, 56-69.
Kittelberger, K.D., Neate-Clegg, M.H.C., Blount, J.D., Posa, M.R.C., McLaughlin, J., Şekercioğlu, C.H., 2021. Biological correlates of extinction risk in resident Philippine avifauna. Front. Ecol. Evol. 9, 358.
Lévêque, L., Buettel, J.C., Carver, S., Brook, B.W., 2021. Characterizing the spatio-temporal threats, conservation hotspots and conservation gaps for the most extinction-prone bird family (Aves: Rallidae). R. Soc. Open Sci. 8, 210262.
Lovette, I.J., 2008. Convergent evolution: raising a family from the dead. Curr. Biol. 18, R1132-R1134.
Marino, C., Leclerc, C., Bellard, C., 2022. Profiling insular vertebrates prone to biological invasions: what makes them vulnerable? Global Change Biol. 28, 1077-1090.
Matthews, T.J., Wayman, J.P., Cardoso, P., Sayol, F., Hume, J.P., Ulrich, W., et al., 2022. Threatened and extinct island endemic birds of the world: distribution, threats and functional diversity. J. Biogeogr. 49, 1920-1940.
Mazerolle, M., 2020. AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2, 3.
Monroe, M.J., Butchart, S.H.M., Mooers, A.O., Bokma, F., 2019. The dynamics underlying avian extinction trajectories forecast a wave of extinctions. Biol. Lett. 15, 20190633.
Moore, R.P., Robinson, W.D., Lovette, I.J., Robinson, T.R., 2008. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960-968.
Neate-Clegg, M.H.C., Tonelli, B.A., Youngflesh, C., Wu, J.X., Montgomery, G.A., Şekercioğlu, Ç. H., et al., 2023. Traits shaping urban tolerance in birds differ around the world. Curr. Biol. 33, 1677-1688.
Neate‐Clegg, M.H.C., Blount, J.D., Şekercioğlu, Ç. H., 2021. Ecological and biogeographical predictors of taxonomic discord across the world's birds. Global Ecol. Biogeogr. 30, 1258-1270.
Neddermeyer, J.H., Parise, K.L., Dittmar, E., Kilpatrick, A.M., Foster, J.T., 2023. Nowhere to fly: avian malaria is ubiquitous from ocean to summit on a Hawaiian island. Biol. Conserv. 279, 109943.
Norris, K., Harper, N., 2004. Extinction processes in hot spots of avian biodiversity and the targeting of pre–emptive conservation action. Proc. R. Soc. B 271, 123-130.
Olson, V.A., Davies, R.G., Orme, C.D.L., Thomas, G.H., Meiri, S., Blackburn, T.M., et al., 2009. Global biogeography and ecology of body size in birds. Ecol. Lett. 12, 249-259.
Ong, S., 2023. This bird survived Maui's fires—but it could soon vanish. Natl. Geogr. .
Pimm, S., Raven, P., Peterson, A., Şekercioǧlu, Ç. H., Ehrlich, P.R., 2006. Human impacts on the rates of recent, present, and future bird extinctions. P. Natl. Acad. Sci. USA 103, 10941-10946.
Richards, C., Cooke, R.S.C., Bates, A.E., 2021. Biological traits of seabirds predict extinction risk and vulnerability to anthropogenic threats. Global Ecol. Biogeogr. 30, 973-986.
Rivas-Salvador, J., Reif, J., 2023. Species-specific traits affect bird species' susceptibility to global change. Sci. Nat. 110, 54.
Sayol, F., Cooke, R.S.C., Pigot, A.L., Blackburn, T.M., Tobias, J.A., Steinbauer, M.J., et al., 2021. Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions. Sci. Adv. 7, eabj5790.
Sayol, F., Steinbauer, M.J., Blackburn, T.M., Antonelli, A., Faurby, S., 2020. Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. Sci. Adv. 6, eabb6095.
Şekercioğlu, Ç. H., 2011. Functional extinctions of bird pollinators cause plant declines. Science 331, 1019-1020.
Şekercioğlu, Ç. H., Daily, G.C., Ehrlich, P.R., 2004. Ecosystem consequences of bird declines. P. Natl. Acad. Sci. USA 101, 18042-18047.
Şekercioğlu, Ç. H., Mendenhall, C.D., Oviedo-Brenes, F., Horns, J.J., Ehrlich, P.R., Daily, G.C., 2019. Long-term declines in bird populations in tropical agricultural countryside. P. Natl. Acad. Sci. USA 116, 9903-9912.
Şekercioğlu, Ç. H., Schneider, S.H., Fay, J.P., Loarie, S.R., 2008. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140-150.
Şekercioğlu, Ç. H., Sodhi, N.S., 2007. Conservation biology: predicting birds' responses to forest fragmentation. Curr. Biol. 17, R838-R840.
Sheard, C., Neate-Clegg, M.H.C., Alioravainen, N., Jones, S.E.I., Vincent, C., MacGregor, H.E.A., et al., 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463.
Soares, F., De Lima, R.F., Rodrigues, A., Cardoso, P., Matthews, T.J., Palmeirim, J., 2024. Patterns and drivers of taxonomic and functional changes in oceanic island bird assemblages. Global Ecol. Biogeogr. 33, e13902.
Spatz, D.R., Zilliacus, K.M., Holmes, N.D., Butchart, S.H.M., Genovesi, P., Ceballos, G., et al., 2017. Globally threatened vertebrates on islands with invasive species. Sci. Adv. 3, e1603080.
Szabo, J.K., Khwaja, N., Garnett, S.T., Butchart, S.H.M., 2012. Global patterns and drivers of avian extinctions at the species and subspecies level. PLoS One 7, e47080.
Thomson, S.A., Thiele, K., Conix, S., Christidis, L., Costello, M.J., Hobern, D., et al., 2021. Towards a global list of accepted species II. Consequences of inadequate taxonomic list governance. Org. Divers. Evol. 21, 623-630.
Tobias, J.A., Sheard, C., Pigot, A.L., Devenish, A.J.M., Yang, J., Sayol, F., et al., 2022. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581-597.
Wang, Y., Si, X., Bennett, P.M., Chen, C., Zeng, D., Zhao, Y., et al., 2018. Ecological correlates of extinction risk in Chinese birds. Ecography 41, 782-794.
Wang, Y., Thornton, D.H., Ge, D., Wang, S., Ding, P., 2015. Ecological correlates of vulnerability to fragmentation in forest birds on inundated subtropical land-bridge islands. Biol. Conserv. 191, 251-257.
van Weerd, M., Strijk, J., Snelder, D., 2003. The Importance of Forest Fragments for Birds and Local Communities in Northeast Luzon, Philippines. Sylvatrop Tech. J. Philippine Ecosyst. Nat. Resour. 13, 1-30.
Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3-14.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Comments on this article