AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Variation of parental and chick diet in opportunistic insectivorous European Bee-eaters

Joana S. Costaa,b( )Steffen HahncJosé A. Alvesa,d
Department of Biology and CESAM – Centre for Environmental and Marine Studies, University of Aveiro, Portugal
Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
Laboratory of Ornithology, University of Latvia, Institute of Biology, Riga, Latvia
South Iceland Research Centre, University of Iceland, Laugarvatn, Iceland
Show Author Information

Abstract

Insectivorous Palaearctic bird species associated with open habitats rely on high prey abundances, which are currently declining due to habitat loss and intensive agricultural practices. The European Bee-eater (Merops apiaster) is an opportunistic insectivore of open habitats, preying mainly on medium to large-sized flying insects. Its diet composition received some attention in the past, but the current variation in diet composition of birds breeding across different habitats, and between adults and chicks remains poorly known. In this study, we determine variation in bee-eaters’ diet in colonies located in five common habitats at the Iberian Peninsula. We also assess differences in the diet composition of chicks and adults and investigate seasonal diet selectivity of adults. Finally, we explore the variability in the size of prey provided to chicks throughout their growth period. Hymenoptera and Coleoptera were the most important groups for bee-eaters, with adults and chicks consuming 58.8% and 64.1% of hymenopterans and 37.6% and 28.6% of coleopterans, respectively. The proportion of Hymenoptera (42.3–55.7%) and Coleoptera (43.3–53.5%) in the diet was similar in colonies in pasture and oak habitats, but Hymenoptera dominated (83.8% and 95.7%) in meadow and mixed forest colonies. Despite being a generally opportunistic predator, adult bee-eaters provide their progeny with an increasing proportion of larger insects through chick development. Moreover, they equally take Hymenoptera and Coleoptera for themselves and their chicks, even when the abundance of these insects decreases seasonally. Overall, these results suggest that local prey availability associated with specific habitats influences diet composition and that regional declines in certain groups may, therefore, affect insectivore species differently according to their dietary and habitat preferences.

References

 

Aissaoui-Marniche, F., Doumandji, S., Baziz, B., Sekour, M., 2007. Régime alimentaire du guêpier d'Europe Merops apiaster dans la réserve naturelle de Mergueb (M'Sila) Algérie. Alauda 75, 319–322.

 

Arbeiter, S., Schnepel, H., Uhlenhaut, K., Bloege, Y., Schijlze, M., Hahn, S., 2014. Seasonal shift in the diet composition of European Bee-eaters Merops apiaster at the northern edge of distribution. ARDEOLA 61, 161–170.

 

Arbeiter, S., Schulze, M., Tamm, P., Hahn, S., 2016. Strong cascading effect of weather conditions on prey availability and annual breeding performance in European bee-eaters Merops apiaster. J. Ornithol. 157, 155–163.

 

Attwood, S.J., Maron, M., House, A.P.N., Zammit, C., 2008. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Global Ecol. Biogeogr. 17, 585–599.

 

Avery, M.I., Krebs, J.R., Houston, A.I., 1988. Economics of courtship-feeding in the European bee-eater (Merops apiaster). Behav. Ecol. Sociobiol. 23, 61–67.

 

Barbero, E., Palestrini, C., Rolando, A., 1999. Dung beetle conservation: effects of habitat and resource selection (Coleoptera: scarabaeoidea). J. Insect Conserv. 3, 75–84.

 

Bastian, H., Bastian, A., 2023. Specialist or opportunist—the diet of the European bee-eater (Merops apiaster). J. Ornithol. 164, 729–747.

 

Bellavance, V., Bélisle, M., Savage, J., Pelletier, F., Garant, D., 2018. Influence of agricultural intensification on prey availability and nestling diet in Tree Swallows (Tachycineta bicolor). Canadian 96, 1053–1065.

 

Blazyte-Cereskiene, L., Vaitkeviciene, G., Venskutonyte, S., Buda, V., 2010. Honey bee foraging in spring oilseed rape crops under high ambient temperature conditions. Zemdirbyste-Agr. 97, 61–70.

 

Buelow, C.A., Reside, A.E., Baker, R., Sheaves, M., 2018. Stable isotopes reveal opportunistic foraging in a spatiotemporally heterogeneous environment: bird assemblages in mangrove forests. PLoS One 13, e0206145.

 

Chinery, M., 2007. Insects of Britain and Western Europe. A&C Black, London.

 
Christof, A., 1990. Le Guêpier d’Europe, Point Vété.
 

Chown, L.S., Nicolson, S.W., 2004. Insect Physiological Ecology, Mechanisms and Patterns. Oxford University Press, New York.

 

Costa, J.S., Rocha, A.D., Correia, R.A., Alves, J.A., 2020a. Developing and validating a nestling photographic aging guide for cavity-nesting birds: an example with the European Bee-eater (Merops apiaster). Avian Res. 11, 2.

 

Costa, J.S., Hahn, S., Rocha, A.D., Araújo, P.M., Olano-Marín, J., Emmenegger, T., et al., 2020b. The discriminant power of biometrics for sex determination in European bee-eaters Merops apiaster. Hous. Theor. Soc. 67, 19–28.

 

Costa, L., 1991. Apiculture and the diet of breeding European Bee-eater Merops apiaster. Airo 2, 34–42.

 

da Silva, P.M., Aguiar, C.A.S., Niemelä, J., Sousa, J.P., Serrano, A.R.M., 2008. Diversity patterns of ground-beetles (Coleoptera: Carabidae) along a gradient of land-use disturbance. Agric. Ecosyst. Environ. 124, 270–274.

 

Di Maggio, R., Campobello, D., Sarà, M., 2018. Lesser kestrel diet and agricultural intensification in the Mediterranean: an unexpected win-win solution? J. Nat. Conserv. 45, 122–130.

 

Duijns, S., Hidayati, N.A., Piersma, T., 2013. Bar-tailed Godwits Limosa l. lapponica eat polychaete worms wherever they winter in Europe. Hous. Theor. Soc. 60, 509–517.

 

Farinós-Celdrán, P., Zapata, V.M., Martínez-López, V., Robledano, F., 2016. Consumption of honey bees by Merops apiaster Linnaeus, 1758 (Aves: meropidae) in Mediterranean semiarid landscapes: a threat to beekeeping? J. Apicult. Res. 55, 193–201.

 
Finch, T., 2016. Conservation Ecology of the European Roller. PhD Thesis.. School of Biological Sciences, University of East Anglia, UK.
 
Fry, C.H., 1984. The Bee-Eaters. T & A D Polyser Ltd, Calton.
 

Fuisz, T.I., Vas, Z., Túri, K., Kőrösi, Á., 2013. Photographic survey of the prey-choice of European Bee-eaters (Merops apiaster Linnaeus, 1758) in Hungary at three colonies. Ornis Hung. 21, 38–46.

 

Galeotti, P., Inglisa, M., 2001. Estimating predation impact on Honeybees (Apis mellifera) by European bee-eaters (Merops apiaster). Rev. Écol. 56, 373–388.

 

Grüebler, M.U., Morand, M., Naef-Daenzer, B., 2008. A predictive model of the density of airborne insects in agricultural environments. Agric. Ecosyst. Environ. 123, 75–80.

 

Grun, B., Kosmidis, I., Zeileis, A., 2012. Extended beta regression in R: shaken, stirred, mixed and partitioned. J. Stat. Software 48, 1–25.

 

Haddad, N.M., Tilman, D., Haarstad, J., Ritchie, M., Knops, J.M.H., 2001. Contrasting effects of plant richness and composition on insect communities: a field experiment. Am. Nat. 158, 17–35.

 

Herrera, C.M., Ramirez, A., 1974. Food of bee-eaters in southern Spain. Br. Birds 67, 158–164.

 

Inglisa, M., Galleotti, P., 1993. Daily activity at nests of the European Bee-eaters (Merops apiaster). Ethol. Ecol. Evol. 5, 107–114.

 

Inglisa, M., Galeotti, P., Vigna Taglianti, A., 1993. The diet of a coastal population of European bee-eaters (Merops apiaster) compared to prey availability (Tuscany, central Italy). Boll. Zool. 60, 307–310.

 

Jacobs, J., 1974. Quantitative measurement of food selection. Oecologia 14, 413–417.

 

Jiguet, F., 2002. Arthropods in diet of Little Bustards Tetrax tetrax during the breeding season in western France. Hous. Theor. Soc. 49, 105–109.

 

Kaspari, M., Joern, A., 1993. Prey choice by three insectivorous grassland birds: reevaluating opportunism. Oikos 68, 414–430.

 

Kossenko, S.M., Fry, C.H., 1998. Competition and coexistence of the European bee-eater Merops apiaster and the blue-cheeked bee-eater Merops persicus in Asia. Ibis 140, 2–13.

 

Krebs, J.R., Avery, M.I., 1985. Central place foraging in the European Bee-Eater, Merops apiaster. J. Anim. Ecol. 54, 459–472.

 

Krebs, J.R., Avery, M.I., 1984. Chick growth and prey quality in the European Bee-eater (Merops apiaster). Oecologia 64, 363–368.

 

Kristin, A., 1994. Breeding biology and diet of the bee-eater (Merops apiaster) in Slovakia. Biol. Bratisl. 49, 273–279.

 

Krüger, T., 2018. Importance of bumblebees (Hymenoptera: Apidae: Bombus spp.) in the diet of European Bee-eaters (Merops apiaster) breeding in oceanic climate. J. Ornithol. 159, 151–164.

 

Law, A.A., Threlfall, M.E., Tijman, B.A., Anderson, E.M., McCann, S., Searing, G., et al., 2017. Diet and prey selection of Barn swallows (Hirundo rustica) at vancouver international airport. Can. Field Nat. 131, 26–31.

 

Lourenço, P.M., 2018. Internet photography forums as sources of avian dietary data: bird diets in Continental Portugal. Airo 25, 3–26.

 
Maravalhas, E., Soares, A., 2013. The Dragonflies of Portugal. Booky Publisher, Portugal.
 

Massa, B., Rizzo, M.C., 2002. Nesting and feeding habits of the European Bee-eater (Merops apiaster) in a colony next to beekeeping site. Avocetta 26, 25–31.

 

Mccarty, J.P., Winkler, D.W., 1999. Foraging ecology and diet selectivity of tree swallows feeding nestlings. Condor 101, 246–254.

 

Moser, M.E., 1986. Prey profitability for adult Grey Herons Ardea cinerea and the constraints on prey size when feeding young nestlings. Ibis 128, 392–405.

 

Naef-Daenzer, L., Naef-Daenzer, B., Nager, R.G., 2000. Prey selection and foraging performance of breeding Great Tits Parus major in relation to food availability. J. Avian Biol. 31, 206–214.

 

Niemelä, J., 2001. Carabid beetles (Coleoptera: Carabidae) and habitat fragmentation: a review. Eur. J. Entomol. 98, 127–132.

 

Orłowski, G., Karg, J., 2011. Diet of nestling Barn Swallows Hirundo rustica in rural areas of Poland. Cent. Eur. J. Biol. 6, 1023–1035.

 

Orłowski, G., Wuczyñski, A., Karg, J., 2015. Effect of brood age on nestling diet and prey composition in a hedgerow specialist bird, the Barred Warbler Sylvia nisoria. PLoS One 10, e0131100.

 

Post, W., Greenlaw, J.S., 2006. Nestling diets of coexisting salt marsh sparrows: opportunism in a food-rich environment. Estuar. Coast 29, 765–775.

 

Radford, A.N., 2008. Age-related changes in nestling diet of the cooperatively breeding green woodhoopoe. Ethology 114, 907–915.

 

Razeng, E., Watson, D.M., 2015. Nutritional composition of the preferred prey of insectivorous birds: popularity reflects quality. J. Avian Biol. 46, 89–96.

 

Sherry, T.W., Johnson, M.D., Williams, K.A., Kaban, J.D., McAvoy, C.K., Hallauer, A.M., et al., 2016. Dietary opportunism, resource partitioning, and consumption of coffee berry borers by five species of migratory wood warblers (Parulidae) wintering in Jamaican shade coffee plantations. J. Field Ornithol. 87, 273–292.

 

Siemann, E., Tilman, D., Haarstad, J., Ritchie, M., 1998. Experimental tests of the dependence of arthropod diversity on plant diversity. Am. Nat. 152, 738–750.

 

Söderström, B.O., Svensson, B., Vessby, K., Glimskär, A., 2001. Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers. Conserv. 10, 1839–1863.

 

Tsachalidis, E., Goutner, V., 2002. Diet of the white stork in Greece in relation to habitat. Waterbirds 25, 417–423.

 
Universidad de Extremadura, 2006. Informe definitivo, volumen I: Distribución e incidencia del Abejaruco Europeo (Merops apiaster) sobre las explotaciones apícolas en Extremadura.
 

Wiebe, K.L., Slagsvold, T., 2014. Prey size increases with nestling age: are provisioning parents programmed or responding to cues from offspring? Behav. Ecol. Sociobiol. 68, 711–719.

 

Wright, J., Botht, C., Cotton, P.A., Bryant, D., 2009. Quality vs. quantity: energetic and nutritional trade-offs in parental provisioning strategies. J. Anim. Ecol. 67, 620–634.

Avian Research
Article number: 100211

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Costa JS, Hahn S, Alves JA. Variation of parental and chick diet in opportunistic insectivorous European Bee-eaters. Avian Research, 2024, 15(4): 100211. https://doi.org/10.1016/j.avrs.2024.100211

118

Views

4

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 September 2024
Revised: 22 October 2024
Accepted: 22 October 2024
Published: 28 October 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).