AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Exploring the interplay of T cell receptor-V gene copy numbers and major histocompatibility complex selection pressure in avian species: Insights into immune system evolution and reproductive investment

Lin SunaChunhong LiangaShidi QinaYing Zhub( )Ke Hea( )
College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang, 311300, China
Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Sichuan, 610000, China
Show Author Information

Abstract

Birds, a fascinating and diverse group occupying various habitats worldwide, exhibit a wide range of life-history traits, reproductive methods, and migratory behaviors, all of which influence their immune systems. The association between major histocompatibility complex (MHC) genes and certain ecological factors in response to pathogen selection has been extensively studied; however, the role of the co-working molecule T cell receptor (TCR) remains poorly understood. This study aimed to analyze the copy numbers of TCR-V genes, the selection pressure (ω value) on MHC genes using available genomic data, and their potential ecological correlates across 93 species from 13 orders. The study was conducted using the publicly available genome data of birds. Our findings suggested that phylogeny influences the variability in TCR-V gene copy numbers and MHC selection pressure. The phylogenetic generalized least squares regression model revealed that TCR-Vαδ copy number and MHC-I selection pressure were positively associated with body mass. Clutch size was correlated with MHC selection pressure, and Migration was correlated with TCR-Vβ copy number. Further analyses revealed that the TCR-Vβ copy number was positively correlated with MHC-ⅡB selection pressure, while the TCR-Vγ copy number was negatively correlated with MHC-I peptide-binding region selection pressure. Our findings suggest that TCR-V diversity is significant in adaptive evolution and is related to species’ life-history strategies and immunological defenses and provide valuable insights into the mechanisms underlying TCR-V gene duplication and MHC selection in avian species.

References

 

Anonymity, 2023. TCR diversity underpins immunotherapy success. Cancer Discov. 13, 1031–1032.

 

Agudo, R., Carrete, M., Alcaide, M., Rico, C., Hiraldo, F., Donázar, J.A., 2012. Genetic diversity at neutral and adaptive loci determines individual fitness in a long-lived territorial bird. Proc. Biol. Sci. 279, 3241–3249.

 

Arstila, T.P., Casrouge, A., Baron, V., Even, J., Kanellopoulos, J., Kourilsky, P., 1999. A direct estimate of the human alphabeta T cell receptor diversity. Science 286, 958–961.

 

Auld, H., MacIver, D., Klaassen, J., 2004. Heavy rainfall and waterborne disease outbreaks: the Walkerton example. J. Toxicol. Env. Heal. A 67, 1879–1887.

 

Biedrzycka, A., Bielański, W., Ćmiel, A., Solarz, W., Zając, T., Migalska, M., et al., 2018. Blood parasites shape extreme major histocompatibility complex diversity in a migratory passerine. Mol. Ecol. 27, 2594–2603.

 

Bush, S.E., Clayton, D.H., 2018. Anti-parasite behaviour of birds. Philos. T. Roy. Soc. B 373, 20170196.

 

Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., et al., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202.

 

Chen, L., Qiu, Q., Jiang, Y., Wang, K., Lin, Z., Li, Z., et al., 2019. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202.

 

Chen, Y., Xiang, L., Chen, P., Zhao, H., 2023. Vultures as a model for testing molecular adaptations of dietary specialization in birds. Avian Res. 14, 100128.

 

Cheng, Y., Miller, M.J., Zhang, D., Xiong, Y., Hao, Y., Jia, C., et al., 2021. Parallel genomic responses to historical climate change and high elevation in East Asian songbirds. P. Natl. Acad. Sci. U.S.A. 118, e2023918118.

 

Cichoń, M., Dubiec, A., 2005. Cell-mediated immunity predicts the probability of local recruitment in nestling blue tits. J. Evol. Biol. 18, 962–966.

 

Davies, C.S., Worsley, S.F., Maher, K.H., Komdeur, J., Burke, T., Dugdale, H.L., et al., 2022. Immunogenetic variation shapes the gut microbiome in a natural vertebrate population. Microbiome 10, 41.

 

Davis, M.M., Bjorkman, P.J., 1988. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402.

 

Dunn, P.O., Bollmer, J.L., Freeman-Gallant, C.R., Whittingham, L.A., 2013. MHC variation is related to a sexually selected ornament, survival, and parasite resistance in common yellowthroats. Evolution 67, 679–687.

 

Fleischer, R., Schmid, D.W., Wasimuddin, Brändel, S.D., Rasche, A., Corman, V.M., et al., 2022. Interaction between MHC diversity and constitution, gut microbiota and Astrovirus infections in a neotropical bat. Mol. Ecol. 31, 3342–3359.

 

Früh, S.P., Früh, M.A., Kaufer, B.B., Göbel, T.W., 2024. Unraveling the chicken T cell repertoire with enhanced genome annotation. Front. Immunol. 15, 1359169.

 

Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G., 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075.

 

Hao, Y., Xiong, Y., Cheng, Y., Song, G., Jia, C., Qu, Y., et al., 2019. Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. P. Natl. Acad. Sci. U.S.A. 116, 11851–11856.

 

He, K., Minias, P., Dunn, P., 2020. Long-read genome assemblies reveal extraordinary variation in the number and structure of MHC loci in birds. Genome Biol. Evol. 13, evaa270.

 

Huang, X., Chen, Z., Yang, G., Xia, C., Luo, Q., Gao, X., et al., 2022. Assemblages of Plasmodium and related parasites in birds with different migration statuses. Int. J. Mol. Sci. 23, 10277.

 

Irla, M., 2022. Instructive cues of thymic T cell selection. Ann. Rev. Immunol. 40, 95–119.

 

Jarvis, E.D., Mirarab, S., Aberer, A.J., Li, B., Houde, P., Li, C., et al., 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331.

 

Knafler, G.J., Clark, J.A., Boersma, P.D., Bouzat, J.L., 2012. MHC diversity and mate choice in the magellanic penguin, Spheniscus magellanicus. J. Hered. 103, 759–768.

 

Liang, C., Sun, L., Zhu, Y., Wu, J., Zhao, A., Huang, T., et al., 2024. Local chicken breeds exhibit abundant TCR-V segments but similar repertoire diversity. Dev. Comp. Immunol. 157, 105196.

 

Liang, C., Sun, L., Zhu, Y., Zhao, A., Liu, H., He, K., 2023. Macroevolution of avian T cell receptor C segments using genomic data. Immunogenetics 75, 531–541.

 

Liu, F., Li, J., Lin, I.Y.C., Yang, X., Ma, J., Chen, Y., et al., 2020. The genome esequencing of TCR loci in Gallus gallus revealed their distinct evolutionary features in avians. Immunohorizons 4, 33–46.

 

Luzuriaga-Neira, A.R., Alvarez-Ponce, D., 2022. Rates of protein evolution across the marsupial phylogeny: heterogeneity and link to life-history traits. Genome Biol. Evol. 14, evab277.

 

Merelli, I., Guffanti, A., Fabbri, M., Cocito, A., Furia, L., Grazini, U., et al., 2010. RSSsite: a reference database and prediction tool for the identification of cryptic Recombination Signal Sequences in human and murine genomes. Nucleic Acids Res. 38, W262–W267.

 

Migalska, M., Sebastian, A., Radwan, J., 2019. Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. P. Natl. Acad. Sci. U.S.A. 116, 5021–5026.

 

Migalska, M., Węglarczyk, K., Dudek, K., Homa, J., 2024. Evolutionary trade-offs constraining the MHC gene expansion: beyond simple TCR depletion model. Front. Immunol. 14, 1240723.

 

Minias, P., Gutiérrez, J.S., Dunn, P.O., 2020. Avian major histocompatibility complex copy number variation is associated with helminth richness. Biol. Lett. 16, 20200194.

 

Minias, P., Pikus, E., Whittingham, L.A., Dunn, P.O., 2019. Evolution of copy number at the MHC varies across the avian tree of life. Genome Biol. Evol. 11, 17–28.

 

Minias, P., Whittingham, L.A., Dunn, P.O., 2017. Coloniality and migration are related to selection on MHC genes in birds. Evolution 71, 432–441.

 

O'Connor, E.A., Cornwallis, C.K., Hasselquist, D., Nilsson, J., Westerdahl, H., 2018. The evolution of immunity in relation to colonization and migration. Nat. Ecol. Evol. 2, 841–849.

 

O'Connor, E.A., Hasselquist, D., Nilsson, J., Westerdahl, H., Cornwallis, C.K., 2020. Wetter climates select for higher immune gene diversity in resident, but not migratory, songbirds. Proc. Biol. Sci. 287, 20192675.

 

Okanga, S., Cumming, G.S., Hockey, P.A., 2013. Avian malaria prevalence and mosquito abundance in the Western Cape, South Africa. Malaria J 12, 370.

 

Orme, D., Freckleton, R.P., Thomas, G.H., Petzoldt, T., 2013. Caper: comparative analyses of phylogenetics and evolution in R. Methods Ecol. Evol. 3, 145–151.

 

Pagel, M., 1997. Inferring evolutionary processes from phylogenies. Zool. Scr. 26, 331–483.

 

Parra, Z.E., Miller, R.D., 2012. Comparative analysis of the chicken TCRα/δ locus. Immunogenetics 64, 641–645.

 

Podos, J., Webster, M.S., 2022. Ecology and evolution of bird sounds. Curr. Biol. 32, R1100–R1104.

 

Pond, S.L., Frost, S.D., Muse, S.V., 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679.

 

Promerová, M., Králová, T., Bryjová, A., Albrecht, T., Bryja, J., 2013. MHC class ⅡB exon 2 polymorphism in the Grey partridge (Perdix perdix) is shaped by selection, recombination and gene conversion. PLoS One 8, e69135.

 

Qu, Y., Chen, C., Chen, X., Hao, Y., She, H., Wang, M., et al., 2021. The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai-Tibet Plateau. P. Natl. Acad. Sci. U.S.A. 118, e2012398118.

 

Robinson, J., Halliwell, J.A., McWilliam, H., Lopez, R., Marsh, S.G., 2013. IPD–the immuno polymorphism database. Nucleic Acids Res. 41, D1234–D1240.

 

Roche, B., Lebarbenchon, C., Gauthier-Clerc, M., Chang, C.M., Thomas, F., Renaud, F., et al., 2009. Water-borne transmission drives avian influenza dynamics in wild birds: the case of the 2005–2006 epidemics in the Camargue area. Infect. Genet. Evol. 9, 800–805.

 

Rogers, E.J., McGuire, L., Longstaffe, F.J., Clerc, J., Kunkel, E., Fraser, E., 2022. Relating wing morphology and immune function to patterns of partial and differential bat migration using stable isotopes. J. Anim. Ecol. 91, 858–869.

 

Ruiz, M.O., Chaves, L.F., Hamer, G.L., Sun, T., Brown, W.M., Walker, E.D., et al., 2010. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in Northeast Illinois, USA. Parasit. Vectors 3, 19.

 

Saino, N., Szép, T., Ambrosini, R., Romano, M., Møller, A.P., 2004. Ecological conditions during winter affect sexual selection and breeding in a migratory bird. Proc. Biol. Sci. 271, 681–686.

 

Schwenke, R.A., Lazzaro, B.P., Wolfner, M.F., 2016. Reproduction-immunity trade-offs in insects. Ann. Rev. Entomol. 61, 239–256.

 

Sepil, I., Lachish, S., Hinks, A.E., Sheldon, B.C., 2013. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc. Biol. Sci. 280, 20130134.

 

Shah, K., Al-Haidari, A., Sun, J., Kazi, J.U., 2021. T cell receptor (TCR) signaling in health and disease. Signal Transduct. Target. Ther. 6, 412.

 

Tieleman, B.I., 2018. Understanding immune function as a pace of life trait requires environmental context. Behav. Ecol. Sociobiol. 72, 55.

 

Tobias, J.A., Sheard, C., Pigot, A.L., Devenish, A.J.M., Yang, J., Sayol, F., et al., 2022. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597.

 

Vidović, D., Matzinger, P., 1988. Unresponsiveness to a foreign antigen can be caused by self-tolerance. Nature 336, 222–225.

 

Vinkler, M., Fiddaman, S.R., Těšický, M., O'Connor, E.A., Savage, A.E., Lenz, T.L., et al., 2023. Understanding the evolution of immune genes in jawed vertebrates. J. Evol. Biol. 36, 847–873.

 

Wang, Y., Wang, C., Hong, W., Tian, S., Lu, Q., Wang, B.J., et al., 2023a. Genomic analysis of Tibetan ground tits identifies molecular adaptations associated with cooperative breeding. Curr. Zool. 69, 620–630.

 

Wang, Z., Wang, Y.W., Kasuga, T., Hassler, H., Lopez-Giraldez, F., Dong, C., et al., 2023b.Origins of lineage-specific elements via gene duplication, relocation, and regional rearrangement in Neurospora crassa. Mol. Ecol. https://doi.org/10.1111/mec.17168.

 

Westerdahl, H., Waldenström, J., Hansson, B., Hasselquist, D., von Schantz, T., Bensch, S., 2005. Associations between malaria and MHC genes in a migratory songbird. Proc. Biol. Sci. 272, 1511–1518.

 

Westerdahl, H., Wittzell, H., von Schantz, T., Bensch, S., 2004. MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92, 534–542.

 

Yang, H., Wang, Y., Jia, Z., Wang, Y., Yang, X., Wu, P., et al., 2021. Characteristics of T-cell receptor repertoire and correlation with EGFR mutations in all stages of lung cancer. Front. Oncol. 11, 537735.

 

Yang, Z., Sun, Y., Ma, Y., Li, Z., Zhao, Y., Ren, L., et al., 2017. A comprehensive analysis of the germline and expressed TCR repertoire in White Peking duck. Sci. Rep. 7, 41426.

 

Zhang, L., Liu, Y., Meng, G., Liang, R., Zhang, B., Xia, C., 2020. Structural and biophysical insights into the TCRαβ complex in chickens. iScience 23, 101828.

 

Zou, D., Tian, S., Zhang, T., Zhuoma, N., Wu, G., Wang, M., et al., 2021. Vulture genomes reveal molecular adaptations underlying obligate scavenging and low levels of genetic diversity. Mol. Biol. Evol. 38, 3649–3663.

Avian Research
Article number: 100204

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Sun L, Liang C, Qin S, et al. Exploring the interplay of T cell receptor-V gene copy numbers and major histocompatibility complex selection pressure in avian species: Insights into immune system evolution and reproductive investment. Avian Research, 2024, 15(4): 100204. https://doi.org/10.1016/j.avrs.2024.100204

104

Views

2

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 January 2024
Revised: 10 August 2024
Accepted: 13 August 2024
Published: 22 August 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).