Journal Home > Volume 13 , Issue 2

Natural hybridization, which often occurs between closely related species exhibiting sympatric or parapatric distributions, is an important source of genetic variation within populations. The closely related Jankowski's Bunting (Emberiza jankowskii) and Meadow Bunting (E. cioides) are similar in morphology and genetics, occupy overlapping niches, and are sympatric in eastern Inner Mongolia. Previous studies have reported trans-species polymorphisms of alleles between the two species, as well as an unexpectedly high genetic diversity of the endangered E. jankowskii. We speculate that introgressive hybridization has occurred between the two species and contributed to the additional unexpected variation to E. jankowskii. We used mitochondrial NADH dehydrogenase subunit 2 (ND2) gene and 15 nuclear microsatellite markers to compare the genetic diversity of E. jankowskii and E. cioides, and inferred the origin of trans-species polymorphisms between the two species by phylogenetic reconstruction and Bayesian cluster analysis. The two species could be clearly distinguished by population cluster analysis. Despite the large number of mutational differences, we still detected sharing of major haplotypes and the presence of hybrids between the two species. Our study confirmed that weak introgressive hybridization has occurred between sympatric E. jankowskii and E. cioides, which may be mediated by female E. cioides individuals, and that interspecific introgression has contributed to the maintenance of high genetic diversity in E. jankowskii. While being wary of the potential negative effects of introgressive hybridization, we suggest that expanding the habitat of E. jankowskii remains the most effective conservation strategy at present.


menu
Abstract
Full text
Outline
About this article

Molecular evidence of introgressive hybridization between related species Jankowski's Bunting (Emberiza jankowskii) and Meadow Bunting (Emberiza cioides) (Aves: Passeriformes)

Show Author's information Long HuangaLishi ZhangbDan LiaRongfei YanbWeiping ShangbYunlei JiangbShi Lib( )
School of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
School of Animal Science & Technology, Jilin Agricultural University, Changchun, 130118, China

Abstract

Natural hybridization, which often occurs between closely related species exhibiting sympatric or parapatric distributions, is an important source of genetic variation within populations. The closely related Jankowski's Bunting (Emberiza jankowskii) and Meadow Bunting (E. cioides) are similar in morphology and genetics, occupy overlapping niches, and are sympatric in eastern Inner Mongolia. Previous studies have reported trans-species polymorphisms of alleles between the two species, as well as an unexpectedly high genetic diversity of the endangered E. jankowskii. We speculate that introgressive hybridization has occurred between the two species and contributed to the additional unexpected variation to E. jankowskii. We used mitochondrial NADH dehydrogenase subunit 2 (ND2) gene and 15 nuclear microsatellite markers to compare the genetic diversity of E. jankowskii and E. cioides, and inferred the origin of trans-species polymorphisms between the two species by phylogenetic reconstruction and Bayesian cluster analysis. The two species could be clearly distinguished by population cluster analysis. Despite the large number of mutational differences, we still detected sharing of major haplotypes and the presence of hybrids between the two species. Our study confirmed that weak introgressive hybridization has occurred between sympatric E. jankowskii and E. cioides, which may be mediated by female E. cioides individuals, and that interspecific introgression has contributed to the maintenance of high genetic diversity in E. jankowskii. While being wary of the potential negative effects of introgressive hybridization, we suggest that expanding the habitat of E. jankowskii remains the most effective conservation strategy at present.

Keywords: Conservation strategy, Demographic shrinkage, Emberiza jankowskii, High genetic diversity, Introgressive hybridization, Related species, Sympatric

References(91)

Abbott R. Albach D. Ansell S. Arntzen J.W. Baird S.J.E. Bierne N. Hybridization and speciationJ. Evol. Biol.20132622924610.1111/j.1420-9101.2012.02599.x

Abbott, R., Albach, D., Ansell, S., Arntzen, J.W., Baird, S.J.E., Bierne, N., et al., 2013. Hybridization and speciation. J. Evol. Biol. 26, 229-246. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1420-9101.2012.02599.x

Ait Belkacem A. Gast O. Stuckas H. Canal D. LoValvo M. Giacalone G. North African hybrid sparrows (Passer domesticus, P. hispaniolensis) back from oblivion – ecological segregation and asymmetric mitochondrial introgression between parental speciesEcol. Evol.201665190520610.1002/ece3.2274

Ait Belkacem, A., Gast, O., Stuckas, H., Canal, D., LoValvo, M., Giacalone, G., et al., 2016. North African hybrid sparrows (Passer domesticus, P. hispaniolensis) back from oblivion - ecological segregation and asymmetric mitochondrial introgression between parental species. Ecol. Evol. 6, 5190-5206. https://doi.org/10.1002/ece3.2274

Anderson, E.C., 2008. Bayesian inference of species hybrids using multilocus dominant genetic markers. Phil. Trans. R. Soc. B. 363, 2841-2850. https://www.ncbi.nlm.nih.gov/pubmed/18508754

Anderson E.C. Thompson E.A. A model-based method for identifying species hybrids using multilocus genetic dataGenetics20021601217122910.1093/genetics/160.3.1217

Anderson, E.C., Thompson, E.A., 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217-1229

Arantes, L.S., Ferreira, L.C.L., Driller, M., Repinaldo Filho, F.P.M., Mazzoni, C.J., Santos, F.R., 2020. Genomic evidence of recent hybridization between sea turtles at Abrolhos Archipelago and its association to low reproductive output. Sci. Rep. 10, 12847

Araya-Anchetta, A., Scoles, G.A., Giles, J., Busch, J.D., Wagner, D.M., 2013. Hybridization in natural sympatric populations of Dermacentor ticks in northwestern North America. Ecol. Evol. 3, 714-724

Ardren W.R. Borer S. Thrower F. Joyce J.E. Kapuscinski A.R. Inheritance of 12 microsatellite loci in Oncorhynchus mykissJ. Hered.19999052953610.1093/jhered/90.5.529

Ardren, W.R., Borer, S., Thrower, F., Joyce, J.E., Kapuscinski, A.R., 1999. Inheritance of 12 microsatellite loci in Oncorhynchus mykiss. J. Hered. 90, 529-536

Arnold, M., 1997. Natural Hybridization and Evolution. Oxford University Press, Oxford

Bandelt, H.J., Forster, P., Rohl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48

Barbujani, G., Pilastro, A., De Domenico, S., Renfrew, C., 1994. Genetic variation in North Africa and Eurasia: neolithic demic diffusion vs. Paleolithic colonisation. Am. J. Phys. Anthropol. 95, 137-154

Barton, N.H., 2001. The role of hybridization in evolution. Mol. Ecol. 10, 551-568

Beatty, G.E., Philipp, M., Provan, J., 2010. Unidirectional hybridization at a species’ range boundary: implications for habitat tracking. Divers. Distrib. 16, 1-9. https://doi.org/10.1111/j.1472-4642.2009.00616.x

Benson J.F. Hostetler J.A. Onorato D.P. Johnson W.E. Roelke M.E. O'Brien S.J. Intentional genetic introgression influences survival of adults and subadults in a small, inbred felid populationJ. Anim. Ecol.20118095896710.1111/j.1365-2656.2011.01809.x

Benson, J.F., Hostetler, J.A., Onorato, D.P., Johnson, W.E., Roelke, M.E., O'Brien, S.J., et al., 2011. Intentional genetic introgression influences survival of adults and subadults in a small, inbred felid population. J. Anim. Ecol. 80, 958-967

Brower, A.V., 2013. Introgression of wing pattern alleles and speciation via homoploid hybridization in Heliconius butterflies: a review of evidence from the genome. Proc. R. Soc. B. 280, 20122302

Cai T. Wu G. Sun L. Zhang Y. Peng Z. Guo Y. Biogeography and diversification of Old World buntings (Aves: Emberizidae): radiation in open habitatsJ. Avian Biol.202152610.1111/jav.02672

Cai, T., Wu, G., Sun, L., Zhang, Y., Peng, Z., Guo, Y., et al., 2021. Biogeography and diversification of Old World buntings (Aves: Emberizidae): radiation in open habitats. J. Avian Biol. 52, 6. https://doi.org/10.1111/jav.02672

Chan, W.Y., Hoffmann, A.A., van Oppen, M.J.H., 2019. Hybridization as a conservation management tool. Conserv. Lett. 12, e12652. https://doi.org/10.1111/conl.12652

Chapuis, M.P., Estoup, A., 2007. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621-631

Charles, K.M., Stehlik, I., 2021. Assisted species migration and hybridization to conserve cold-adapted plants under climate change. Conserv. Biol. 35, 559-566

Chesser, R.K., Baker, R.J., 1996. Effective sizes and dynamics of uniparentally and diparentally inherited genes. Genetics 144, 1225-1235

Dabrowski A. Fraser R. Confer J.L. Lovette I.J. Geographic variability in mitochondrial introgression among hybridizing populations of Golden-winged (Vermivora chrysoptera) and Blue-winged (V. opinus) WarblersConserv. Genet.2005684385310.1007/s10592-005-9028-2

Dabrowski, A., Fraser, R., Confer, J.L., Lovette, I.J., 2005. Geographic variability in mitochondrial introgression among hybridizing populations of Golden-winged (Vermivora chrysoptera) and Blue-winged (V. opinus) Warblers. Conserv. Genet. 6, 843-853. https://doi.org/10.1007/s10592-005-9028-2

Delph L.F. Demuth J.P. Haldane's rule: genetic bases and their empirical supportJ. Hered.201610738339110.1093/jhered/esw026

Delph, L.F., Demuth, J.P., 2016. Haldane's rule: genetic bases and their empirical support. J. Hered. 107, 383-391

Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611-2620

Excoffier, L., Lischer, H.E., 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564-567

Frankel, O.H., Soule, M.E., 1981. Conservation and Evolution. Cambridge University Press, Cambridge
Frankowski J. Lubke K. Coke M. Weyl O.L.F. Genetic variability and demographic history of Anguilla mossambica (Peters, 1852) from continental Africa and MadagascarJ. Fish. Biol.2020961251125910.1111/jfb.14220

Frankowski, J., Lubke, K., Coke, M., Weyl, O.L.F., 2020. Genetic variability and demographic history of Anguilla mossambica (Peters, 1852) from continental Africa and Madagascar. J. Fish Biol. 96, 1251-1259. https://www.ncbi.nlm.nih.gov/pubmed/31777080

Gainsford, A., Jones, G.P., Hobbs, J-P.A., Heindler, F.M., van Herwerden, L., 2020. Species integrity, introgression, and genetic variation across a coral reef fish hybrid zone. Ecol. Evol. 10, 11998-12014. https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.6769

Goudet J. FSTAT (Version 1.2): a computer program to calculate F-statisticsJ. Hered.19958648548610.1093/oxfordjournals.jhered.a111627

Goudet, J., 1995. FSTAT (Version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485-486

Grant, P.R., Grant, B.R., 2019. Hybridization increases population variation during adaptive radiation. Proc. Natl. Acad. Sci. U.S.A. 116, 23216-23224

Grant, P.R., Grant, B.R., 2014. Synergism of natural selection and introgression in the origin of a new species. Am. Nat. 183, 671-681

Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98

Han Z. Zhang L.-S. Qin B.O. Wang L.I.N. Liu Y.U. Fu V.W.K. Updated breeding distribution and population status of Jankowski's Bunting Emberiza jankowskii in ChinaBird. Conserv. Int.201728643652

Han, Z., Zhang, L-S., Qin, B.O., Wang, L.I.N., Liu, Y.U., Fu, V.W.K., et al., 2017. Updated breeding distribution and population status of Jankowski’s Bunting Emberiza jankowskii in China. Bird Conserv. Int. 28, 643-652

10.1017/S0959270917000491
Harrisson K.A. Pavlova A. Gonçalves da Silva A. Rose R. Bull J.K. Lancaster M.L. Scope for genetic rescue of an endangered subspecies though re-establishing natural gene flow with another subspeciesMol. Ecol.2016251242125810.1111/mec.13547

Harrisson, K.A., Pavlova, A., Goncalves da Silva, A., Rose, R., Bull, J.K., Lancaster, M.L., et al., 2016. Scope for genetic rescue of an endangered subspecies though re-establishing natural gene flow with another subspecies. Mol. Ecol. 25, 1242-1258

Hoban, S.M., McCleary, T.S., Schlarbaum, S.E., Romero-Severson, J., 2009. Geographically extensive hybridization between the forest trees American butternut and Japanese walnut. Biol. Lett. 5, 324-327. https://pubmed.ncbi.nlm.nih.gov/19324631

Hoelzer, G.A., 1997. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees revisited. Evolution 51, 622-626

Holder, M.T., Anderson, J.A., Holloway, A.K., 2001. Difficulties in detecting hybridization. Syst. Biol. 50, 978-982

Irwin, D.E., Rubtsov, A.S., Panov, E.N., 2009. Mitochondrial introgression and replacement between yellowhammers (Emberiza citrinella) and pine buntings (Emberiza leucocephalos) (Aves: Passeriformes). Biol. J. Linn. Soc. 98, 422-438

Jacquemyn, H., Brys, R., Honnay, O., Roldan-Ruiz, I., 2012. Asymmetric gene introgression in two closely related Orchis species: evidence from morphometric and genetic analyses. BMC Evol. Biol. 12, 178

Jangjoo, M., Matter, S.F., Roland, J., Keyghobadi, N., 2016. Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. Proc. Natl. Acad. Sci. U.S.A. 113, 10914-10919

Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., Gibson, T.J., 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403-405

Jiang, Y.L., Gao, W., Lei, F.M., Wan, D.M., Zhao, J., Wang, H.T., 2008. Nesting biology and population dynamics of Jankowski's Bunting Emberiza jankowskii in Western Jilin, China. Bird Conserv. Int. 18, 153-163

Keller, L.F., Waller, D.M., 2002. Inbreedings effects in wild populations. Trends Ecol. Evol. 17, 230-241

Kutschera, V.E., Bidon, T., Hailer, F., Rodi, J.L., Fain, S.R., Janke, A., 2014. Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow. Mol. Biol. Evol. 31, 2004-2017

Lade, J.A., Murray, N.D., Marks, C.A., Robinson, N.A., 1996. Microsatellite differentiation between Phillip Island and mainland Australian populations of the red fox Vulpes vulpes. Mol. Ecol. 5, 81-87

Lamy, T., Pointier, J.P., Jarne, P., David, P., 2012. Testing metapopulation dynamics using genetic, demographic and ecological data. Mol. Ecol. 21, 1394-1410

Langin, K.M., Sillett, T.S., Funk, W.C., Morrison, S.A., Ghalambor, C.K., 2017. Partial support for the central-marginal hypothesis within a population: reduced genetic diversity but not increased differentiation at the range edge of an island endemic bird. Heredity 119, 8-15. https://doi.org/10.1038/hdy.2017.10

Lepais O. Petit R.J. Guichoux E. Lavabre J.E. Alberto F. Kremer A. Species relative abundance and direction of introgression in oaksMol. Ecol.2009182228224210.1111/j.1365-294X.2009.04137.x

Lepais, O., Petit, R.J., Guichoux, E., Lavabre, J.E., Alberto, F., Kremer, A., et al., 2009. Species relative abundance and direction of introgression in oaks. Mol. Ecol. 18, 2228-2242

Lexer C. Fay M.F. Joseph J.A. Nica M.S. Heinze B. Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgressionMol. Ecol.2005141045105710.1111/j.1365-294X.2005.02469.x

Lexer, C., Fay, M.F., Joseph, J.A., Nica, M.S., Heinze, B., 2005. Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression. Mol. Ecol. 14, 1045-1057

Li D. Sun K. Zhao Y. Lin A. Li S. Jiang Y. Polymorphism in the major histocompatibility complex (MHC class II B) genes of the Rufous-backed Bunting (Emberiza jankowskii)PeerJ20175e291710.7717/peerj.2917

Li, D., Sun, K., Zhao, Y., Lin, A., Li, S., Jiang, Y., et al., 2017. Polymorphism in the major histocompatibility complex (MHC class II B) genes of the Rufous-backed Bunting (Emberiza jankowskii). PeerJ 5, e2917

Li, S., Li, D., Zhang, L.S., Shang, W.P., Qin, B., Jiang, Y.L., 2021. High levels of genetic diversity and an absence of genetic structure among breeding populations of the endangered Rufous-backed Bunting in Inner Mongolia, China: implications for conservation. Avian Res. 12, 7

Liang, G., Li, T., Yin, Z.H., Lei, F.M., 2008. Molecular phylogenetic analysis of some Fringillidae species based on mitochondrial coi gene sequences. Zool. Res. 29, 465-475

Lima-Rezende, C.A., Rocha, A.V., Junior, A.F.C., Martins, E.S., Vasconcelos, V., Caparroz, R., 2019. Late Pleistocene climatic changes promoted demographic expansion and population reconnection of a Neotropical savanna-adapted bird, Neothraupis fasciata (Aves: Thraupidae). PLoS ONE 14, e0212876

Mallet, J., 2007. Hybrid speciation. Nature 446, 279-283

Mallet, J., 2005. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229-237. https://www.ncbi.nlm.nih.gov/pubmed/16701374

McCracken, K.G., Wilson, R.E., 2011. Gene flow and hybridization between numerically imbalanced populations of two duck species in the Falkland Islands. PLoS ONE 6, e23173

Moore W.S. Natural hybridization and evolutionQ. Rev. Biol.1998737410.1086/420091

Moore, W.S., 1998. Natural hybridization and evolution. Q. Rev. Biol. 73, 74. https://www.journals.uchicago.edu/doi/abs/10.1086/420091

Murphy C. Burnett S. Conroy G.C. Howland B.W.A. Lamont R.W. Sumner J. Genetic diversity and structure of the threatened striped legless lizard, Delma impar: management implications for the species and a translocated populationConserv. Genet.20192024525710.1007/s10592-018-1127-y

Murphy, C., Burnett, S., Conroy, G.C., Howland, B.W.A., Lamont, R.W., Sumner, J., et al., 2019. Genetic diversity and structure of the threatened striped legless lizard, Delma impar: management implications for the species and a translocated population. Conserv. Genet. 20, 245-257. https://doi.org/10.1007/s10592-018-1127-y

Newhouse, D.J., Balakrishnan, C.N., 2015. High major histocompatibility complex class I polymorphism despite bottlenecks in wild and domesticated populations of the zebra finch (Taeniopygia guttata). BMC Evol. Biol. 15, 265

Nolte, A.W., Tautz, D., 2010. Understanding the onset of hybrid speciation. Trends Genet. 26, 54-58

Oosterhout, C.V., Hutchinson, W.F., Wills, D.P.M., Shipley, P., 2010. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Resour. 4, 535-538

Päckert M. Ait Belkacem A. Wolfgramm H. Gast O. Canal D. Giacalone G. Genetic admixture despite ecological segregation in a North African sparrow hybrid zone (Aves, Passeriformes, Passer domesticus × Passer hispaniolensis)Ecol. Evol.20199127101272610.1002/ece3.5744

Packert, M., Ait Belkacem, A., Wolfgramm, H., Gast, O., Canal, D., Giacalone, G., et al., 2019. Genetic admixture despite ecological segregation in a North African sparrow hybrid zone (Aves, Passeriformes, Passer domesticus × Passer hispaniolensis). Ecol. Evol. 9, 12710-12726. https://doi.org/10.1002/ece3.5744

Päckert M. Favre A. Schnitzler J. Martens J. Sun Y.-H. Tietze D.T. "Into and Out of" the Qinghai-Tibet Plateau and the Himalayas: centers of origin and diversification across five clades of Eurasian montane and alpine passerine birdsEcol. Evol.2020109283930010.1002/ece3.6615

Packert, M., Favre, A., Schnitzler, J., Martens, J., Sun, Y-H., Tietze, D.T., et al., 2020. "Into and Out of" the Qinghai-Tibet Plateau and the Himalayas: centers of origin and diversification across five clades of Eurasian montane and alpine passerine birds. Ecol. Evol. 10, 9283-9300. https://pubmed.ncbi.nlm.nih.gov/32953061

Packert, M., Sun, Y-H., Strutzenberger, P., Valchuk, O., Tietze, T., Martens, J., 2015. Phylogenetic relationships of endemic bunting species (Aves, Passeriformes, Emberizidae, Emberiza koslowi ) from the eastern Qinghai-Tibet Plateau. Vertebr. Zool. 65, 135-150

Pamilo, P., Nei, M., 1988. Relationships between gene trees and species trees. Mol. Biol. Evol. 5, 568-583

Paxton, R.J., Thoren, P.A., Tengo, J., Estoup, A., Pamilo, P., 1996. Mating structure and nestmate relatedness in a communal bee, Andrena jacobi (Hymenoptera, Andrenidae), using microsatellites. Mol. Ecol. 5, 511-519

Peakall, R., Smouse, P.E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28, 2537-2539

Peng, X., Wu, X., Zhang, Y., Zhang, H., Tang, J., Kang, B., 2019. Genetic diversity and metapopulation structures of two intertidal species along the coast of Zhejiang, China: implications for conservation. Mitochondrial DNA A DNA Mapp. Seq. Anal. 30, 674-681

Peters K.J. Myers S.A. Dudaniec R.Y. O'Connor J.A. Kleindorfer S. Females drive asymmetrical introgression from rare to common species in Darwin's tree finchesJ. Evol. Biol.2017301940195210.1111/jeb.13167

Peters, K.J., Myers, S.A., Dudaniec, R.Y., O'Connor, J.A., Kleindorfer, S., 2017. Females drive asymmetrical introgression from rare to common species in Darwin's tree finches. J. Evol. Biol. 30, 1940-1952

Pierce, A.A., Gutierrez, R., Rice, A.M., Pfennig, K.S., 2017. Genetic variation during range expansion: effects of habitat novelty and hybridization. Proc. R. Soc. B. 284, 20170007

Pohjoismaki, J.L.O., Michell, C., Levanen, R., Smith, S., 2021. Hybridization with mountain hares increases the functional allelic repertoire in brown hares. Sci. Rep. 11, 15771

Price, T.D., Bouvier, M.M., 2002. The evolution of F1 postzygotic incompatibilities in birds. Evolution 56, 2083-2089

Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959

Qu, Y., Zhang, R., Quan, Q., Song, G., Li, S.H., Lei, F., 2012. Incomplete lineage sorting or secondary admixture: disentangling historical divergence from recent gene flow in the Vinous-throated parrotbill (Paradoxornis webbianus). Mol. Ecol. 21, 6117-6133

Quilodran, C.S., Currat, M., Montoya-Burgos, J.I., 2018. Effect of hybridization with genome exclusion on extinction risk. Conserv. Biol. 32, 1139-1149

Ravinet, M., Elgvin, T.O., Trier, C., Aliabadian, M., Gavrilov, A., Saetre, G.P., 2018. Signatures of human-commensalism in the house sparrow genome. Proc. R. Soc. B. 285, 20181246

Raymond M. Rousset F. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicismJ. Hered.19958624824910.1093/oxfordjournals.jhered.a111573

Raymond, M., Rousset, F., 1995. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573

Rieseberg, L.H., Archer, M.A., Wayne, R.K., 1999. Transgressive segregation, adaptation and speciation. Heredity (Edinb) 83, 363-372

Rönkä N. Pakanen V.-M. Blomqvist D. Degtyaryev V. Golovatin M. Isakov G. Near panmixia at the distribution-wide scale but evidence of genetic differentiation in a geographically isolated population of the Terek Sandpiper Xenus cinereusIbis201916163264710.1111/ibi.12651

Ronka, N., Pakanen, V-M., Blomqvist, D., Degtyaryev, V., Golovatin, M., Isakov, G., et al., 2019. Near panmixia at the distribution-wide scale but evidence of genetic differentiation in a geographically isolated population of the Terek Sandpiper Xenus cinereus. Ibis 161, 632-647. https://doi.org/10.1111/ibi.12651

Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219-1228

Rozas J. Ferrer-Mata A. Sánchez-DelBarrio J.C. Guirao-Rico S. Librado P. Ramos-Onsins S.E. DnaSP 6: DNA sequence polymorphism analysis of large data setsMol. Biol. Evol.2017343299330210.1093/molbev/msx248

Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., et al., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299-3302

Scornavacca, C., Galtier, N., 2017. Incomplete lineage sorting in mammalian phylogenomics. Syst. Biol. 66, 112-120

Toews, D.P., Brelsford, A., 2012. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907-3930. https://www.ncbi.nlm.nih.gov/pubmed/22738314

Tompkins D.M. Mitchell R.A. Bryant D.M. Hybridization increases measures of innate and cell-mediated immunity in an endangered bird speciesJ. Anim. Ecol.20067555956410.1111/j.1365-2656.2006.01076.x

Tompkins, D.M., Mitchell, R.A., Bryant, D.M., 2006. Hybridization increases measures of innate and cell-mediated immunity in an endangered bird species. J. Anim. Ecol. 75, 559-564. https://doi.org/10.1111/j.1365-2656.2006.01076.x

Vaha, J.P., Primmer, C.R., 2006. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 15, 63-72

Wang, H.T., Jiang, Y.L., Gao, W., 2010. Jankowski’s Bunting (Emberiza jankowskii): current status and conservation. Chinese Birds 1, 251-258

Wang W.J. Dai C.Y. Alstrom P. Zhang C.L. Qu Y.H. Li S.H. Past hybridization between two East Asian long-tailed tits (Aegithalos bonvaloti and A. fuliginosus)Front. Zool.2014114010.1186/1742-9994-11-40

Wang, W.J., Dai, C.Y., Alstrom, P., Zhang, C.L., Qu, Y.H., Li, S.H., et al., 2014. Past hybridization between two East Asian long-tailed tits (Aegithalos bonvaloti and A. fuliginosus). Front. Zool. 11, 40

Wesselmann M. González-Wangüemert M. Serrão E.A. Engelen A.H. Renault L. García-March J.R. Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilisSci. Rep.20188477010.1038/s41598-018-23004-2

Wesselmann, M., Gonzalez-Wanguemert, M., Serrao, E.A., Engelen, A.H., Renault, L., Garcia-March, J.R., et al., 2018. Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis. Sci. Rep. 8, 4770. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859023/

Wolfgramm H. Martens J. Töpfer T. Vamberger M. Pathak A. Stuckas H. Asymmetric allelic introgression across a hybrid zone of the coal tit (Periparus ater) in the central HimalayasEcol. Evol.202111173321735110.1002/ece3.8369

Wolfgramm, H., Martens, J., Topfer, T., Vamberger, M., Pathak, A., Stuckas, H., et al., 2021. Asymmetric allelic introgression across a hybrid zone of the coal tit (Periparus ater) in the central Himalayas. Ecol. Evol. 11, 17332-17351. https://doi.org/10.1002/ece3.8369

Yoshida K. Miyagi R. Mori S. Takahashi A. Makino T. Toyoda A. Whole-genome sequencing reveals small genomic regions of introgression in an introduced crater lake population of threespine sticklebackEcol. Evol.201662190220410.1002/ece3.2047

Yoshida, K., Miyagi, R., Mori, S., Takahashi, A., Makino, T., Toyoda, A., et al., 2016. Whole-genome sequencing reveals small genomic regions of introgression in an introduced crater lake population of threespine stickleback. Ecol. Evol. 6, 2190-2204. https://doi.org/10.1002/ece3.2047

Zhai, D.D., Li, W.J., Liu, H.Z., Cao, W.X., Gao, X., 2019. Genetic diversity and temporal changes of an endemic cyprinid fish species, Ancherythroculter nigrocauda, from the upper reaches of Yangtze River. Zool. Res. 40, 427-438. https://www.ncbi.nlm.nih.gov/pubmed/31111694

Zheng, G., 2005. A Checklist on the Classification and Distribution of the Birds of China. Science Press, Beijing

Zink, R.M., 2005. Natural selection on mitochondrial DNA in Parus and its relevance for phylogeographic studies. Proc. R. Soc. B. 272, 71-78

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Published: 12 May 2022
Issue date: June 2022

Copyright

© 2022 The Authors.

Acknowledgements

Acknowledgements

www.liwenbianji.cn) for editing the English text of a draft of this manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 31601856 and 31670398).]]>

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return