AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effect of thermal radiation on magnetohydrodynamics heat transfer micropolar fluid flow over a vertical moving porous plate

Shankar Goud Bejawada1( )Mahantesh M. Nandeppanavar2
Department of Mathematics, JNTUH College of Engineering Hyderabad, Kukatpally, Hyderabad, Telangana 500085, India
Department of Mathematics, Government College (Autonomous), Kalaburagi, India
Show Author Information

Abstract

An analysis is investigated for this study of the magnetohydrodynamics heat transfer flow of the micropolar fluid over a vertical porous moving plate in the existence of the radiation effect. The numerical elucidations of the governing equations achieved for various values of flow fields are taken out for the several parameters inflowing into the problem and solved by raising the Galerkin finite element technique. By taking the range of the magnetic field parameter 0 ≤ M ≤ 5, the range of viscosity ratio parameter is 0 ≤ β ≤ 5, and micro-gyration parameter is 0 ≤ n ≤ 5, whereas the value of Grashof number lies in 0 ≤ Gr ≤ 2 and −2 ≤ Gr ≤ 0. The numerical results and impact on the translation velocity and temperature are presented and discussed through graphs and listed in the tables. With an increase of β and Gr, the velocity increases, and the reverse effect is found with enhancing of M and n. With enhanced values of M, n, Pr, and R, the result in Cf rises.

References

 
Abd El-Aziz, M. 2013. Mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation. J Egypt Math Soc, 21: 385–394.
 
Abel, M. S., Sanjayanand, E., Nandeppanavar, M. M. 2008. Viscoelastic MHD flow and heat transfer over a stretching sheet with viscous and ohmic dissipations. Commun Nonlinear Sci Numer Simul, 13: 1808–1821.
 
Abel, M. S., Siddheshwar, P. G., Nandeppanavar, M. M. 2007. Heat transfer in a viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and non-uniform heat source. Int J Heat Mass Transf, 50: 960–966.
 
Ali, R., Khan, M. R., Abidi, A., Rasheed, S., Galal, A. M. 2021. Application of PEST and PEHF in magneto-Williamson nanofluid depending on the suction/injection. Case Stud Therm Eng, 27: 101329.
 
Bhargava, R., Kumar, L., Takhar, H. S. 2003. Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet. Int J Eng Sci, 41: 2161–2178.
 
Bhattacharyya, K., Mukhopadhyay, S., Layek, G. C., Pop, I. 2012. Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int J Heat Mass Transf, 55: 2945–2952.
 
Cheng, C. Y. 2008. Natural convection heat and mass transfer from a sphere in micropolar fluids with constant wall temperature and concentration. Int Commun Heat Mass Transf, 35: 750–755.
 
Dadheech, P. K., Agrawal, P., Mebarek-Oudina, F., Abu-Hamdeh, N. H., Sharma, A. 2020. Comparative heat transfer analysis of MoS2/ C2H6O2 and SiO2–MoS2/C2H6O2 nanofluids with natural convection and inclined magnetic field. J Nanofluids, 9: 161–167.
 
Damseh, R. A., Al-Odat, M. Q., Chamkha, A. J., Shannak, B. A. 2009. Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface. Int J Therm Sci, 48: 1658–1663.
 
Dhif, K., Mebarek-Oudina, F., Chouf, S., Vaidya, H., Chamkha, A. J. 2021. Thermal analysis of the solar collector cum storage system using a hybrid-nanofluids. J Nanofluids, 10: 616–626.
 
Djebali, R., Mebarek-Oudina, F., Rajashekhar, C. 2021. Similarity solution analysis of dynamic and thermal boundary layers: Further formulation along a vertical flat plate. Phys Scr, 96: 085206.
 
Eringen, A. 1966. Theory of micropolar fluids. Indiana Univ Math J, 16: 1–18.
 
Goud, B. S. 2020a. Heat generation/absorption influence on steady stretched permeable surface on MHD flow of a micropolar fluid through a porous medium in the presence of variable suction/injection. Int J Thermofluids, 7–8: 100044.
 
Goud, B. S. 2020b. Thermal radiation influences on MHD stagnation point stream over a stretching sheet with slip boundary conditions. Int J Thermofluid Sci Technol, 7: 070201.
 
Goud, B. S., Babu, B. S., Shekar, M. R., Srinivas, G. 2019. Mass transfer effects on MHD flow through porous medium past an exponentially accelerated inclined plate with variable temperature and thermal radiation. Int J Thermofluid Sci Technol, 6: 19060402.
 
Goud, B. S., Khan, Z. H., Hamid, M. 2021. Heat generation/absorption on MHD flow of a micropolar fluid over a heated stretching surface in the presence of the boundary parameter. Heat Transf, 50: 6129–6147.
 
Goud, B. S., Nandeppanavar, M. M. 2021. Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface. Partial Differ Equ Appl Math, 4: 100104.
 
Goud, B. S., Pramod Kumar, P., Malga, B. S. 2020a. Effect of Heat source on an unsteady MHD free convection flow of Casson fluid past a vertical oscillating plate in porous medium using finite element analysis. Partial Differ Equ Appl Math, 2: 100015.
 
Goud, B. S., Reddy, Y. D., Rao, V. S. 2020b. Thermal radiation and Joule heating effects on a magnetohydrodynamic Casson nanofluid flow in the presence of chemical reaction through a non-linear inclined porous stretching sheet. J Nav Archit Mar Eng, 17: 143–164.
 
Goud, B. S., Srilatha, P., Bindu, P., Hari Krishna, Y. 2020c. Radiation effect on MHD boundary layer flow due to an exponentially stretching sheet. Adv Math: Sci J, 9: 10755–10761.
 
Goud, B. S., Yanala, D. R. 2021. Finite element Soret Dufour effects on an unsteady MHD heat and mass transfer flow past an accelerated inclined vertical plate. Heat Transf, 50: 8553–8578.
 
Hussain, A., Rehman, A., Nadeem, S., Khan, M. R., Issakhov, A. 2021. A computational model for the radiated kinetic molecular postulate of fluid-originated nanomaterial liquid flow in the induced magnetic flux regime. Math Probl Eng, 2021: 6690366.
 
Ibrahim, F. S., Elaiw, A. M., Bakr, A. A. 2008. Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids. Appl Math Inf Sci, 2: 143–162.
 
Ibrahim, W., Shankar, B., Nandeppanavar, M. M. 2013. MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int J Heat Mass Transf, 56: 1–9.
 
Khan, M. R. 2020. Numerical analysis of oblique stagnation point flow of nanofluid over a curved stretching/shrinking surface. Phys Scr, 95: 105704.
 
Khan, M. R., Pan, K. J., Khan, A. U., Nadeem, S. 2020a. Dual solutions for mixed convection flow of SiO2–Al2O3/water hybrid nanofluid near the stagnation point over a curved surface. Phys A: Stat Mech Its Appl, 547: 123959.
 
Khan, M. R., Pan, K. J., Khan, A. U., Ullah, N. 2020b. Comparative study on heat transfer in CNTs-water nanofluid over a curved surface. Int Commun Heat Mass Transf, 116: 104707.
 
Kim, Y. J. 2004. Heat and mass transfer in MHD micropolar flow over a vertical moving porous plate in a porous medium. Transp Porous Media, 56: 17–37.
 
Kim, Y. J., Lee, J. C. 2003. Analytical studies on MHD oscillatory flow of a micropolar fluid over a vertical porous plate. Surf Coat Technol, 171: 187–193.
 
Kumar, M. A., Reddy, Y. D., Goud, B. S., Rao, V. S. 2021. Effects of soret, dufour, hall current and rotation on MHD natural convective heat and mass transfer flow past an accelerated vertical plate through a porous medium. Int J Thermofluids, 9: 100061.
 
Li, Y. X., Alshbool, M. H., Lv, Y. P., Khan, I., Khan, M. R., Issakhov, A. 2021. Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface. Case Stud Therm Eng, 26: 100975.
 
Lund, L. A., Omar, Z., Khan, I. 2019. Mathematical analysis of magnetohydrodynamic (MHD) flow of micropolar nanofluid under buoyancy effects past a vertical shrinking surface: Dual solutions. Heliyon, 5: e02432.
 
Magyari, E., Chamkha, A. J. 2010. Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface: The full analytical solution. Int J Therm Sci, 49: 1821–1828.
 
Mahmoud, M. A. A. 2007. Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity. Phys A: Stat Mech Its Appl, 375: 401–410.
 
Marzougui, S., Mebarek-Oudina, F., Magherbi, M., Mchirgui, A. 2021. Entropy generation and heat transport of Cu–water nanoliquid in porous lid-driven cavity through magnetic field. Int J Numer Methods Heat Fluid Flow, .
 
Mebarek-Oudina, F. 2019. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transf-Asian Res, 48: 135–147.
 
Mebarek-Oudina, F., Fares, R., Aissa, A., Lewis, R. W., H Abu-Hamdeh, N. 2021. Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall. Int Commun Heat Mass Transf, 125: 105279.
 
Mishra, S. R., Baag, S., Mohapatra, D. K. 2016. Chemical reaction and Soret effects on hydromagnetic micropolar fluid along a stretching sheet. Eng Sci Technol Int J, 19: 1919–1928.
 
Mohanty, B., Mishra, S. R., Pattanayak, H. B. 2015. Numerical investigation on heat and mass transfer effect of micropolar fluid over a stretching sheet through porous media. Alex Eng J, 54: 223–232.
 
Nadeem, S., Riaz khan, M., Khan, A. U. 2019a. MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: Existence of dual solutions. Phys Scr, 94: 075204.
 
Nadeem, S., Riaz Khan, M., Khan, A. U. 2019b. MHD stagnation point flow of viscous nanofluid over a curved surface. Phys Scr, 94: 115207.
 
Nandeppanavar, M. M., Abel, M. S., Siddalingappa, M. N. 2013. Heat transfer through a porous medium over a stretching sheet with effect of viscous dissipation. Chem Eng Commun, 200: 1513–1529.
 
Nandeppanavar, M. M., Srinivasulu, T., Bandari, S. 2019. MHD flow and heat transfer analysis of Newtonian and non-Newtonian nanofluids due to an inclined stretching surface. Multidiscip Modeling Mater Struct, 16: 134–155.
 
Naveed, M., Abbas, Z., Sajid, M. 2016. MHD flow of micropolar fluid due to a curved stretching sheet with thermal radiation. J Appl Fluid Mech, 9: 131–138.
 
Patel, H. R., Singh, R. 2019. Thermophoresis, Brownian motion and non-linear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous dissipation, Joule heating and convective boundary condition. Int Commun Heat Mass Transf, 107: 68–92.
 
Qaiser, D., Zheng, Z. S., Riaz Khan, M. 2021. Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer. Therm Sci Eng Prog, 22: 100801.
 
Salahuddin, T., Khan, M., Al-Mubaddel, F. S., Alam, M. M., Ahmad, I. 2021. A study of heat and mass transfer micropolar fluid flow near the stagnation regions of an object. Case Stud Therm Eng, 26: 101064.
 
Sandeep, N., Sulochana, C. 2015. Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/ shrinking sheet with non-uniform heat source/sink. Eng Sci Technol Int J, 18: 738–745.
 
Shafiq, A., Mebarek-Oudina, F., Sindhu, T. N., Abidi, A. 2021. A study of dual stratification on stagnation point Walters’B nanofluid flow via radiative Riga plate: A statistical approach. Eur Phys J Plus, 136: 407.
 
Sharma, B. K., Singh, A. P., Yadav, K., Chaudhary, R. C. 2013. Effects of chemical reaction on magneto-micropolar fluid flow from a radiative surface with variable permeability. Int J Appl Mech Eng, 18: 833–851.
 
Shateyi, S., Marewo, G. T. 2020. On a new numerical approach of MHD mixed convection flow with heat and mass transfer of a micropolar fluid over an unsteady stretching sheet in the presence of viscous dissipation and thermal radiation. In: Applications of Heat, Mass and Fluid Boundary Layers. Fagbenle, R. O., Amoo, O. M., Aliu, S. et al. Eds. Amsterdam: Elsevier, 149–176.
 
Sheikh, N. A., Ali, F., Khan, I., Saqib, M., Khan, A. 2017. MHD flow of micropolar fluid over an oscillating vertical plate embedded in porous media with constant temperature and concentration. Math Probl Eng, 2017: 9402964.
 
Singh, K., Kumar, M. 2016. Effects of thermal radiation on mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation and heat generation/absorption. Int J Chem Eng, 2016: 8190234.
 
Srinivasulu, T., Goud, B. S. 2021. Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet. Case Stud Therm Eng, 23: 100819.
 
Swain, K., Mebarek-Oudina, F., Abo-Dahab, S. M. 2022. Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. J Therm Anal Calorim, 147: 1561–1570.
 
Turkyilmazoglu, M. 2017. Mixed convection flow of magnetohydrodynamic micropolar fluid due to a porous heated/cooled deformable plate: exact solutions. Int J Heat Mass Transf, 106: 127–134.
 
Warke, A. S., Ramesh, K., Mebarek-Oudina, F., Abidi, A. 2021. Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet. J Therm Anal Calorim, .
 
Zhao, T. H., Khan, M. R., Chu, Y. M., Issakhov, A., Ali, R., Khan, S. 2021. Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid. Appl Math Mech, 42: 1205–1218.
Experimental and Computational Multiphase Flow
Pages 149-158
Cite this article:
Bejawada SG, Nandeppanavar MM. Effect of thermal radiation on magnetohydrodynamics heat transfer micropolar fluid flow over a vertical moving porous plate. Experimental and Computational Multiphase Flow, 2023, 5(2): 149-158. https://doi.org/10.1007/s42757-021-0131-5

681

Views

62

Crossref

52

Web of Science

63

Scopus

Altmetrics

Received: 14 November 2021
Revised: 27 November 2021
Accepted: 22 December 2021
Published: 15 March 2022
© Tsinghua University Press 2021
Return