AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A multiphase approach for pyrolysis modelling of polymeric materials

Timothy Bo Yuan Chen1Luzhe Liu1Anthony Chun Yin Yuen1( )Qian Chen1Guan Heng Yeoh1,2
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, NSW 2232, Australia
Show Author Information

Graphical Abstract

Abstract

In this study, a multiphase pyrolysis model has been proposed under the large eddy simulation (LES) framework incorporating moving boundary surface tracking, char formation, and detailed chemical kinetics combustion modelling. The proposed numerical model was applied to simulate the cone calorimeter test of two kinds of materials: (i) pinewood (charring) and (ii) low-density polyethylene (non-charring). Using a cone calorimeter setup, good agreement has been achieved between the computational and the experimental results. The model is capable of predicting the formation of the char layer and thus replicating the flame suppressing thermal and barrier effects. Furthermore, with the application of detailed chemical kinetics, the fire model was able to aptly predict the generation of asphyxiant gas such as CO/CO2 during the burning process. However, the pinewood experiments showed significant CO/CO2 emissions post flame extinguishment attributed to char oxidation effects, which were not considered by the fire model. Despite the limitation, the fully coupled LES model proposed in this study was capable of predicting the fluid mechanics and heat transfer for the turbulent reacting flow, solid-phase decomposition, and gaseous products under flaming conditions. In the future, it can be further extended to include char oxidation mechanisms to improve predictions for charring materials.

References

 
Akahira, T., Sunose, T. 1971. Trans joint convention of four electrical institutes. Res Rep Chiba Inst Technol, 16: 22–31.
 
Boonmee, N., Quintiere, J. G. 2005. Glowing ignition of wood: The onset of surface combustion. Proc Combust Inst, 30: 2303–2310.
 
Brookes, S. J., Moss, J. B. 1999. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combust Flame, 116: 486–503.
 
Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Yang, W. 2018a. Predicting the fire spread rate of a sloped pine needle board utilizing pyrolysis modelling with detailed gas-phase combustion. Int J Heat Mass Transf, 125: 310–322.
 
Chen, T. B. Y., Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Yang, W., Lu, H. 2018b. Numerical study of fire spread using the level-set method with large eddy simulation incorporating detailed chemical kinetics gas-phase combustion model. J Comput Sci, 24: 8–23.
 
Chen, Q., Chen, T. B. Y., Yuen, A. C. Y., Wang, C., Chan, Q. N., Yeoh, G. H. 2020. Investigation of door width towards flame tilting behaviours and combustion species in compartment fire scenarios using large eddy simulation. Int J Heat Mass Transf, 150: 119373.
 
Chen, T. B. Y., Yuen, A. C. Y., Lin, B., Liu, L., Lo, A. L. P., Chan, Q. N., Zhang, J., Cheung, S. C. P., Yeoh, G. H. 2021. Characterisation of pyrolysis kinetics and detailed gas species formations of engineering polymers via reactive molecular dynamics (ReaxFF). J Anal Appl Pyrolysis, 153: 104931.
 
Deeny, S., Lane, B., Hadden, R., Laurence, A. T. 2018. Fire safety design in modern timber buildings. J Inst Struct Eng, 96: 48–53.
 
Di Blasi, C. 2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci, 34: 47–90.
 
Di Nenno, P. J., Drysdale, D., Beyler, C. L., Walton, D. W. 2002. SFPE Handbook of Fire Protection Engineering, 3rd edn. Quincy, MA, USA: National Fire Protection Association.
 
Ding, Y., Wang, C., Lu, S. 2015. Modeling the pyrolysis of wet wood using FireFOAM. Energy Convers Manag, 98: 500–506.
 
Drysdale, D. 2011. An Introduction to Fire Dynamics. Chichester, UK: John Wiley Sons.
 
Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke M. D., et al. 2000. CHEMKIN Collection, Release 3.6. San Diego, CA, USA: Reaction Design Inc. Available at https://www3.nd.edu/~powers/ame.60636/chemkin2000.pdf.
 
Kent, J., Honnery, D. 1990. A soot formation rate map for a laminar ethylene diffusion flame. Combust Flame, 79: 287–298.
 
Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Anal Chem, 29: 1702–1706.
 
Lautenberger, C. W. 2007. A generalized pyrolysis model for combustible solid. Available at https://escholarship.org/uc/item/7wz5m7dg.
 
Lautenberger, C., Fernandez-Pello, C. 2009. Generalized pyrolysis model for combustible solids. Fire Saf J, 44: 819–839.
 
Leung, K. M., Lindstedt, R. P., Jones, W. P. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combust Flame, 87: 289–305.
 
Lin, B., Yuen, A. C. Y., Chen, T. B. Y., Yu, B., Yang, W., Zhang, J., Yao, Y., Wu, S., Wang, C., Yeoh, G. H. 2021. Experimental and numerical perspective on the fire performance of MXene/ Chitosan/Phytic acid coated flexible polyurethane foam. Sci Rep, 11: 4684.
 
Liu, H., Wang, C., de Cachinho Cordeiro, I. M., Yuen, A. C. Y., Chen, Q., Chan, Q., Kook, S., Yeoh, G. H. 2020. Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. J Build Eng, 28: 100999.
 
Liu, H., Yuen, A. C. Y., de Cachinho Cordeiro, I. M., Han, Y., Chen, T. B. Y., Chan, Q., Kook, S., Yeoh, G. H. 2021. A novel stochastic approach to study water droplet/flame interaction of water mist systems. Numer Heat Tr A-Appl, 79: 570–593.
 
Ma, Z., Chen, D., Gu, J., Bao, B., Zhang, Q. 2015. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energy Convers Manag, 89: 251–259.
 
Mallet, V., Keyes, D. E., Fendell, F. E. 2009. Modeling wildland fire propagation with level set methods. Comput Math Appl, 57: 1089–1101.
 
McGrattan, K., McDermott, R., Weinschenk, C., Forney, G. 2013. Fire Dynamics Simulator, Technical Reference Guide, 6th edn. Gaithersburg, MD, USA: National Institute of Standards and Technology.
 
McGrattan, K., McDermott, R., Mell, W., Forney, G., Floyd, J., Hostikka, S., Matala, A. 2010. Modeling the burning of complicated objects using Lagrangian particles. In: Proceedings of the 12th International Interflam Conference, 743–753.
 
Mishra, G., Kumar, J., Bhaskar, T. 2015. Kinetic studies on the pyrolysis of pinewood. Bioresour Technol, 182: 282–288.
 
Nguyen, Q., Ngo, T., Mendis, P., Tran, P. 2013. Composite materials for next generation building façade systems. Civ Eng Archit, 1: 88–95.
 
Nicoud, F., Ducros, F. 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul Combust, 62: 183–200.
 
Oliver, C. D., Nassar, N. T., Lippke, B. R., McCarter, J. B. 2014. Carbon, fossil fuel, and biodiversity mitigation with wood and forests. J Sustain Forest, 33: 248–275.
 
Pau, D. S. W., Fleischmann, C. M., Spearpoint, M. J., Li, K. Y. 2013. Determination of kinetic properties of polyurethane foam decomposition for pyrolysis modelling. J Fire Sci, 31: 356–384.
 
Pope, N. D., Bailey, C. G. 2006. Quantitative comparison of FDS and parametric fire curves with post-flashover compartment fire test data. Fire Saf J, 41: 99–110.
 
Rein, G., Lautenberger, C., Fernandez-Pello, A. C., Torero, J. L., Urban, D. L. 2006. Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion. Combust Flame, 146: 95–108.
 
Richter, F., Kotsovinos, P., Rackauskaite, E., Rein, G. 2021. Thermal response of timber slabs exposed to travelling fires and traditional design fires. Fire Technol, 57: 393–414.
 
Rochoux, M. C., Delmotte, B., Cuenot, B., Ricci, S., Trouvé, A. 2013. Regional-scale simulations of wildland fire spread informed by real-time flame front observations. Proc Combust Inst, 34: 2641–2647.
 
Sasaki, T., Igari, M., Kuwana, K. 2018. Fire whirls behind an L-shaped wall in a crossflow. Combust Flame, 197: 197–203.
 
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner Jr., W. C., et al. 2000. GRI-Mech 3.0. Available at http://www.me.berkeley.edu/gri_mech/.
 
Snegirev, A. Y., Talalov, V. A., Stepanov, V. V., Harris, J. N. 2013. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests. Fire Saf J, 59: 132–150.
 
Stamm, A. J. 1956. Thermal degradation of wood and cellulose. Ind Eng Chem, 48: 413–417.
 
Stoliarov, S. I., Crowley, S., Lyon, R. E., Linteris, G. T. 2009. Prediction of the burning rates of non-charring polymers. Combust Flame, 156: 1068–1083.
 
Stoliarov, S. I., Crowley, S., Walters, R. N., Lyon, R. E. 2010. Prediction of the burning rates of charring polymers. Combust Flame, 157: 2024–2034.
 
Sun, X., Hu, L., Li, Y., Huo, R., Chow, W. K., Fong, N. K., Lui, G. C., Li, K. 2009. Studies on smoke movement in stairwell induced by an adjacent compartment fire. Appl Therm Eng, 29: 2757–2765.
 
Trouvé, A., Wang, Y. 2010. Large eddy simulation of compartment fires. Int J Comput Fluid Dyn, 24: 449–466.
 
Van Maele, K., Merci, B. 2008. Application of RANS and LES field simulations to predict the critical ventilation velocity in longitudinally ventilated horizontal tunnels. Fire Saf J, 43: 598–609.
 
Wang, X., Fleischmann, C., Spearpoint, M., Li, K. 2017. A simple hand calculation method to estimate the pyrolysis kinetics of plastic and wood materials. In: Fire Science and Technology 2015. Harada K., Matsuyama K., Himoto K., et al. Eds. Singapore: Springer, 455–462.
 
Wang, C., Yuen, A. C. Y., Chan, Q., Chen, T. B. Y., Yang, W., Cheung, S. C. P., Yeoh, G. H. 2020a. Characterisation of soot particle size distribution through population balance approach and soot diagnostic techniques for a buoyant non-premixed flame. J Energy Inst, 93: 112–128.
 
Wang, C., Yuen, A. C. Y., Chan, Q., Chen, T. B. Y., Yip, H. L., Cheung, S. C. P., Kook, S., Yeoh, G. H. 2020b. Numerical study of the comparison of symmetrical and asymmetrical eddy-generation scheme on the fire whirl formulation and evolution. Appl Sci, 10: 318.
 
Yeoh, G. H., Yuen, K. K. 2009. Computational Fluid Dynamics in Fire Engineering: Theory, Modelling and Practice. Burlington, MA, USA: Butterworth-Heinemann.
 
Yuen, R. K. K., Yeoh, G. H., de Vahl Davis, G., Leonardi, E. 2007a. Modelling the pyrolysis of wet wood - I. Three-dimensional formulation and analysis. Int J Heat Mass Transf, 50: 4371–4386.
 
Yuen, R. K. K., Yeoh, G. H., de Vahl Davis, G., Leonardi, E. 2007b. Modelling the pyrolysis of wet wood - II. Three-dimensional cone calorimeter simulation. Int J Heat Mass Transf, 50: 4387–4399.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Barber, T. J. 2016a. Importance of detailed chemical kinetics on combustion and soot modelling of ventilated and under-ventilated fires in compartment. Int J Heat Mass Transf, 96: 171–188.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chen, T. 2016b. Study of three LES subgrid-scale turbulence models for predictions of heat and mass transfer in large-scale compartment fires. Numer Heat Tr A-Appl, 69: 1223–1241.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Chen, T. B. Y., Chan, Q. N., Wang, C., Li, D. D. 2017. Comparison of detailed soot formation models for sooty and non-sooty flames in an under-ventilated ISO room. Int J Heat Mass Transf, 115: 717–729.
 
Yuen, A. C. Y., Chen, T. B. Y., Yeoh, G. H., Yang, W., Cheung, S. C. P., Cook, M., Yu, B., Chan, Q. N., Yip, H. L. 2018a. Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials. J Fire Sci, 36: 494–517.
 
Yuen, A. C. Y., Yeoh, G. H., Cheung, S. C. P., Chan, Q. N., Chen, T. B. Y., Yang, W., Lu, H. 2018b. Numerical study of the development and angular speed of a small-scale fire whirl. J Comput Sci, 27: 21–34.
 
Yuen, A. C. Y., Chen, T. B. Y., Wang, C., Wei, W., Kabir, I., Vargas, J. B., Chan, Q. N., Kook, S., Yeoh, G. H. 2020. Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites. Compos Part B: Eng, 182: 107619.
Experimental and Computational Multiphase Flow
Pages 199-211
Cite this article:
Chen TBY, Liu L, Yuen ACY, et al. A multiphase approach for pyrolysis modelling of polymeric materials. Experimental and Computational Multiphase Flow, 2023, 5(2): 199-211. https://doi.org/10.1007/s42757-021-0122-3

645

Views

4

Crossref

4

Web of Science

4

Scopus

Altmetrics

Received: 16 April 2021
Revised: 03 August 2021
Accepted: 10 August 2021
Published: 14 December 2021
© Tsinghua University Press 2021
Return