AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Numerical modeling of wet steam infused fluid mixture for potential fire suppression applications

Hengrui Liu1Ivan Miguel De Cachinho Cordeiro1Anthony Chun Yin Yuen1( )Cheng Wang1Ao Li1Guan Heng Yeoh1,2
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Australian Nuclear Science and Technology Organization (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Show Author Information

Abstract

An advanced numerical model for modeling spontaneous condensation phenomena of water vapor was presented to investigate the flow behaviors in a converging–diverging nozzle for potential application in fire suppression using steam ejectors. The numerical model is validated against existing experimental data, which shows a good agreement. The proposed model was then compared against the ideal gas model in terms of various flow behaviors, including static pressure and Mach number in a newly designed nozzle. The condensing behaviors were accurately captured by the proposed model, while the idea gas model failed to do so. The condensation phenomena, including nucleation rate, droplet number, etc., in the nozzle, were discussed in detail. The accurate prediction results proved the possibility and demonstrated potential of applying the proposed model to broader fields of applications, especially into a steam ejector.

References

 
Duny, M., Dhima, D., Garo, J. P., Wang, H. Y. 2016. Numerical investigation on window ejected facade flames. J Build Eng, 8: 305–312.
 
Gerber, A. G., Kermani, M. J. 2004. A pressure based Eulerian–Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int J Heat Mass Trans, 47: 2217–2231.
 
Han, Y., Guo, L., Wang, X., Yuen, A. C. Y., Li, C., Cao, R., Liu, H., Chen, T. B. Y., Tu, J., Yeoh, G. H. 2019a. A steam ejector refrigeration system powered by engine combustion waste heat: part 1. characterization of the internal flow structure. Appl Sci, 9: 4275.
 
Han, Y., Wang, X., Guo, L., Yuen, A. C. Y., Liu, H., Cao, R., Wang, C., Li, C., Tu, J., Yeoh, G. H. 2019b. A steam ejector refrigeration system powered by engine combustion waste heat: part 2. understanding the nature of the shock wave structure. Appl Sci, 9: 4435.
 
Han, Y., Wang, X., Yuen, A. C. Y., Li, A., Guo, L., Yeoh, G. H., Tu, J. 2020. Characterization of choking flow behaviors inside steam ejectors based on the ejector refrigeration system. Int J Refrig, 113: 296–307.
 
Hill, P. G. 1966. Condensation of water vapour during supersonic expansion in nozzles. J Fluid Mech, 25: 593–620.
 
Kuang, K., Chow, W. K., Ni, X., Yang, D., Zeng, W., Liao, G. 2011. Fire suppressing performance of superfine potassium bicarbonate powder. Fire Mater, 35: 353–366.
 
Li, A., Yuen, A. C. Y., Chen, T. B. Y., Wang, C., Liu, H., Cao, R., Yang, W., Yeoh, G. H., Timchenko, V. 2019. Computational study of wet steam flow to optimize steam ejector efficiency for potential fire suppression application. Appl Sci, 9: 1486.
 
Lin, B., Yuen, A. C. Y., Li, A., Zhang, Y., Chen, T. B. Y., Yu, B., Lee, E. W. M., Peng, S., Yang, W., Lu, H., Chan, Q., Yeoh, G. H., Wang, C. H. 2020. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. J Hazard Mater, 381: 120952.
 
Liu, H., Wang, C., de Cachinho Cordeiro, I. M., Yuen, A. C. Y., Chen, Q., Chan, Q., Kook, S., Yeoh, G. H. 2020. Critical assessment on operating water droplet sizes for fire sprinkler and water mist systems. J Build Eng, 28: 100999.
 
Liu, H., Yuen, A. C. Y., de Cachinho Cordeiro, I. M., Han, Y., Chen, T. B. Y., Chan, Q., Kook, S., Yeoh, G. H. 2021. A novel stochastic approach to study water droplet/flame interaction of water mist systems. Numer Heat Tr A: Appl, 79: 570–593.
 
Mazzelli, F., Giacomelli, F., Milazzo, A. 2018. CFD modeling of condensing steam ejectors: Comparison with an experimental test-case. Int J Therm Sci, 127: 7–18.
 
Moses, C. A., Stein, G. D. 1978. On the growth of steam droplets formed in a Laval nozzle using both static pressure and light scattering measurements. J Fluids Eng, 100: 311–322.
 
Nakamura, Y., Usuki, T., Wakatsuki, K. 2020. Novel fire extinguisher method using vacuuming force applicable to space habitats. Fire Technol, 56: 361–384.
 
Pianthong, K., Seehanam, W., Behnia, M., Sriveerakul, T., Aphornratana, S. 2007. Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energ Convers Manage, 48: 2556–2564.
 
Starzmann, J., Hughes, F. R., Schuster, S., White, A. J., Halama, J., Hric, V., Kolovratník, M., Lee, H., Sova, L., Št’astný, M., Grübel, M., Schatz, M., Vogt, D. M., Patel, Y., Patel, G., Turunen-Saaresti, T., Gribin, V., Tishchenko, V., Gavrilov, I., Kim, C., Baek, J., Wu, X., Yang, J., Dykas, S., Wróblewski, W., Yamamoto, S., Feng, Z., Li, L. 2018. Results of the international wet steam modeling project. P I Mech Eng A: J Pow, 232: 550–570.
 
Wen, C., Ding, H., Yang, Y. 2020. Performance of steam ejector with nonequilibrium condensation for multi-effect distillation with thermal vapour compression (MED-TVC) seawater desalination system. Desalination, 489: 114531.
 
Yang, L., Zhao, J. 2011. Fire extinct experiments with water mist by adding additives. J Therm Sci, 20: 563–569.
 
Young, J. B. 1992. Two-dimensional, nonequilibrium, wet-steam calculations for nozzles and turbine cascades. J Turbomach, 114: 569–579.
 
Yuen, A. C. Y., Yeoh, G. H. 2013. Numerical simulation of an enclosure fire in a large test hall. Comput Therm Sci, 5: 459–471.
 
Yuen, A. C. Y., Yeoh, G. H., Timchenko, V., Cheung, S. C. P., Chan, Q. N., Chen, T. 2017. On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions. Int J Comput Fluid D 31: 324–337.
 
Yuen, A. C. Y., Yeoh, G. H., Yuen, R. K. K., Chen, T. 2013. Numerical simulation of a ceiling jet fire in a large compartment. Procedia Eng, 52: 3–12.
 
Zhang, G., Dykas, S., Yang, S., Zhang, X., Li, H., Wang, J. 2020. Optimization of the primary nozzle based on a modified condensation model in a steam ejector. Appl Therm Eng, 171: 115090.
 
Zhang, T., Liu, H., Han, Z., Wang, Y., Guo, Z., Wang, C. 2019. Experimental study on the synergistic effect of fire extinguishing by water and potassium salts. J Therm Anal Calorim, 138: 857–867.
Experimental and Computational Multiphase Flow
Pages 142-148
Cite this article:
Liu H, De Cachinho Cordeiro IM, Yuen ACY, et al. Numerical modeling of wet steam infused fluid mixture for potential fire suppression applications. Experimental and Computational Multiphase Flow, 2023, 5(2): 142-148. https://doi.org/10.1007/s42757-021-0107-5

648

Views

2

Crossref

2

Web of Science

2

Scopus

Altmetrics

Received: 12 January 2021
Revised: 26 February 2021
Accepted: 11 March 2021
Published: 14 June 2021
© Tsinghua University Press 2021
Return