Journal Home > Volume 3 , Issue 2

With high energy consumption in buildings, the emissions of greenhouse gases are also increasing. It leads to some environmental problems. To realize resource conservation and environmental protection target, latent heat thermal energy storage systems (LHTES) are introduced into all kinds of buildings. A variety of air-LHTES and water-LHTES are analyzed in this study based on the heat transfer fluid medium adopted. The results of this study indicate that the air-LHTES uses the low-temperature ambient air to store cold during nighttime and releases cold during the daytime in summer vice versa in winter with auxiliary heat sources. The water-LHTES stores the cold and heat generated by various natural sources (solar energy, nighttime sky radiation, air conditioning condensate) through the water, and then releases the cold and heat to the buildings to reduce the energy consumption of the buildings. However, for some regions with extremely hot climate, the ambient temperature is still high during nighttime in summer. It is difficult to achieve cold storage of ambient air. Accordingly, other natural cold sources should be adopted for cooling in air-LHTES. Due to the cooling effect of nighttime sky radiation, water temperature in water-LHTES could be lower enough for cold storage. Thus, a combination system of water-LHTES and air-LHTES is recommended. In this system, cold storage is achieved by collecting low-temperature, and released by supplying cooling air. The proposed system can also achieve heat storage in winter by collecting solar energy, and release heat by supplying heating air.


menu
Abstract
Full text
Outline
About this article

Review on air and water thermal energy storage of buildings with phase change materials

Show Author's information Yin Ma1,2Yilin Luo1,2Hongxiang Xu1,2Ruiqing Du1,2Yong Wang1,2( )
National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science & Technology, Chongqing University, Chongqing 400045, China
Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing 400045, China

Abstract

With high energy consumption in buildings, the emissions of greenhouse gases are also increasing. It leads to some environmental problems. To realize resource conservation and environmental protection target, latent heat thermal energy storage systems (LHTES) are introduced into all kinds of buildings. A variety of air-LHTES and water-LHTES are analyzed in this study based on the heat transfer fluid medium adopted. The results of this study indicate that the air-LHTES uses the low-temperature ambient air to store cold during nighttime and releases cold during the daytime in summer vice versa in winter with auxiliary heat sources. The water-LHTES stores the cold and heat generated by various natural sources (solar energy, nighttime sky radiation, air conditioning condensate) through the water, and then releases the cold and heat to the buildings to reduce the energy consumption of the buildings. However, for some regions with extremely hot climate, the ambient temperature is still high during nighttime in summer. It is difficult to achieve cold storage of ambient air. Accordingly, other natural cold sources should be adopted for cooling in air-LHTES. Due to the cooling effect of nighttime sky radiation, water temperature in water-LHTES could be lower enough for cold storage. Thus, a combination system of water-LHTES and air-LHTES is recommended. In this system, cold storage is achieved by collecting low-temperature, and released by supplying cooling air. The proposed system can also achieve heat storage in winter by collecting solar energy, and release heat by supplying heating air.

Keywords: phase change material, air-latent heat thermal energy storage system, water-latent heat thermal energy storage system, heat transfer enhancement

References(135)

M. Aadmi,, M. Karkri,, M. El Hammouti, 2014. Heat transfer characteristics of thermal energy storage of a composite phase change materials: Numerical and experimental investigations. Energy, 72: 381-392.
B. A. Abdelkader,, S. M. Zubair, 2019. The effect of a number of baffles on the performance of shell-and-tube heat exchangers. Heat Transfer Eng, 40: 39-52.
F. Agyenim,, P. Eames,, M. Smyth, 2010a. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew Energ, 35: 198-207.
F. Agyenim,, N. Hewitt,, P. Eames,, M. Smyth, 2010b. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energ Rev, 14: 615-628.
A. A. Al-Abidi,, S. Mat,, K. Sopian,, M. Y. Sulaiman,, A. T. Mohammad, 2014. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energ Buildings, 68: 33-41.
A. A. Al-Farayedhi,, N. I. Ibrahim,, P. Gandhidasan, 2014. Condensate as a water source from vapor compression systems in hot and humid regions. Desalination, 349: 60-67.
S. Algarni,, C. A. Saleel,, M. A. Mujeebu, 2018. Air-conditioning condensate recovery and applications—Current developments and challenges ahead. Sustain Cities Soc, 37: 263-274.
A. Amir,, R. van Hout, 2019. A transient model for optimizing a hybrid nocturnal sky radiation cooling system. Renew Energ, 132: 370-380.
V. Antony Aroul Raj,, R. Velraj, 2011. Heat transfer and pressure drop studies on a PCM-heat exchanger module for free cooling applications. Int J Therm Sci, 50: 1573-1582.
C. Arkar,, S. Medved, 2007. Free cooling of a building using PCM heat storage integrated into the ventilation system. Sol Energy, 81: 1078-1087.
C. Arkar,, B. Vidrih,, S. Medved, 2007. Efficiency of free cooling using latent heat storage integrated into the ventilation system of a low energy building. Int J Refrig, 30: 134-143.
M. Bechiri,, K. Mansouri, 2015. Analytical solution of heat transfer in a shell-and-tube latent thermal energy storage system. Renew Energ, 74: 825-838.
B. Bezyan,, S. Porkhial,, A. A. Mehrizi, 2015. 3-D simulation of heat transfer rate in geothermal pile-foundation heat exchangers with spiral pipe configuration. Appl Therm Eng, 87: 655-668.
V. Butala,, U. Stritih, 2009. Experimental investigation of PCM cold storage. Energ Buildings, 41: 354-359.
Z. H. Cao, 2019a. Recovery and utilization technology of condensed water in air conditioning system. Contamination Control & Air- Conditioning Technology: 106-108.
Z. H. Cao, 2019b. Analysis of the status quo of the study of the technology of recycling the air conditioning condensate in China. Applied Energy Technology: 49-52.
B. Cárdenas,, N. León, 2013. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renew Sustain Energ Rev, 27: 724-737.
N. Chaiyat, 2015. Energy and economic analysis of a building air- conditioner with a phase change material (PCM). Energ Convers Manage, 94: 150-158.
Z. Chen,, D. Gao,, J. Shi, 2014. Experimental and numerical study on melting of phase change materials in metal foams at pore scale. Int J Heat Mass Tran, 72: 646-655.
M. H. Chung,, J. C. Park, 2016. Development of PCM cool roof system to control urban heat island considering temperate climatic conditions. Energ Buildings, 116: 341-348.
I. Cronshaw, 2015. World Energy Outlook 2014 projections to 2040: Natural gas and coal trade, and the role of China. Aust J Agr Resour Ec, 59: 571-585.
F. Cruz-Peragon,, J. M. Palomar,, P. J. Casanova,, M. P. Dorado,, F. Manzano-Agugliaro, 2012. Characterization of solar flat plate collectors. Renew Sustain Energ Rev, 16: 1709-1720.
R. J. De Dear,, G. S. Brager, 2002. Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energ Buildings, 34: 549-561.
P. Dolado,, A. Lazaro,, J. M. Marin,, B. Zalba, 2011. Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation. Energ Convers Manage, 52: 1890-1907.
R. Du,, W. Li,, T. Xiong,, X. Yang,, Y. Wang,, K. W. Shah, 2019. Numerical investigation on the melting of nanoparticle-enhanced PCM in latent heat energy storage unit with spiral coil heat exchanger. Build Simul, 12: 869-879.
M. Esapour,, M. J. Hosseini,, A. A. Ranjbar,, R. Bahrampoury, 2016. Numerical study on geometrical specifications and operational parameters of multi-tube heat storage systems. Appl Therm Eng, 109: 351-363.
M. A. Ezan,, M. Ozdogan,, A. Erek, 2011. Experimental study on charging and discharging periods of water in a latent heat storage unit. Int J Therm Sci, 50: 2205-2219.
X. Fang,, L. Fan,, Q. Ding,, X. Yao,, Y. Wu,, J. Hou,, X. Wang,, Z. Yu,, G. Cheng,, Y. Hu, 2014. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energ Convers Manage, 80: 103-109.
M. M. Farid,, A. M. Khudhair,, S. A. K. Razack,, S. Al-Hallaj, 2004. A review on phase change energy storage: Materials and applications. Energ Convers Manage, 45: 1597-1615.
D. Fernandes,, F. Pitié,, G. Cáceres,, J. Baeyens, 2012. Thermal energy storage: “How previous findings determine current research priorities”. Energy, 39: 246-257.
F. Fornarelli,, S. M. Camporeale,, B. Fortunato,, M. Torresi,, P. Oresta,, L. Magliocchetti,, A. Miliozzi,, G. Santo, 2016. CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants. Appl Energ, 164: 711-722.
F. Frusteri,, V. Leonardi,, G. Maggio, 2006. Numerical approach to describe the phase change of an inorganic PCM containing carbon fibres. Appl Therm Eng, 26: 1883-1892.
J. Fukai,, M. Kanou,, Y. Kodama,, O. Miyatake, 2000. Thermal conductivity enhancement of energy storage media using carbon fibers. Energ Convers Manage, 41: 1543-1556.
V. Geros,, M. Santamouris,, S. Karatasou,, A. Tsangrassoulis,, N. Papanikolaou, 2005. On the cooling potential of night ventilation techniques in the urban environment. Energ Buildings, 37: 243-257.
B. Givoni, 1991. Performance and applicability of passive and low- energy cooling systems. Energ Buildings, 17: 177-199.
E. Günther,, H. Mehling,, S. Hiebler, 2007a. Modeling of subcooling and solidification of phase change materials. Modelling Simul Mater Sci Eng, 15: 879-892.
E. Günther,, H. Mehling,, M. Werner, 2007b. Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J Phys D: Appl Phys, 40: 4636-4641.
G. Hed,, R. Bellander, 2006. Mathematical modelling of PCM air heat exchanger. Energ Buildings, 38: 82-89.
C. J. Ho,, J. Y. Gao, 2013. An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure. Int J Heat Mass Tran, 62: 2-8.
M. J. Hosseini,, M. Rahimi,, R. Bahrampoury, 2014. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int Commun Heat Mass, 50: 128-136.
N. I. Ibrahim,, F. A. Al-Sulaiman,, S. Rahman,, B. S. Yilbas,, A. Z. Sahin, 2017. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renew Sustain Energ Rev, 74: 26-50.
K. A. R. Ismail,, F. A. M. Lino,, R. C. R. da Silva,, A. B. de Jesus,, L. C. Paixão, 2014. Experimentally validated two dimensional numerical model for the solidification of PCM along a horizontal long tube. Int J Therm Sci, 75: 184-193.
K. A. R. Ismail,, R. I. R. Moraes, 2009. A numerical and experimental investigation of different containers and PCM options for cold storage modular units for domestic applications. Int J Heat Mass Tran, 52: 4195-4202.
M. Iten,, S. Liu, 2014. A work procedure of utilising PCMs as thermal storage systems based on air-TES systems. Energ Convers Manage, 77: 608-627.
M. Iten,, S. Liu,, A. Shukla, 2016. A review on the air-PCM-TES application for free cooling and heating in the buildings. Renew Sustain Energ Rev, 61: 175-186.
L. A. M. Janssen,, C. J. Hoogendoorn, 1978. Laminar convective heat transfer in helical coiled tubes. Int J Heat Mass Tran, 21: 1197-1206.
Y. Jiang,, Y. P. Zhang,, J. J. Xu,, Y. Jiang,, Y. B. Kang, 2000. Experimental study of thermal characteristics of latent thermal storage systems with rectangular containers containing PCM. Acta Energiae Solaris Sinica, 21: 358-363.
I. Jmal,, M. Baccar, 2015. Numerical study of PCM solidification in a finned tube thermal storage including natural convection. Appl Therm Eng, 84: 320-330.
Y. Kang,, Y. Jiang,, Y. Zhang, 2003. Modeling and experimental study on an innovative passive cooling system—NVP system. Energ Buildings, 35: 417-425.
M. Kenisarin,, K. Mahkamov, 2007. Solar energy storage using phase change materials. Renew Sustain Energ Rev, 11: 1913-1965.
M. A. Kibria,, M. R. Anisur,, M. H. Mahfuz,, R. Saidur,, I. H. S. C. Metselaar, 2014. Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system. Int Commun Heat Mass, 53: 71-78.
A. Lazaro,, P. Dolado,, J. M. Marin,, B. Zalba, 2009a. PCM-air heat exchangers for free-cooling applications in buildings: Empirical model and application to design. Energ Convers Manage, 50: 444-449.
A. Lazaro,, P. Dolado,, J. M. Marín,, B. Zalba, 2009b. PCM-air heat exchangers for free-cooling applications in buildings: Experimental results of two real-scale prototypes. Energ Convers Manage, 50: 439-443.
X. Li,, C. Tong,, L. Duanmu,, L. Liu, 2017. Study of a U-tube heat exchanger using a shape-stabilized phase change backfill material. Sci Technol Built En, 23: 430-440.
Z. Li,, Z. Wu, 2014. Numerical study on the thermal behavior of phase change materials (PCMs) embedded in porous metal matrix. Sol Energy, 99: 172-184.
W. Lin,, Z. Ma,, C. McDowell,, Y. Baghi,, B. Banfield, 2020. Optimal design of a thermal energy storage system using phase change materials for a net-zero energy Solar Decathlon house. Energ Buildings, 208: 109626.
M. Liu,, W. Saman,, F. Bruno, 2012. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energ Rev, 16: 2118-2132.
M. Liu,, N. H. Steven Tay,, S. Bell,, M. Belusko,, R. Jacob,, G. Will,, W. Saman,, F. Bruno, 2016. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew Sustain Energ Rev, 53: 1411-1432.
S. Liu,, M. Iten,, A. Shukla, 2017. Numerical study on the performance of an air—Multiple PCMs unit for free cooling and ventilation. Energ Buildings, 151: 520-533.
K. Luo,, F. Yao,, H. Yi,, H. Tan, 2015. Lattice Boltzmann simulation of convection melting in complex heat storage systems filled with phase change materials. Appl Therm Eng, 86: 238-250.
S. Lv,, N. Zhu,, G. Feng, 2006. Impact of phase change wall room on indoor thermal environment in winter. Energ Buildings, 38: 18-24.
J. M. Marín,, B. Zalba,, L. F. Cabeza,, H. Mehling, 2005. Improvement of a thermal energy storage using plates with paraffin-graphite composite. Int J Heat Mass Tran, 48: 2561-2570.
S. Mat,, A. A. Al-Abidi,, K. Sopian,, M. Y. Sulaiman,, A. T. Mohammad, 2013. Enhance heat transfer for PCM melting in triplex tube with internal-external fins. Energ Convers Manage, 74: 223-236.
S. Medved,, C. Arkar, 2008. Correlation between the local climate and the free-cooling potential of latent heat storage. Energ Buildings, 40: 429-437.
T. Meng, 2009. Numerical simulation and experimental study for the radiative cooling. Master Dissertation. Jiangsu University, China.
O. Mesalhy,, K. Lafdi,, A. Elgafy,, K. Bowman, 2005. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energ Convers Manage, 46: 847-867.
N. Morovat,, A. K. Athienitis,, J. A. Candanedo,, V. Dermardiros, 2019. Simulation and performance analysis of an active PCM-heat exchanger intended for building operation optimization. Energ Buildings, 199: 47-61.
A. H. Mosaffa,, C. A. Infante Ferreira,, F. Talati,, M. A. Rosen, 2013. Thermal performance of a multiple PCM thermal storage unit for free cooling. Energ Convers Manage, 67: 1-7.
S. Motahar,, N. Nikkam,, A. A. Alemrajabi,, R. Khodabandeh,, M. S. Toprak,, M. Muhammed, 2014. Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles. Int Commun Heat Mass, 59: 68-74.
R. E. Murray,, D. Groulx, 2014. Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging. Renew Energ, 62: 571-581.
K. E. N’Tsoukpoe,, H. Liu,, N. Le Pierrès,, L. Luo, 2009. A review on long-term sorption solar energy storage. Renew Sustain Energ Rev, 13: 2385-2396.
K. Nagano,, S. Takeda,, T. Mochida,, K. Shimakura,, T. Nakamura, 2006. Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage— Heat response in small scale experiments. Energ Buildings, 38: 436-446.
F. Nicol, 2004. Adaptive thermal comfort standards in the hot-humid tropics. Energ Buildings, 36: 628-637.
J. F. Nicol,, M. A. Humphreys, 2002. Adaptive thermal comfort and sustainable thermal standards for buildings. Energ Buildings, 34: 563-572.
E. Oró,, L. Miró,, M. M. Farid,, L. F. Cabeza, 2012. Improving thermal performance of freezers using phase change materials. Int J Refrig, 35: 984-991.
E. Osterman,, V. Butala,, U. Stritih, 2015. PCM thermal storage system for ‘free’ heating and cooling of buildings. Energ Buildings, 106: 125-133.
Y. Özonur,, M. Mazman,, H. Ö. Paksoy,, H. Evliya, 2006. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int J Energy Res, 30: 741-749.
Y. Pahamli,, M. J. Hosseini,, A. A. Ranjbar,, R. Bahrampoury, 2017. Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger. J Taiwan Inst Chem E, 81: 316-334.
Y. Pahamli,, M. J. Hosseini,, A. A. Ranjbar,, R. Bahrampoury, 2018. Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger. Appl Math Comput, 316: 30-42.
V. Pandiyarajan,, M. Chinna Pandian,, E. Malan,, R. Velraj,, R. V. Seeniraj, 2011. Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Appl Energ, 88: 77-87.
A. Pasupathy,, R. Velraj, 2008. Effect of double layer phase change material in building roof for year round thermal management. Energ Buildings, 40: 193-203.
A. Pasupathy,, R. Velraj,, R. V. Seeniraj, 2008. Phase change material- based building architecture for thermal management in residential and commercial establishments. Renew Sustain Energ Rev, 12: 39-64.
G. Peiró,, J. Gasia,, L. Miró,, L. F. Cabeza, 2015. Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage. Renew Energ, 83: 729-736.
L. Pérez-Lombard,, J. Ortiz,, C. Pout, 2008. A review on buildings energy consumption information. Energ Buildings, 40: 394-398.
M. Rahimi,, A. A. Ranjbar,, D. D. Ganji,, K. Sedighi,, M. J. Hosseini,, R. Bahrampoury, 2014a. Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger. Int Commun Heat Mass, 53: 109-115.
M. Rahimi,, A. A. Ranjbar,, D. D. Ganji,, K. Sedighi,, M. J. Hosseini, 2014b. Experimental investigation of phase change inside a finned-tube heat exchanger. J Eng, 2014: 1-11.
V. A. A. Raj,, R. Velraj, 2010. Review on free cooling of buildings using phase change materials. Renew Sustain Energ Rev, 14: 2819-2829.
A. F. Regin,, S. C. Solanki,, J. S. Saini, 2008. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renew Sustain Energ Rev, 12: 2438-2458.
W. J. Rice, 1984. Performance of passive and hybrid solar heating systems. Int J Ambient Energ, 5: 171-186.
S. Riffat,, B. Mempouo,, W. Fang, 2015. Phase change material developments: a review. Int J Ambient Energ, 36: 102-115.
W. Saman,, F. Bruno,, E. Halawa, 2005. Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Sol Energy, 78: 341-349.
A. Sarı, 2004. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: Preparation and thermal properties. Energ Convers Manage, 45: 2033-2042.
A. Sarı,, A. Karaipekli, 2007. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng, 27: 1271-1277.
S. Seddegh,, X. Wang,, A. D. Henderson, 2015a. Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system. Appl Therm Eng, 87: 698-706.
S. Seddegh,, X. Wang,, A. D. Henderson,, Z. Xing, 2015b. Solar domestic hot water systems using latent heat energy storage medium: A review. Renew Sustain Energ Rev, 49: 517-533.
A. Sharma,, V. V. Tyagi,, C. R. Chen,, D. Buddhi, 2009. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energ Rev, 13: 318-345.
S. D. Sharma,, K. Sagara, 2005. Latent heat storage materials and systems: A review. Int J Green Energy, 2: 1-56.
F. Souayfane,, F. Fardoun,, P. H. Biwole, 2016. Phase change materials (PCM) for cooling applications in buildings: A review. Energ Buildings, 129: 396-431.
P. V. S. S. Srivatsa,, R. Baby,, C. Balaji, 2014. Numerical investigation of PCM based heat sinks with embedded metal foam/crossed plate fins. Numer Heat Tr A: Appl, 66: 1131-1153.
U. Stritih,, V. Butala, 2007. Energy saving in building with PCM cold storage. Int J Energy Res, 31: 1532-1544.
J. Sun,, P. Du,, P. Li,, Y. Zhang,, W. Li, 2017. The numerical simulation about energy storage process of spiral tube phase-change energy storage box. Fluid Machinery, 45: 62, 76-81. (in Chinese)
S. Takeda,, K. Nagano,, T. Mochida,, K. Shimakura, 2004. Development of a ventilation system utilizing thermal energy storage for granules containing phase change material. Sol Energy, 77: 329-338.
F. L. Tan,, S. F. Hosseinizadeh,, J. M. Khodadadi,, L. Fan, 2009. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Tran, 52: 3464-3472.
R. Tang,, Y. Etzion,, I. A. Meir, 2004. Estimates of clear night sky emissivity in the Negev Highlands, Israel. Energ Convers Manage, 45: 1831-1843.
Y. B. Tao,, Y. L. He,, Z. G. Qu, 2012. Numerical study on performance of molten salt phase change thermal energy storage system with enhanced tubes. Sol Energy, 86: 1155-1163.
Y. Tian,, C. Y. Zhao, 2011. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy, 36: 5539-5546.
A. Trp, 2005. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol Energy, 79: 648-660.
J. R. Turnpenny,, D. W. Etheridge,, D. A. Reay, 2000. Novel ventilation cooling system for reducing air conditioning in buildings. Appl Therm Eng, 20: 1019-1037.
J. R. Turnpenny,, D. W. Etheridge,, D. A. Reay, 2001. Novel ventilation system for reducing air conditioning in buildings. Part II: Testing of prototype. Appl Therm Eng, 21: 1203-1217.
S. M. Vakilaltojjar, 2000. Phase change thermal storage system for space heating and cooling. Ph.D. Dissertation. University of South Australia.
R. Velraj,, R. V. Seeniraj,, B. Hafner,, C. Faber,, K. Schwarzer, 1997. Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit. Sol Energy, 60: 281-290.
W. Z. Wang,, G. Q. Huang,, J. Lu, 2019. Study on structure optimization and refrigeration performance of night sky radiator. Acta Energiae Solaris Sinica, 48: 1842-1849.
W. Wang,, X. Yang,, Y. Fang,, J. Ding,, J. Yan, 2009. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-aluminum nitride. Appl Energ, 86: 1196-1200.
Y. Wang,, X. Yang,, T. Xiong,, W. Li,, K. W. Shah, 2017. Performance evaluation approach for solar heat storage systems using phase change material. Energ Buildings, 155: 115-127.
A. Waqas,, S. Kumar, 2011a. Thermal performance of latent heat storage for free cooling of buildings in a dry and hot climate: An experimental study. Energ Buildings, 43: 2621-2630.
A. Waqas,, S. Kumar, 2011b. Utilization of latent heat storage unit for comfort ventilation of buildings in hot and dry climates. Int J Green Energy, 8: 1-24.
A. Waqas,, Z. Ud Din, 2013. Phase change material (PCM) storage for free cooling of buildings—A review. Renew Sustain Energ Rev, 18: 607-625.
H. Wu,, Q. Liu,, Z. Bai,, G. Xie,, J. Zheng,, B. Su, 2020. Thermodynamics analysis of a novel steam/air biomass gasification combined cooling, heating and power system with solar energy. Appl Therm Eng, 164: 114494.
T. Wu,, C. Lei, 2016. A review of research and development on water wall for building applications. Energ Buildings, 112: 198-208.
X. Xiao,, P. Zhang, 2015a. Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I - Charging process. Energy, 79: 337-350.
X. Xiao,, P. Zhang, 2015b. Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part II - Discharging process. Energy, 80: 177-189.
T. Xiong, 2017. Investigation of melting and solidification in a latent heat thermal energy storage unit using a helical coil heat exchanger. Master Dissertation. Chongqing University, China.
B. Xu,, P. Li,, C. Chan, 2015. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Appl Energ, 160: 286-307.
Y. Xu,, Y. He,, Y. Li,, H. Song, 2016. Exergy analysis and optimization of charging-discharging processes of latent heat thermal energy storage system with three phase change materials. Sol Energy, 123: 206-216.
Z. G. Xu,, C. Y. Zhao,, Y. N. Ji,, Y. Zhao, 2014. State-of-the-art of phase-change thermal storage at middle-low temperature. Energy Storage Science and Technology, 3: 179-190.
D. Yang,, R. Shi,, H. Wei,, J. Du,, J. Wang, 2019a. Investigation of the performance of a cylindrical PCM-to-air heat exchanger (PAHE) for free ventilation cooling in fluctuating ambient environments. Sustain Cities Soc, 51: 101764.
L. Yang,, H. Peng,, X. Ling,, H. Dong, 2015. Numerical analysis on performance of naphthalene phase change thermal storage system in aluminum plate-fin unit. Heat Mass Transfer, 51: 195-207.
X. Yang, 2017. Matching study on the latent heat thermal energy storage device in the solar heating system using phase change material. Ph.D. Dissertation. Chongqing University, China.
X. Yang,, T. Xiong,, J. Dong,, W. Li,, Y. Wang, 2017. Investigation of the dynamic melting process in a thermal energy storage unit using a helical coil heat exchanger. Energies, 10: 1129.
Z. Yang,, L. Chen,, Y. Li,, Z. Xia,, C. Wang, 2019b. Numerical investigation of heat transfer characteristics in a shell-and-tube latent heat thermal energy storage system. Energy Procedia, 160: 475-482.
B. Y. Yun,, S. Yang,, H. M. Cho,, S. J. Chang,, S. Kim, 2019. Design and analysis of phase change material based floor heating system for thermal energy storage. Environ Res, 173: 480-488.
B. Zalba,, J. M. MarÍn,, L. F. Cabeza,, H. Mehling, 2003. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl Therm Eng, 23: 251-283.
B. Zalba,, J. M. MarÍn,, L. F. Cabeza,, H. Mehling, 2004. Free-cooling of buildings with phase change materials. Int J Refrig, 27: 839-849.
X. Zhang,, Q. Xue,, H. Zou,, J. Liu,, C. Tian,, X. Zhang, 2017. Influence of heat exchanger tube layout on performance of heat pump system for electric cars. Energy Procedia, 105: 5085-5090.
Y. Zhong,, Q. Guo,, S. Li,, J. Shi,, L. Liu, 2010. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Sol Energ Mat Sol C, 94: 1011-1014.
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 January 2020
Revised: 16 March 2020
Accepted: 20 March 2020
Published: 29 April 2020
Issue date: June 2021

Copyright

© Tsinghua University Press 2020

Acknowledgements

The authors would like to express gratitude to the support provided by the Science and Technology Ministry of China (SQ2019YFE011560).

Return