AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Performance comparison of bubble point pressure from oil PVT data: Several neurocomputing techniques compared

Hamzeh Ghorbani1David A. Wood2 ( )Abouzar Choubineh3Nima Mohamadian4Afshin Tatar5Hamed Farhangian6Ali Nikooey3
Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
DWA Energy Limited, Lincoln, United Kingdom
Petroleum Department, Petroleum University of Technology, Ahwaz, Iran
Young Researchers and Elite Club, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
Young Researchers and Elite Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
Department of Chemical Engineering, Oil and Gas, Shiraz University, Shiraz, Iran
Show Author Information

Abstract

Pressure-Volume-Temperature (PVT) characterization of a crude oil involves establishing its bubble point pressure, which is the pressure at which the first gas bubble forms on a fluid sample while reducing pressure at a stabilized temperature. Although accurate measurement can be made experimentally, such experiments are expensive and time-consuming. Consequently, applying reliable artificial intelligence (AI)/machine learning methods to provide an accurate mathematical prediction of an oil’s bubble point pressure from more easily measured characteristics can provide valuable cost and time savings.

This paper develops and compares four neurocomputing models applying algorithms consisting of a Multilayer Perceptron (MLP), a Radial Basis Function trained with a Genetic Algorithm (RBF-GA), a Combined Hybrid Particle Swarm Optimization-Adaptive Neuro-Fuzzy Inference System (CHPSO-ANFIS), and Least Squared Support Vector Machine (LSSVM) tuned with a coupled simulated annealing (CSA) optimizer. Based on a comprehensive analysis, although the four proposed models yield acceptable outputs, the CHPSO-ANFIS model has the best performance with the average absolute relative deviation of 0.846, the standard deviation of 0.0126, the root mean square error of 43.21, and the correlation coefficient of 0.9902. These algorithms are deployed for the accurate estimation of the bubble point pressure from the giant Ahvaz oil field (Iran).

References

 
Adeleke, N., Ityokumbul, M. T., Adewumi, M. 2013. Blockage detection and characterization in natural gas pipelines by transient pressure-wave reflection analysis. SPE J, 18: 355-365.
 
Ahmadi, M. A., Zendehboudi, S., Lohi, A., Elkamel, A., Chatzis., I. 2013. Application of hybrid genetic algorithm with particle swarm optimization and neural network for reservoir permeability prediction. J Geophys Prospect, 61: 582-598.
 
AlAjmi, M. D., Alarifi, S. A., Mahsoon, A. H. 2015. Improving multiphase choke performance prediction and well production test validation using artificial intelligence: A new milestone. In: Proceedings of the SPE Digital Energy Conference and Exhibition: SPE-173394-MS.
 
Al-Marhoun, M. A. 1988. PVT correlations for middle east crude oils. J Petrol Technol, 40: 650-666.
 
Al-Marhoun, M. A., Osman, E. A. 2002. Using artificial neural networks to develop new PVT correlations for saudi crude oils. In: Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference: SPE-78592-MS.
 
Almehaideb, R. A. 1997. Improved PVT correlations for UAE crude oils. In: Proceedings of the Middle East Oil Show and Conference: SPE-37691-MS.
 
Al-Shammasi, A. A. 2001. A review of bubblepoint pressure and oil formation volume factor correlations. SPE Reserv Eval Eng, 4: 146-160.
 
Arabloo, M., Amooie, M. A., Hemmati-Sarapardeh, A., Ghazanfari, M. H., Mohammadi, A. H. 2014. Application of constrained multi-variable search methods for prediction of PVT properties of crude oil systems. Fluid Phase Equilibr, 363: 121-130.
 
Asoodeh, M., Kazemi, K. 2013. Estimation of bubble point pressure: Using a genetic integration of empirical formulas. Energ Source Part A, 35: 1102-1109.
 
Atashnezhad, A., Wood, D. A., Fereidounpour, A., Khosravanian, R. 2014. Designing and optimizing deviated wellbore trajectories using novel particle swarm algorithms. J Nat Gas Sci Eng, 21: 1184-1204.
 
Bandyopadhyay, P., Sharma, A. 2011. Development of a new semi analytical model for prediction of bubble point pressure of crude oils. J Petrol Sci Eng, 78: 719-731.
 
Basarir, H., Tutluoglu, L., Karpuz, C. 2014. Penetration rate prediction for diamond bit drilling by adaptive neuro-fuzzy inference system and multiple regressions. Eng Geol, 173: 1-9.
 
Bolondarzadeh, A., Hashemi, S., Solgani, B. 2006. The new PVT generated correlations of Iranian oil properties. In: Proceedings of the 4th Iranian Petroleum Engineering Student Conference.
 
Boukadi, F. H., Bermani, A. S., Hashmi, A. 2002. PVT empirical models for saturated Omani crude oils. Petroleum Science and Technology, 20: 89-100.
 
Broomhead, D. S., Lowe, D. 1988. Radial basis functions, multi-variable functional interpolation and adaptive networks (No. RSRE-MEMO-4148). Royal Signals and Radar Establishment Malvern (United Kingdom).
 
Choubineh, A., Ghorbani, H., Wood, D. A., Robab Moosavi, S., Khalafi, E., Sadatshojaei, E. 2017. Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization. Fuel, 207: 547-560.
 
Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function. Math Control Signals Syst, 2: 303-314.
 
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life. London: John Murray.
 
Deisman, N., Khajeh, M., Chalaturnyk, R. J. 2013. Using geological strength index (GSI) to model uncertainty in rock mass properties of coal for CBM/ECBM reservoir geomechanics. Int J Coal Geol, 112: 76-86.
 
Dindoruk, B., Christman, P. G. 2004. PVT properties and viscosity correlations for gulf of Mexico oils. SPE Reserv Eval Eng, 7: 427-437.
 
Dixit, N., Zeng, D. L., Kalonia, D. S. 2012. Application of maximum bubble pressure surface tensiometer to study protein-surfactant interactions. Int J Pharmaceut, 439: 317-323.
 
Dokla, M., Osman, M. 1992. Correlation of PVT properties for UAE crudes (includes associated papers 26135 and 26316). SPE Formation Eval, 7: 41-46.
 
Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S. A., Gayyed, M. F., Anders, R. A., Maitra, A., Pan, D. 2007. Elucidation of a universal size-control mechanism in drosophila and mammals. Cell, 130: 1120-1133.
 
Dutta, S., Gupta, J. P. 2010. PVT correlations for Indian crude using artificial neural networks. J Petro Sci Eng, 72: 93-109.
 
El-Sebakhy, E., Sheltami, T., Al-Bokhitan, S., Shaaban, Y., Raharja, P., Khaeruzzaman, Y. 2007. Support vector machines framework for predicting the PVT properties of crude-oil systems. In: Proceedings of the SPE Middle East Oil and Gas Show and Conference: SPE-105698-MS.
 
Elsharkawy, A. M. 1998. Modeling the properties of crude oil and gas systems using RBF network. In: Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition: SPE-49961-MS.
 
Elsharkawy, A. M., Elgibaly, A. A., Alikhan, A. A. 1995. Assessment of the PVT correlations for predicting the properties of Kuwaiti crude oils. J Petrol Sci Eng, 13: 219-232.
 
Fainerman, V. B., Miller, R. 2004. Maximum bubble pressure tensiometry—An analysis of experimental constraints. Adv Colloid Interfac, 108-109: 287-301.
 
Farasat, A., Shokrollahi, A., Arabloo, M., Gharagheizi, F., Mohammadi, A. H. 2013. Toward an intelligent approach for determination of saturation pressure of crude oil. Fuel Process Technol, 115: 201-214.
 
Farshad, F., LeBlanc, J. L. Garber, J. D., Osorio, J. G. 1996. Empirical PVT correlations for colombian crude oils. In: Proceedings of the SPE Latin America/Caribbean Petroleum Engineering Conference: SPE-36105-MS.
 
Gharbi, R. B., Elsharkawy, A. M. 1997. Neural network model for estimating the PVT properties of middle east crude oils. In: Proceedings of the Middle East Oil Show and Conference: SPE-37695-MS.
 
Gharbi, R. B., Elsharkawy, A. M., Karkoub, M. 1999. Universal neural-network-based model for estimating the PVT properties of crude oil systems. Energ Fuel, 13: 454-458.
 
Ghorbani, H., Moghadasi, J., Wood, D. A. 2017. Prediction of gas flow rates from gas condensate reservoirs through wellhead chokes using a firefly optimization algorithm. J Nat Gas Sci Eng, 45: 256-271.
 
Ghorbani, H., Wood, D. A., Choubineh, A., Tatar, A., Abarghoyi, P. G., Madani, M., Mohamadian, N. 2018. Prediction of oil flow rate through an orifice flow meter: Artificial intelligence alternatives compared. Petroleum, .
 
Ghorbani, H., Wood, D. A., Moghadasi, J., Choubineh, A., Abdizadeh, P., Mohamadian, N. 2019. Predicting liquid flow-rate performance through wellhead chokes with genetic and solver optimizers: An oil field case study. J Petrol Explor Prod Technol, 9: 1355-1373.
 
Glaso, O. 1980. Generalized pressure-volume-temperature correlations. J Petrol Technol, 32: 785-795.
 
Goda, M. H., Shokir, E. M., Fattah, K. A., Sayyouh, M. H. 2003. Prediction of the PVT data using neural network computing theory. In: Proceedings of the Nigeria Annual International Conference and Exhibition: SPE-85650-MS.
 
Gomaa, S. 2016. New bubble point pressure correlation for middle east crude oils. International Advanced Research Journal in Science, Engineering and Technology, 3: 1-9.
 
Haykin, S. 1994. Neural Networks: a Comprehensive Foundation. Prentice Hall PTR Upper Saddle River.
 
Hemmati, M. N., Kharrat, R. 2007. A correlation approach for prediction of crude oil PVT properties. In: Proceedings of the SPE Middle East Oil and Gas Show and Conference: SPE-104543-MS.
 
Holcomb, C., Outcalt, S. 1999. Near-saturation (P, ρ, T) and vapor-pressure measurements of NH3, and liquid-phase isothermal (P, ρ, T) and bubble-point-pressure measurements of NH3+H2O mixtures. Fluid Phase Equilibr, 164: 97-106.
 
Hush, D. R., Horne, B. G. 1993. Progress in supervised neural networks. IEEE Sig Proc Mag, 10: 8-39.
 
Ikiensikimama, S. S., Ajienka, J. A. 2012. Impact of PVT correlations development on hydrocarbon accounting: The case of the Niger Delta. J Petrol Sci Eng, 81: 80-85.
 
Ikiensikimama, S. S., Ogboja, O. 2009. New bubblepoint pressure empirical PVT correlation. In: Proceedings of the Nigeria Annual International Conference and Exhibition: SPE-128893-MS.
 
Jang, J. S. R., Sun, C. T., Mizutani, E. 1997. Neuro-Fuzzy and Soft Computing. Prentice Hall: 335-368.
 
Jang, J.-S. R. 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE T Syst Man Cyb, 23: 665-685.
 
Kartoatmodjo, T., Schmidt, Z. 1994. Large data bank improves crude physical property correlations. Oil and Gas Journal, 92(27).
 
Kennedy, J., Eberhart, R. 1995. Particle swarm optimization. In: Proceedings of ICNN'95 - International Conference on Neural Networks, 4: 1942-1948.
 
Kirkpatrick, S., Gelatt Jr., C. D., Vecchi, M. P. 1983. Optimization by simulated annealing. Science, 220: 671-680.
 
Kloubek, J. 1972. Measurement of the dynamic surface tension by the maximum bubble pressure method. III. Factors influencing the measurements at high frequency of the bubble formation and an extension of the evaluation to zero age of the surface. J Colloid Interf Sci, 41: 7-16.
 
Lasater, J. A. 1958. Bubble point pressure correlation. J Petrol Technol, 10: 65-67.
 
Li, H., Yang, D. T. 2012. Phase behaviour of C3H8-n-C4H10-heavy oil systems at high pressures and elevated temperatures. In: Proceedings of the SPE Heavy Oil Conference Canada: SPE-157744-MS.
 
Liscic, B., Tensi, H. M., Canale, L. C. E., Totten, G. 2010. Quenching Theory and Technology, 2nd edn. CRC Press.
 
Malallah, A. M., Gharbi, R., Algharaib, M. 2006. Accurate estimation of the world crude oil PVT properties using graphical alternating conditional expectation. Energy Fuels, 20: 688-698.
 
Mansouri, V., Khosravanian, R., Wood, D. A., Aadnoy, B. S. 2015. 3-D well path design using a multi objective genetic algorithm. J Nat Gas Sci Eng, 27: 219-235.
 
McCain Jr., W. D. 1991. Reservoir-fluid property correlations - State of the art. SPE Reservoir Eng, 6: SPE-18571-PA.
 
Mehran, F., Movagharnejad, K., Didanloo, A. 2006. New correlation for estimation of formation vilume factor and bubblepoint pressure for Iranian oil fields. In: Proceedings of the 1st Iranian Pet. Eng. Conference.
 
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E. 1953. Equation of state calculations by fast computing machines. J Chem Phys, 21: 1087-1092.
 
Mishchuk, N. A., Fainerman, V. B., Kovalchuk, V. I., Miller, R., Dukhin, S. S. 2000. Studies of concentrated surfactant solutions using the maximum bubble pressure method. Colloid Surface A, 175: 207-216.
 
Moradi, B., Malekzadeh, E., Amani, M., Boukadi, F. H., Kharrat, R. 2010. Bubble point pressure empirical correlation. In: Proceedings of the Trinidad and Tobago Energy Resources Conference: SPE-132756-MS.
 
Nnochiri, M. O., Lawal, K. A. 2010. How variable fluid PVT model affects the performance of an integrated production system. In: Proceedings of the SPE EUROPEC/EAGE Annual Conference and Exhibition: SPE-130881-MS.
 
Onwunalu, J. E. O., Durlofsky, L. J. 2010. Application of a particle swarm optimization algorithm for determining optimum well location and type. Computat Geosci, 14: 183-198.
 
Petrosky Jr., G. E., Farshad, F. F. 1993. Pressure-volume-temperature correlations for gulf of Mexico crude oils. In: Proceedings of the SPE Annual Technical Conference and Exhibition: SPE-26644-MS.
 
Proett, M. A., Chin, W. C., Mandal, B. 2000. Advanced dual probe formation tester with transient, harmonic, and pulsed time-delay testing methods determines permeability, skin, and anisotropy. In: Proceedings of the International Oil and Gas Conference and Exhibition in China: SPE-64650-MS.
 
Sayahi, T., Tatar, A., Bahrami, M. 2016. A RBF model for predicting the pool boiling behavior of nanofluids over a horizontal rod heater. Int J Therm Sci, 99: 180-194.
 
Simjoo, M., Dong, Y., Andrianov, A., Talanana, M., Zitha, P. L. J. 2013. Novel insight into foam mobility control. SPE J, 18: 416-427.
 
Standing, M. B. 1947. A pressure-volume-temperature correlation for mixtures of California oils and gases. Drilling and Production Practice, API-47-275: 275-287.
 
Sun, H., Fang, W., Guo, Y., Lin, R. 2005. Investigation of bubble-point vapor pressures for mixtures of an endothermic hydrocarbon fuel with ethanol. Fuel, 84: 825-831.
 
Tadeusiewicz, R. 1995. Neural networks: A comprehensive foundation. Control Eng Pract, 3: 746-747.
 
Valkó, P. P., McCain Jr., W. D. 2003. Reservoir oil bubblepoint pressures revisited; solution gas-oil ratios and surface gas specific gravities. J Petrol Sci Eng, 37: 153-169.
 
Vapnik, V. 2013. The Nature of Statistical Learning Theory. Springer Science & Business Media.
 
Vasquez, M., Beggs, H. D. 1980. Correlations for fluid physical property prediction. J Petrol Technol, 32: 968-970.
 
Velarde, J., Blosingame, T. A., McCain Jr., W. D. 1997. Correlation of black oil properties at pressures below bubble point pressure - A new approach. In: Proceedings of the Annual Technical Meeting: PETSOC-97-93.
 
Xavier-de-Souza, S., Suykens, J. A. K., Vandewalle, J., Bolle, D. 2010. Coupled simulated annealing. IEEE T Syst Man Cy B, 40: 320-335.
 
Yasari, E., Pishvaie, M. R., Khorasheh, F., Salahshoor, K., Kharrat, R. 2013. Application of multi-criterion robust optimization in water-flooding of oil reservoir. J Petrol Sci Eng, 109: 1-11.
 
Yavari, H., Sabah, M., Khosravanian, R. Wood, D. A. 2018. Application of adaptive neuro-fuzzy inference system and mathematical ROP models for prediction of drilling rate. Iranian Journal of Oil & Gas Science and Technology, 7: 73-100.
 
Yazaydin, A. Ö., Martin, M. G. 2007. Bubble point pressure estimates from Gibbs ensemble simulations. Fluid Phase Equilibr, 260: 195-198.
 
Zoveidavianpoor, M., Samsuri, A., Shadizadeh, S. R. 2013. Adaptive neuro fuzzy inference system for compressional wave velocity prediction in a carbonate reservoir. J Appl Geophys, 89: 96-107.
Experimental and Computational Multiphase Flow
Pages 225-246
Cite this article:
Ghorbani H, Wood DA, Choubineh A, et al. Performance comparison of bubble point pressure from oil PVT data: Several neurocomputing techniques compared. Experimental and Computational Multiphase Flow, 2020, 2(4): 225-246. https://doi.org/10.1007/s42757-019-0047-5

807

Views

36

Crossref

33

Web of Science

37

Scopus

Altmetrics

Received: 13 July 2019
Revised: 01 September 2019
Accepted: 01 September 2019
Published: 18 December 2019
© Tsinghua University Press 2019
Return