Journal Home > Volume 10 , Issue 11

Despite numerous experimental and theoretical studies reported in the literature, surface micro-texturing to control friction and wear in lubricated tribo-contacts is still in the trial-and-error phase. The tribological behaviour and advantageous micro-texture geometries and arrangements largely depend on the contact type and the operating conditions. Industrial scale implementation is hampered by the complexity of numerical approaches. This substantiates the urgent need to numerically design and optimize micro-textures for specific conditions. Since these aspects have not been covered by other review articles yet, we aim at summarizing the existing state-of–the art regarding optimization strategies for micro-textures applied in hydrodynamically and elastohydrodynamically lubricated contacts. Our analysis demonstrates the great potential of optimization strategies to further tailor micro-textures with the overall aim to reduce friction and wear, thus contributing toward an improved energy efficiency and sustainability.


menu
Abstract
Full text
Outline
About this article

Numerical micro-texture optimization for lubricated contacts—A critical discussion

Show Author's information Max MARIAN1( )Andreas ALMQVIST2Andreas ROSENKRANZ3Michel FILLON4
Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Santiago 690411, Chile
Division of Machine Elements, Luleå University of Technology, Luleå SE-971 87, Sweden
Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago 8370456, Chile
Institut Pprime, CNRS, University of Poitiers, Poitiers Cedex TSA 41123, 86073, France

Abstract

Despite numerous experimental and theoretical studies reported in the literature, surface micro-texturing to control friction and wear in lubricated tribo-contacts is still in the trial-and-error phase. The tribological behaviour and advantageous micro-texture geometries and arrangements largely depend on the contact type and the operating conditions. Industrial scale implementation is hampered by the complexity of numerical approaches. This substantiates the urgent need to numerically design and optimize micro-textures for specific conditions. Since these aspects have not been covered by other review articles yet, we aim at summarizing the existing state-of–the art regarding optimization strategies for micro-textures applied in hydrodynamically and elastohydrodynamically lubricated contacts. Our analysis demonstrates the great potential of optimization strategies to further tailor micro-textures with the overall aim to reduce friction and wear, thus contributing toward an improved energy efficiency and sustainability.

Keywords: optimization, elastohydrodynamics, hydrodynamics, micro-texturing, tribo-simulation

References(372)

[1]
Hamilton D B, Walowit J A, Allen C M. A theory of lubrication by microirregularities. J Basic Eng 88(1): 177–185 (1966)
[2]
Anno J N, Walowit J A, Allen C M. Load support and leakage from microasperity-lubricated face seals. J Lubr Technol 91(4): 726–731 (1969)
[3]
Anno J N, Walowit J A, Allen C M. Microasperity lubrication. J Lubr Technol 90(2): 351–355 (1968)
[4]
Henry Y, Bouyer J, Fillon M. Experimental analysis of the hydrodynamic effect during start-up of fixed geometry thrust bearings. Tribol Int 120: 299–308 (2018)
[5]
Dadouche A, Conlon M J. Operational performance of textured journal bearings lubricated with a contaminated fluid. Tribol Int 93: 377–389 (2016)
[6]
Gropper D, Wang L, Harvey T J. Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings. Tribol Int 94: 509–529 (2016)
[7]
Sudeep U, Tandon N, Pandey R K. Performance of lubricated rolling/sliding concentrated contacts with surface textures: A review. J Tribol 137(3): 031501 (2015)
[8]
Dobrica M B, Fillon M. About the validity of Reynolds equation and inertia effects in textured sliders of infinite width. Proc Inst Mech Eng Part J J Eng Tribol 223(1): 69–78 (2009)
[9]
Arghir M, Roucou N, Helene M, Frene J. Theoretical analysis of the incompressible laminar flow in a macro-roughness cell. J Tribol 125(2): 309–318 (2003)
[10]
Gachot C, Rosenkranz A, Hsu S M, Costa H L. A critical assessment of surface texturing for friction and wear improvement. Wear 372–373: 21–41 (2017)
[11]
Rosenkranz A, Grützmacher P G, Gachot C, Costa H L. Surface texturing in machine elements—A critical discussion for rolling and sliding contacts. Adv Eng Mater 21(8): 1900194 (2019)
[12]
Grützmacher P G, Profito F J, Rosenkranz A. Multi-scale surface texturing in tribology—Current knowledge and future perspectives. Lubricants 7(11): 95 (2019)
[13]
Lu P, Wood R J K. Tribological performance of surface texturing in mechanical applications—A review. Surf Topogr: Metrol Prop 8(4): 043001 (2020)
[14]
Rosenkranz A, Costa H L, Baykara M Z, Martini A. Synergetic effects of surface texturing and solid lubricants to tailor friction and wear—A review. Tribol Int 155: 106792 (2021)
[15]
Allen Q, Raeymaekers B. Surface texturing of prosthetic hip implant bearing surfaces: A review. J Tribol 143(4): 040801 (2021)
[16]
Etsion I, Burstein L. A model for mechanical seals with regular microsurface structure. Tribol Trans 39(3): 677–683 (1996)
[17]
Etsion I, Kligerman Y, Halperin G. Analytical and experimental investigation of laser-textured mechanical seal faces. Tribol Trans 42(3): 511–516 (1999)
[18]
Etsion I, Halperin G. A laser surface textured hydrostatic mechanical seal. Tribol Trans 45(3): 430–434 (2002)
[19]
Etsion I. Improving tribological performance of mechanical components by laser surface texturing. Tribol Lett 17(4): 733–737 (2004)
[20]
Bai S X, Peng X D, Li Y F, Sheng S E. A hydrodynamic laser surface-textured gas mechanical face seal. Tribol Lett 38(2): 187–194 (2010)
[21]
Meng X K, Bai S X, Peng X D. Lubrication film flow control by oriented dimples for liquid lubricated mechanical seals. Tribol Int 77: 132–141 (2014)
[22]
Brunetière N, Tournerie B. Numerical analysis of a surface-textured mechanical seal operating in mixed lubrication regime. Tribol Int 49: 80–89 (2012)
[23]
Qiu Y, Khonsari M M. On the prediction of cavitation in dimples using a mass-conservative algorithm. J Tribol 131(4): 041702 (2009)
[24]
Qiu Y, Khonsari M M. Performance analysis of full-film textured surfaces with consideration of roughness effects. J Tribol 133(2): 021704 (2011)
[25]
Qiu Y, Khonsari M M. Experimental investigation of tribological performance of laser textured stainless steel rings. Tribol Int 44(5): 635–644 (2011)
[26]
Wang X L, Kato K, Adachi K, Aizawa K. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribol Int 36(3): 189–197 (2003)
[27]
Wang X L, Adachi K, Otsuka K, Kato K. Optimization of the surface texture for silicon carbide sliding in water. Appl Surf Sci 253(3): 1282–1286 (2006)
[28]
Zhang H, Zhang D Y, Hua M, Dong G N, Chin K S. A study on the tribological behavior of surface texturing on Babbitt alloy under mixed or starved lubrication. Tribol Lett 56(2): 305–315 (2014)
[29]
Zhang J G, Zhang J J, Rosenkranz A, Suzuki N, Shamoto E. Frictional properties of surface textures fabricated on hardened steel by elliptical vibration diamond cutting. Precis Eng 59: 66–72 (2019)
[30]
Brizmer V, Kligerman Y, Etsion I. A laser surface textured parallel thrust bearing. Tribol Trans 46(3): 397–403 (2003)
[31]
Etsion I, Halperin G, Brizmer V, Kligerman Y. Experimental investigation of laser surface textured parallel thrust bearings. Tribol Lett 17(2): 295–300 (2004)
[32]
Rahmani R, Shirvani A, Shirvani H. Optimization of partially textured parallel thrust bearings with square-shaped micro-dimples. Tribol Trans 50(3): 401–406 (2007)
[33]
Rahmani R, Mirzaee I, Shirvani A, Shirvani H. An analytical approach for analysis and optimisation of slider bearings with infinite width parallel textures. Tribol Int 43(8): 1551–1565 (2010)
[34]
Pascovici M D, Cicone T, Fillon M, Dobrica M B. Analytical investigation of a partially textured parallel slider. Proc Inst Mech Eng Part J J Eng Tribol 223(2): 151–158 (2009)
[35]
Dobrica M B, Fillon M, Pascovici M D, Cicone T. Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach. Proc Inst Mech Eng Part J J Eng Tribol 224(8): 737–750 (2010)
[36]
Marian V G, Kilian M, Scholz W. Theoretical and experimental analysis of a partially textured thrust bearing with square dimples. Proc Inst Mech Eng Part J J Eng Tribol 221(7): 771–778 (2007)
[37]
Guzek A, Podsiadlo P, Stachowiak G W. A unified computational approach to the optimization of surface textures: One dimensional hydrodynamic bearings. Tribol Online 5(3): 150–160 (2010)
[38]
Guzek A, Podsiadlo P, Stachowiak G W. Optimization of textured surface in 2D parallel bearings governed by the Reynolds equation including cavitation and temperature. Tribol Online 8(1): 7–21 (2013)
[39]
Gherca A, Fatu A, Hajjam M, Maspeyrot P. Effects of surface texturing in steady-state and transient flow conditions: Two-dimensional numerical simulation using a mass-conserving cavitation model. Proc Inst Mech Eng Part J J Eng Tribol 229(4): 505–522 (2015)
[40]
Charitopoulos A, Fouflias D, Papadopoulos C I, Kaiktsis L, Fillon M. Thermohydrodynamic analysis of a textured sector-pad thrust bearing: Effects on mechanical deformations. Mech Ind 15(5): 403–411 (2014)
[41]
Papadopoulos C I, Kaiktsis L, Fillon M. Computational fluid dynamics thermohydrodynamic analysis of three-dimensional sector-pad thrust bearings with rectangular dimples. J Tribol 136(1): 011702 (2014)
[42]
Papadopoulos C I, Efstathiou E E, Nikolakopoulos P G, Kaiktsis L. Geometry optimization of textured three-dimensional micro-thrust bearings. J Tribol 133(4): 041702 (2011)
[43]
Fouflias D G, Charitopoulos A G, Papadopoulos C I, Kaiktsis L, Fillon M. Performance comparison between textured, pocket, and tapered-land sector-pad thrust bearings using computational fluid dynamics thermohydrodynamic analysis. Proc Inst Mech Eng Part J J Eng Tribol 229(4): 376–397 (2015)
[44]
Henry Y, Bouyer J, Fillon M. An experimental analysis of the hydrodynamic contribution of textured thrust bearings during steady-state operation: A comparison with the untextured parallel surface configuration. Proc Inst Mech Eng Part J J Eng Tribol 229(4): 362–375 (2015)
[45]
Yu H, Deng H, Huang W, Wang X L. The effect of dimple shapes on friction of parallel surfaces. Proc Inst Mech Eng Part J J Eng Tribol 225(8): 693–703 (2011)
[46]
Yu H W, Wang X L, Zhou F. Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces. Tribol Lett 37(2): 123–130 (2010)
[47]
Qiu M F, Delic A, Raeymaekers B. The effect of texture shape on the load-carrying capacity of gas-lubricated parallel slider bearings. Tribol Lett 48(3): 315–327 (2012)
[48]
Qiu M F, Minson B R, Raeymaekers B. The effect of texture shape on the friction coefficient and stiffness of gas-lubricated parallel slider bearings. Tribol Int 67: 278–288 (2013)
[49]
Shen C, Khonsari M M. Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding. Tribol Int 82: 1–11 (2015)
[50]
Ryk G, Etsion I. Testing piston rings with partial laser surface texturing for friction reduction. Wear 261(7–8): 792–796 (2006)
[51]
Ryk G, Kligerman Y, Etsion I, Shinkarenko A. Experimental investigation of partial laser surface texturing for piston-ring friction reduction. Tribol Trans 48(4): 583–588 (2005)
[52]
Ryk G, Kligerman Y, Etsion I. Experimental investigation of laser surface texturing for reciprocating automotive components. Tribol Trans 45(4): 444–449 (2002)
[53]
Ronen A, Etsion I, Kligerman Y. Friction-reducing surface-texturing in reciprocating automotive components. Tribol Trans 44(3): 359–366 (2001)
[54]
Etsion I, Sher E. Improving fuel efficiency with laser surface textured piston rings. Tribol Int 42(4): 542–547 (2009)
[55]
Vlădescu S C, Olver A V, Pegg I G, Reddyhoff T. The effects of surface texture in reciprocating contacts—An experimental study. Tribol Int 82: 28–42 (2015)
[56]
Vlădescu S C, Olver A V, Pegg I G, Reddyhoff T. Combined friction and wear reduction in a reciprocating contact through laser surface texturing. Wear 358–359: 51–61 (2016)
[57]
Vlădescu S C, Ciniero A, Tufail K, Gangopadhyay A, Reddyhoff T. Looking into a laser textured piston ring–liner contact. Tribol Int 115: 140–153 (2017)
[58]
Vlădescu S C, Medina S, Olver A V, Pegg I G, Reddyhoff T. Lubricant film thickness and friction force measurements in a laser surface textured reciprocating line contact simulating the piston ring–liner pairing. Tribol Int 98: 317–329 (2016)
[59]
Profito F J, Vladescu S C, Reddyhoff T, Dini D. Experimental validation of a mixed-lubrication regime model for textured piston–ring–liner contacts. Matls Perf Charact 6(2): MPC20160019 (2017)
[60]
Profito F J, Vlădescu S C, Reddyhoff T, Dini D. Transient experimental and modelling studies of laser-textured micro-grooved surfaces with a focus on piston–ring cylinder liner contacts. Tribol Int 113: 125–136 (2017)
[61]
Morris N, Rahmani R, Rahnejat H, King P D, Fitzsimons B. Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication. Tribol Int 59: 248–258 (2013)
[62]
Shen C, Khonsari M M. The effect of laser machined pockets on the lubrication of piston ring prototypes. Tribol Int 101: 273–283 (2016)
[63]
Shen C, Khonsari M M. Tribological and sealing performance of laser pocketed piston rings in a diesel engine. Tribol Lett 64(2): 26 (2016)
[64]
Morris N, Rahmani R, Rahnejat H, King P D, Howell-Smith S. A numerical model to study the role of surface textures at top dead center reversal in the piston ring to cylinder liner contact. J Tribol 138(2): 021703 (2016)
[65]
Morris N, Leighton M, de La Cruz M, Rahmani R, Rahnejat H, Howell-Smith S. Combined numerical and experimental investigation of the micro-hydrodynamics of chevron-based textured patterns influencing conjunctional friction of sliding contacts. Proc Inst Mech Eng Part J J Eng Tribol 229(4): 316–335 (2015)
[66]
Checo H M, Ausas R F, Jai M, Cadalen J P, Choukroun F, Buscaglia G C. Moving textures: Simulation of a ring sliding on a textured liner. Tribol Int 72: 131–142 (2014)
[67]
Zhou Y K, Zhu H, Tang W, Ma C B, Zhang W Q. Development of the theoretical model for the optimal design of surface texturing on cylinder liner. Tribol Int 52: 1–6 (2012)
[68]
Wang W, He Y Y, Zhao J, Mao J Y, Hu Y T, Luo J B. Optimization of groove texture profile to improve hydrodynamic lubrication performance: Theory and experiments. Friction 8(1): 83–94 (2020)
[69]
Wang W, He Y Y, Zhao J, Li Y, Luo J B. Numerical optimization of the groove texture bottom profile for thrust bearings. Tribol Int 109: 69–77 (2017)
[70]
Wang X Y, Shi L P, Dai Q W, Huang W, Wang X L. Multi-objective optimization on dimple shapes for gas face seals. Tribol Int 123: 216–223 (2018)
[71]
Cupillard S, Cervantes M J, Glavatskih S. Pressure buildup mechanism in a textured inlet of a hydrodynamic contact. J Tribol 130(2): 021701 (2008)
[72]
Rosenkranz A, Costa H L, Profito F, Gachot C, Medina S, Dini D. Influence of surface texturing on hydrodynamic friction in plane converging bearings—An experimental and numerical approach. Tribol Int 134: 190–204 (2019)
[73]
Tønder K. Dimpled pivoted plane bearings: Modified coefficients. Tribol Int 43(12): 2303–2307 (2010)
[74]
Tønder K. Micro- and macro-modifications of pivoted slider bearings: Performance comparison and texturing versus width reduction. Tribol Int 44(4): 463–467 (2011)
[75]
Papadopoulos C I, Efstathiou E E, Nikolakopoulos P G, Kaiktsis L. Geometry optimization of textured 3-D micro-thrust bearings. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, Canada, 2012: 801–810.
[76]
Papadopoulos C I, Nikolakopoulos P G, Kaiktsis L. Characterization of stiffness and damping in textured sector pad micro thrust bearings using computational fluid dynamics. J Eng Gas Turbines Power 134(11): 112502 (2012)
[77]
Gropper D, Harvey T J, Wang L. Numerical analysis and optimization of surface textures for a tilting pad thrust bearing. Tribol Int 124: 134–144 (2018)
[78]
Tala-Ighil N, Maspeyrot P, Fillon M, Bounif A. Effects of surface texture on journal-bearing characteristics under steady-state operating conditions. Proc Inst Mech Eng Part J J Eng Tribol 221(6): 623–633 (2007)
[79]
Tala-Ighil N, Fillon M, Maspeyrot P. Effect of textured area on the performances of a hydrodynamic journal bearing. Tribol Int 44(3): 211–219 (2011)
[80]
Cupillard S, Glavatskih S, Cervantes M J. Computational fluid dynamics analysis of a journal bearing with surface texturing. Proc Inst Mech Eng Part J J Eng Tribol 222(2): 97–107 (2008)
[81]
Brizmer V, Kligerman Y. A laser surface textured journal bearing. J Tribol 134(3): 031702 (2012)
[82]
Kango S, Sharma R K, Pandey R K. Thermal analysis of microtextured journal bearing using non-Newtonian rheology of lubricant and JFO boundary conditions. Tribol Int 69: 19–29 (2014)
[83]
Kango S, Sharma R K, Pandey R K. Comparative analysis of textured and grooved hydrodynamic journal bearing. Proc Inst Mech Eng Part J J Eng Tribol 228(1): 82–95 (2014)
[84]
Lu X B, Khonsari M M. An experimental investigation of dimple effect on the stribeck curve of journal bearings. Tribol Lett 27(2): 169–176 (2007)
[85]
Chen C, Wang X J, Shen Y F, Li Z L, Dong J. Experimental investigation for vibration reduction of surface-textured journal bearings. Ind Lubr Tribol 71(2): 232–241 (2019)
[86]
Yamada H, Taura H, Kaneko S. Static characteristics of journal bearings with square dimples. J Tribol 139(5): 051703 (2017)
[87]
Yamada H, Taura H, Kaneko S. Numerical and experimental analyses of the dynamic characteristics of journal bearings with square dimples. J Tribol 140(1): 011703 (2018)
[88]
Zhang X Y, Liu C P, Zhao B. An optimization research on groove textures of a journal bearing using particle swarm optimization algorithm. Mech Ind 22: 1 (2021)
[89]
Codrignani A, Savio D, Pastewka L, Frohnapfel B, van Ostayen R. Optimization of surface textures in hydrodynamic lubrication through the adjoint method. Tribol Int 148: 106352 (2020)
[90]
Costa H L, Hutchings I M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol Int 40(8): 1227–1238 (2007)
[91]
Etsion I. State of the art in laser surface texturing. J Tribol 127(1): 248–253 (2005)
[92]
Wang X L, Wang J Q, Zhang B, Huang W. Design principles for the area density of dimple patterns. Proc Inst Mech Eng Part J J Eng Tribol 229(4): 538–546 (2015)
[93]
Wang X L, Kato K, Adachi K, Aizawa K. The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribol Int 34(10): 703–711 (2001)
[94]
Fowell M T, Medina S, Olver A V, Spikes H A, Pegg I G. Parametric study of texturing in convergent bearings. Tribol Int 52: 7–16 (2012)
[95]
Cusano C, Wedeven L D. The effects of artificially-produced defects on the film thickness distribution in sliding EHD point contacts. J Lubr Technol 104(3): 365–375 (1982)
[96]
Wedeven L D, Cusano C. Elastohydrodynamic film thickness measurements of artificially produced surface dents and grooves. A S L E Trans 22(4): 369–381 (1979)
[97]
Ai X L, Cheng H S. The influence of moving dent on point EHL contacts. Tribol Trans 37(2): 323–335 (1994)
[98]
Kaneta M, Nishikawa H. Local reduction in thickness of point contact EHL films caused by a transversely oriented moving groove and its recovery. J Tribol 116(3): 635–639 (1994)
[99]
Mourier L, Mazuyer D, Lubrecht A A, Donnet C. Transient increase of film thickness in micro-textured EHL contacts. Tribol Int 39(12): 1745–1756 (2006)
[100]
Mourier L, Mazuyer D, Ninove F P, Lubrecht A A. Lubrication mechanisms with laser-surface-textured surfaces in elastohydrodynamic regime. Proc Inst Mech Eng Part J J Eng Tribol 224(8): 697–711 (2010)
[101]
Křupka I, Hartl M. Experimental study of microtextured surfaces operating under thin-film EHD lubrication conditions. J Tribol 129(3): 502–508 (2007)
[102]
Křupka I, Hartl M. The effect of surface texturing on thin EHD lubrication films. Tribol Int 40(7): 1100–1110 (2007)
[103]
Křupka I, Hartl M. Effect of surface texturing on very thin film EHD lubricated contacts. Tribol Trans 52(1): 21–28 (2008)
[104]
Křupka I, Hartl M, Svoboda P. Effects of surface topography on lubrication film formation within elastohydrodynamic and mixed lubricated non-conformal contacts. Proc Inst Mech Eng Part J J Eng Tribol 224(8): 713–722 (2010)
[105]
Křupka I, Vrbka M, Hartl M. Effect of surface texturing on mixed lubricated non-conformal contacts. Tribol Int 41(11): 1063–1073 (2008)
[106]
Vrbka M, Šamánek O, Šperka P, Návrat T, Křupka I, Hartl M. Effect of surface texturing on rolling contact fatigue within mixed lubricated non-conformal rolling/sliding contacts. Tribol Int 43(8): 1457–1465 (2010)
[107]
Ali F, Křupka I, Hartl M. Reducing the friction of lubricated nonconformal point contacts by transverse shallow micro-grooves. Proc Inst Mech Eng Part J J Eng Tribol 229(4): 420–428 (2015)
[108]
Ali F, Kaneta M, Křupka I, Hartl M. Experimental and numerical investigation on the behavior of transverse limited micro-grooves in EHL point contacts. Tribol Int 84: 81–89 (2015)
[109]
Křupka I, Hartl M, Zimmerman M, Houska P, Jang S. Effect of surface texturing on elastohydrodynamically lubricated contact under transient speed conditions. Tribol Int 44(10): 1144–1150 (2011)
[110]
Dumont M L, Lugt P M, Tripp J H. Surface feature effects in starved circular EHL contacts. J Tribol 124(2): 358–366 (2002)
[111]
Rosenkranz A, Heib T, Gachot C, Mücklich F. Oil film lifetime and wear particle analysis of laser-patterned stainless steel surfaces. Wear 334–335: 1–12 (2015)
[112]
Rosenkranz A, Szurdak A, Gachot C, Hirt G, Mücklich F. Friction reduction under mixed and full film EHL induced by hot micro-coined surface patterns. Tribol Int 95: 290–297 (2016)
[113]
Pettersson U, Jacobson S. Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribol Lett 17(3): 553–559 (2004)
[114]
Pettersson U, Jacobson S. Textured surfaces in sliding boundary lubricated contacts—Mechanisms, possibilities and limitations. Tribol Mater Surf Interfaces 1(4): 181–189 (2007)
[115]
Pettersson U, Jacobson S. Influence of surface texture on boundary lubricated sliding contacts. Tribol Int 36(11): 857–864 (2003)
[116]
Wang W Z, Huang Z X, Shen D, Kong L J, Li S S. The effect of triangle-shaped surface textures on the performance of the lubricated point-contacts. J Tribol 135(2): 021503 (2013)
[117]
Andersson P, Koskinen J, Varjus S, Gerbig Y, Haefke H, Georgiou S, Zhmud B, Buss W. Microlubrication effect by laser-textured steel surfaces. Wear 262(3–4): 369–379 (2007)
[118]
Kovalchenko A, Ajayi O, Erdemir A, Fenske G. Friction and wear behavior of laser textured surface under lubricated initial point contact. Wear 271(9–10): 1719–1725 (2011)
[119]
Nakatsuji T, Mori A. The tribological effect of mechanically produced micro-dents by a micro diamond pyramid on medium carbon steel surfaces in rolling–sliding contact. Meccanica 36(6): 663–674 (2001)
[120]
Zhai X J, Chang L, Hoeprich M R, Nixon H P. On mechanisms of fatigue life enhancement by surface dents in heavily loaded rolling line contacts. Tribol Trans 40(4): 708–714 (1997) (in German)
[121]
Mayer J. Einfluss der Oberfläche und des Schmierstoffs auf das Reibungsverhalten im EHD-Kontakt. München (Germany): Verl. Dr. Hut, 2014.
[122]
Zhao J X, Sadeghi F. The effects of a stationary surface pocket on EHL line contact start-up. J Tribol 126(4): 672–680 (2004)
[123]
Bobzin K, Brögelmann T, Stahl K, Michaelis K, Mayer J, Hinterstoißer M. Friction reduction of highly-loaded rolling–sliding contacts by surface modifications under elasto-hydrodynamic lubrication. Wear 328–329: 217–228 (2015)
[124]
Pausch M. Untersuchung des Einflusses von Definiert Gefertigten Mikrostrukturen auf Schmierfilmbildung und Kontaktpressung in Hoch belasteten Wälzkontakten. Ph.D. Thesis. Erlangen (Germany): Friedrich-Alexander-Universität Erlangen-Nürnberg, 2013. (in German)
[125]
Wang W Z, Shen D, Zhang S G, Zhao Z Q. Investigation of patterned textures in ball-on-disk lubricated point contacts. J Tribol 137(1): 011502 (2015)
[126]
Weschta M. Untersuchungen zur Wirkungsweise von Mikrotexturen in Elastohydrodynamischen Gleit/Wälz-kontakten. Ph.D. Thesis. Erlangen (Germany): Friedrich-Alexander-Universität Erlangen-Nürnberg, 2018. (in German)
DOI
[127]
Shi X J, Wang L Q, Qin F Q. Relative fatigue life prediction of high-speed and heavy-load ball bearing based on surface texture. Tribol Int 101: 364–374 (2016)
[128]
Akamatsu Y, Tsushima N, Goto T, Hibi K. Influence of surface roughness skewness on rolling contact fatigue life. Tribol Trans 35(4): 745–750 (1992)
[129]
Gangopadhyay A, McWatt D G. The effect of novel surface textures on tappet shims on valvetrain friction and wear. Tribol Trans 51(2): 221–230 (2008)
[130]
Gupta N, Tandon N, Pandey R K. An exploration of the performance behaviors of lubricated textured and conventional spur gearsets. Tribol Int 128: 376–385 (2018)
[131]
Huang W, Wang X L. Biomimetic design of elastomer surface pattern for friction control under wet conditions. Bioinspir Biomim 8(4): 046001 (2013)
[132]
Kang Z Y, Fu Y H, Ji J H, Puoza J C. Effect of local laser surface texturing on tribological performance of injection cam. Int J Adv Manuf Technol 92(5–8): 1751–1760 (2017)
[133]
Marian M, Grützmacher P, Rosenkranz A, Tremmel S, Mücklich F, Wartzack S. Designing surface textures for EHL point-contacts—Transient 3D simulations, meta-modeling and experimental validation. Tribol Int 137: 152–163 (2019)
[134]
Marian M, Tremmel S, Wartzack S. Microtextured surfaces in higher loaded rolling–sliding EHL line-contacts. Tribol Int 127: 420–432 (2018)
[135]
Marian M, Weikert T, Tremmel S. On friction reduction by surface modifications in the TEHL cam/tappet-contact-experimental and numerical studies. Coatings 9(12): 843 (2019)
[136]
Marian M, Weschta M, Tremmel S, Wartzack S. Simulation of microtextured surfaces in starved EHL contacts using commercial FE software. Matls Perf Charact 6(2): 165–181 (2017)
[137]
Tremmel S, Marian M, Zahner M, Wartzack S, Merklein M. Friction reduction in EHL contacts by surface microtexturing—Tribological performance, manufacturing and tailored design. Ind Lubr Tribol 71(8): 986–990 (2019)
[138]
De La Guerra Ochoa E, Echávarri Otero J, Chacón Tanarro E, Lafont Morgado P, Díaz Lantada A, Munoz-Guijosa J M, Muñoz Sanz J L. Optimising lubricated friction coefficient by surface texturing. Proc Inst Mech Eng C J Mech Eng Sci 227(11): 2610–2619 (2013)
[139]
Boidi G, Da Silva M R, Profito F J, Machado I F. Using machine learning radial basis function (RBF) method for predicting lubricated friction on textured and porous surfaces. Surf Topogr: Metrol Prop 8(4): 044002 (2020)
[140]
Marian M. Numerische Auslegung von Oberflächenmikrotexturen für geschmierte tribologische Kontakte. Ph.D. Thesis. Erlangen (Germany): Friedrich-Alexander-Universität Erlangen-Nürnberg, 2021. (in German)
[141]
Hadinata P C, Stephens L S. Soft elastohydrodynamic analysis of radial lip seals with deterministic microasperities on the shaft. J Tribol 129(4): 851–859 (2007)
[142]
Shinkarenko A, Kligerman Y, Etsion I. The effect of elastomer surface texturing in soft elasto-hydrodynamic lubrication. Tribol Lett 36(2): 95–103 (2009)
[143]
Shinkarenko A, Kligerman Y, Etsion I. The effect of surface texturing in soft elasto-hydrodynamic lubrication. Tribol Int 42(2): 284–292 (2009)
[144]
Shinkarenko A, Kligerman Y, Etsion I. The validity of linear elasticity in analyzing surface texturing effect for elastohydrodynamic lubrication. J Tribol 131(2): 021503 (2009)
[145]
Warren K H, Stephens L S. Effect of shaft microcavity patterns for flow and friction control on radial lip seal performance—A feasibility study. Tribol Trans 52(6): 731–743 (2009)
[146]
Li W, Stephens L S, Wenk J F. Experimental benchmarking of the numerical model of a radial lip seal with a surface textured shaft. Tribol Trans 56(1): 75–87 (2013)
[147]
Ito H, Kaneda K, Yuhta T, Nishimura I, Yasuda K, Matsuno T. Reduction of polyethylene wear by concave dimples on the frictional surface in artificial hip joints. J Arthroplasty 15(3): 332–338 (2000)
[148]
Chyr A, Qiu M F, Speltz J W, Jacobsen R L, Sanders A P, Raeymaekers B. A patterned microtexture to reduce friction and increase longevity of prosthetic hip joints. Wear 315(1–2): 51–57 (2014)
[149]
Sawano H, Warisawa S, Ishihara S. Study on long life of artificial joints by investigating optimal sliding surface geometry for improvement in wear resistance. Precis Eng 33(4): 492–498 (2009)
[150]
Gao L M, Hua Z K, Hewson R, Andersen M S, Jin Z M. Elastohydrodynamic lubrication and wear modelling of the knee joint replacements with surface topography. Biosurface Biotribology 4(1): 18–23 (2018)
[151]
Dougherty P S M, Srivastava G, Onler R, Ozdoganlar O B, Higgs C F. Lubrication enhancement for UHMWPE sliding contacts through surface texturing. Tribol Trans 58(1): 79–86 (2015)
[152]
Dong Y C, Svoboda P, Vrbka M, Kostal D, Urban F, Cizek J, Roupcova P, Dong H S, Křupka I, Hartl M. Towards near-permanent CoCrMo prosthesis surface by combining micro-texturing and low temperature plasma carburising. J Mech Behav Biomed Mater 55: 215–227 (2015)
[153]
Hsu C J, Stratmann A, Rosenkranz A, Gachot C. Enhanced growth of ZDDP-based tribofilms on laser-interference patterned cylinder roller bearings. Lubricants 5(4): 39 (2017)
[154]
Boidi G, Tertuliano I S, Profito F J, De Rossi W, Machado I F. Effect of laser surface texturing on friction behaviour in elastohydrodynamically lubricated point contacts under different sliding-rolling conditions. Tribol Int 149: 105613 (2020)
[155]
Reynolds O. IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. In Philosophical Transactions of the Royal Society of London. London: Royal Society, 1886: 157–234.
[156]
Dowson D. A generalized Reynolds equation for fluid-film lubrication. Int J Mech Sci 4(2): 159–170 (1962)
[157]
Najji B, Bou-Said B, Berthe D. New formulation for lubrication with non-Newtonian fluids. J Tribol 111(1): 29–34 (1989)
[158]
Yang P R, Wen S Z. A generalized Reynolds equation for non-Newtonian thermal elastohydrodynamic lubrication. J Tribol 112(4): 631–636 (1990)
[159]
Sahlin F, Glavatskih S B, Almqvist T, Larsson R. Two-dimensional CFD-analysis of micro-patterned surfaces in hydrodynamic lubrication. J Tribol 127(1): 96–102 (2005)
[160]
Almqvist T, Larsson R. Some remarks on the validity of Reynolds equation in the modeling of lubricant film flows on the surface roughness scale. J Tribol 126(4): 703–710 (2004)
[161]
Almqvist A, Burtseva E, Rajagopal K, Wall P. On lower-dimensional models in lubrication, Part A: Common misinterpretations and incorrect usage of the Reynolds equation. Proc Inst Mech Eng Part J J Eng Tribol 235(8): 1692–1702 (2021)
[162]
Van Odyck D E A, Venner C H. Stokes flow in thin films. J Tribol 125(1): 121–134 (2003)
[163]
Wen C W, Meng X H, Li W X. Numerical analysis of textured piston compression ring conjunction using two-dimensional-computational fluid dynamics and Reynolds methods. Proc Inst Mech Eng Part J J Eng Tribol 232(11): 1467–1485 (2018)
[164]
Feldman Y, Kligerman Y, Etsion I, Haber S. The validity of the Reynolds equation in modeling hydrostatic effects in gas lubricated textured parallel surfaces. J Tribol 128(2): 345–350 (2006)
[165]
Etsion I. Modeling of surface texturing in hydrodynamic lubrication. Friction 1(3): 195–209 (2013)
[166]
Sommerfeld A. Zur Hydrodynamischen Theorie der Schmiermittelreibung. Z Angew Math U Physik 50: 97–155 (1904) (in German)
[167]
Paranjpe R S, Goenka P K. Analysis of crankshaft bearings using a mass conserving algorithm. Tribol Trans 33(3): 333–344 (1990)
[168]
Braun M J, Hannon W M. Cavitation formation and modelling for fluid film bearings: A review. Proc Inst Mech Eng Part J J Eng Tribol 224(9): 839–863 (2010)
[169]
Ausas R F, Jai M, Buscaglia G C. A mass-conserving algorithm for dynamical lubrication problems with cavitation. J Tribol 131(3): 031702 (2009)
[170]
Gümbel L. Vergleich der egebnisse der rechnerischen behandlung des lagerschmierungsproblem mit neueren versuchsergebnissen. Mbl berl Bez VDI: 125–128 (1921) (in German)
[171]
Swift H W. The stability of lubricating films in journal bearings. Minutes of the Proceedings of the Institution of Civil Engineers 233(1932): 267–288 (1932).
[172]
Stieber W. Hydrodynamische Theorie des Gleitlagers Das Schwimmlager. Berlin (Germany): Verein Deutscher Ingenieure, 1933. (in German)
[173]
Christopherson D G. A new mathematical method for the solution of film lubrication problems. Proc Inst Mech Eng 146(1): 126–135 (1941)
[174]
Venner C H, Lubrecht A A. Multilevel Methods in Lubrication. Amsterdam (the Netherlands): Elsevier Science, 2000.
[175]
Murty K G. Linear Complementarity, Linear and Nonlinear Programming. Berlin (Germany): Heldermann Verlag, 1988.
[176]
Wu S R. A penalty formulation and numerical approximation of the Reynolds–Hertz problem of elastohydrodynamic lubrication. Int J Eng Sci 24(6): 1001–1013 (1986)
[177]
Jakobsson B, Floberg L. The Finite Journal Bearing, Considering Vaporization. Göteborg (Sweden): Gumperts, 1957.
[178]
Olsson K O. Cavitation in Dynamically Loaded Bearings. Göteborg (Sweden): Gumperts, 1965.
[179]
Floberg L. On Journal Bearing Lubrication Considering the Tensile Strength of the Liquid Lubricant. Lund (Sweden): Machine Elements Division, Lund Technical University, 1973.
[180]
Elrod H G. A cavitation algorithm. J Lubr Technol 103(3): 350–354 (1981)
[181]
Elrod H G, Adams M L. A computer program for cavitation and starvation problems. Cavitation and Related Phenomena in Lubrication 1: 37–43 (1975)
[182]
Vijayaraghavan D, Keith Jr T G. Development and evaluation of a cavitation algorithm. Tribol Trans 32(2): 225–233 (1989)
[183]
Vijayaraghavan D, Keith Jr T G. An efficient, robust, and time accurate numerical scheme applied to a cavitation algorithm. J Tribol 112(1): 44–51 (1990)
[184]
Sahlin F, Almqvist A, Larsson R, Glavatskih S. A cavitation algorithm for arbitrary lubricant compressibility. Tribol Int 40(8): 1294–1300 (2007)
[185]
Almqvist A, Fabricius J, Larsson R, Wall P. A new approach for studying cavitation in lubrication. J Tribol 136(1): 011706 (2014)
[186]
Bertocchi L, Dini D, Giacopini M, Fowell M T, Baldini A. Fluid film lubrication in the presence of cavitation: A mass-conserving two-dimensional formulation for compressible, piezoviscous and non-Newtonian fluids. Tribol Int 67: 61–71 (2013)
[187]
Almqvist A, Wall P. Modelling cavitation in (elasto)hydrodynamic lubrication. In Advances in Tribology. Darji P H, Ed. London: InTech, 2016: 197–213.
[188]
Giacopini M, Fowell M T, Dini D, Strozzi A. A mass-conserving complementarity formulation to study lubricant films in the presence of cavitation. J Tribol 132(4): 041702 (2010)
[189]
Amendola M, De Moura C A, Zago J V, Pulino P, Gomes Neto F D A M. Numerical simulation of the cavitation in the hydrodynamic lubrication of journal bearings: A parallel algorithm. J Braz Soc Mech Sci 23(3): 335–345 (2001)
[190]
Ausas R, Ragot P, Leiva J, Jai M, Bayada G, Buscaglia G C. The impact of the cavitation model in the analysis of microtextured lubricated journal bearings. J Tribol 129(4): 868–875 (2007)
[191]
Bayada G, Chambat M, El Alaoui M. Variational formulations and finite element algorithms for cavitation problems. J Tribol 112(2): 398–403 (1990)
[192]
Tønder K, Christensen H. Waviness and roughness in hydrodynamic lubrication. Proc Inst Mech Eng 186(1): 807–812 (1972)
[193]
Teale J L, Lebeck A O. An evaluation of the average flow model [1] for surface roughness effects in lubrication. J Lubr Technol 102(3): 360–366 (1980)
[194]
Patir N, Cheng H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J Lubr Technol 100(1): 12–17 (1978)
[195]
Patir N, Cheng H S. Application of average flow model to lubrication between rough sliding surfaces. J Lubr Technol 101(2): 220–229 (1979)
[196]
Pérez-Ràfols F, Larsson R, Almqvist A. Modelling of leakage on metal-to-metal seals. Tribol Int 94: 421–427 (2016)
[197]
Pérez-Ràfols F, Larsson R, Lundström S, Wall P, Almqvist A. A stochastic two-scale model for pressure-driven flow between rough surfaces. Proc Math Phys Eng Sci 472(2190): 20160069 (2016)
[198]
Pérez-Ràfols F, Larsson R, Van Riet E J, Almqvist A. On the loading and unloading of metal-to-metal seals: A two-scale stochastic approach. Proc Inst Mech Eng Part J J Eng Tribol 232(12): 1525–1537 (2018)
[199]
Almqvist A, Essel E K, Fabricius J, Wall P. Reiterated homogenization applied in hydrodynamic lubrication. Proc Inst Mech Eng Part J J Eng Tribol 222(7): 827–841 (2008)
[200]
Lagemann V. Numerische Verfahren zur tribologischen Charakterisierung bearbeitungsbedingter rauher Oberflächen bei Mikrohydrodynamik und Mischreibung. Kassel (Germany): Univ.-Bibliothek, 2000. (in German)
[201]
Scaraggi M. Lubrication of textured surfaces: A general theory for flow and shear stress factors. Phys Rev E 86(2): 026314 (2012)
[202]
Scaraggi M. Textured surface hydrodynamic lubrication: Discussion. Tribol Lett 48(3): 375–391 (2012)
[203]
Scaraggi M. Optimal textures for increasing the load support in a thrust bearing pad geometry. Tribol Lett 53(1): 127–143 (2014)
[204]
Rom M, Muller S. A reduced basis method for the homogenized Reynolds equation applied to textured surfaces. Commun Comput Phys 24(2): 481–509 (2018)
[205]
Rom M, Müller S. A new model for textured surface lubrication based on a modified Reynolds equation including inertia effects. Tribol Int 133: 55–66 (2019)
[206]
Waseem A, Temizer İ, Kato J, Terada K. Homogenization-based design of surface textures in hydrodynamic lubrication. Int J Numer Methods Eng 108(12): 1427–1450 (2016)
[207]
Waseem A, Temizer İ, Kato J, Terada K. Micro-texture design and optimization in hydrodynamic lubrication via two-scale analysis. Struct Multidiscip Optim 56(2): 227–248 (2017)
[208]
Yıldıran İ N, Temizer İ, Çetin B. Homogenization in hydrodynamic lubrication: Microscopic regimes and re-entrant textures. J Tribol 140(1): 011701 (2018)
[209]
Spencer A, Almqvist A, Larsson R. A semi-deterministic texture-roughness model of the piston ring–cylinder liner contact. Proc Inst Mech Eng Part J J Eng Tribol 225(6): 325–333 (2011)
[210]
Söderfjäll M, Larsson R, Marklund P, Almqvist A. Texture-induced effects causing reduction of friction in mixed lubrication for twin land oil control rings. Proc Inst Mech Eng Part J J Eng Tribol 232(2): 166–178 (2018)
[211]
Greenwood J A, Williamson J B P. Contact of nominally flat surfaces. Proc Roy Soc A Math Phy 295(1442): 300–319 (1966)
[212]
Greenwood J A, Tripp J H. The elastic contact of rough spheres. J Appl Mech 34(1): 153–159 (1967)
[213]
Bush A W, Gibson R D, Thomas T R. The elastic contact of a rough surface. Wear 35(1): 87–111 (1975)
[214]
McCool J I. Comparison of models for the contact of rough surfaces. Wear 107(1): 37–60 (1986)
[215]
Greenwood J A, Tripp J H. The contact of two nominally flat rough surfaces. Proc Inst Mech Eng 185(1): 625–633 (1970)
[216]
Chang W R, Etsion I, Bogy D B. An elastic–plastic model for the contact of rough surfaces. J Tribol 109(2): 257–263 (1987)
[217]
Halling J, Nuri K A. Elastic/plastic contact of surfaces considering ellipsoidal asperities of work-hardening multi-phase materials. Tribol Int 24(5): 311–319 (1991)
[218]
Jamari J, Schipper D J. An elastic–plastic contact model of ellipsoid bodies. Tribol Lett 21(3): 262–271 (2006)
[219]
Zhao Y W, Maietta D M, Chang L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J Tribol 122(1): 86–93 (2000)
[220]
Müser M H, Dapp W B, Bugnicourt R, Sainsot P, Lesaffre N, Lubrecht T A, Persson B N J, Harris K, Bennett A, Schulze K, et al. Meeting the contact-mechanics challenge. Tribol Lett 65(4): 118 (2017)
[221]
Persson B N J. Theory of rubber friction and contact mechanics. J Chem Phys 115(8): 3840–3861 (2001)
[222]
Prodanov N, Dapp W B, Müser M H. On the contact area and mean gap of rough, elastic contacts: Dimensional analysis, numerical corrections, and reference data. Tribol Lett 53(2): 433–448 (2014)
[223]
Kogut L, Etsion I. Elastic–plastic contact analysis of a sphere and a rigid flat. J Appl Mech 69(5): 657–662 (2002)
[224]
Kogut L, Etsion I. A finite element based elastic–plastic model for the contact of rough surfaces. Tribol Trans 46(3): 383–390 (2003)
[225]
Kogut L, Etsion I. A static friction model for elastic–plastic contacting rough surfaces. J Tribol 126(1): 34–40 (2004)
[226]
Jackson R L, Green I. A finite element study of elasto–plastic hemispherical contact against a rigid flat. J Tribol 127(2): 343–354 (2005)
[227]
Jackson R L, Green I. A statistical model of elasto–plastic asperity contact between rough surfaces. Tribol Int 39(9): 906–914 (2006)
[228]
Sahlin F, Larsson R, Almqvist A, Lugt P M, Marklund P. A mixed lubrication model incorporating measured surface topography. Part 1: Theory of flow factors. Proc Inst Mech Eng Part J J Eng Tribol 224(4): 335–351 (2010)
[229]
Sahlin F, Larsson R, Marklund P, Almqvist A, Lugt P M. A mixed lubrication model incorporating measured surface topography. Part 2: Roughness treatment, model validation, and simulation. Proc Inst Mech Eng Part J J Eng Tribol 224(4): 353–365 (2010)
[230]
Bartel D. Simulation von Tribosystemen: Grundlagen und Anwendungen. Wiesbaden (Germany): Vieweg+Teubner, 2010. (in German)
DOI
[231]
Carslaw H S, Jaeger J C. Conduction of Heat in Solids, 2nd edn. Oxford (UK): Clarendon Press, 1959.
[232]
Häfner F, Sames D, Voigt H D. Wärme- und Stofftransport: Mathematische Methoden. Berlin: Springer Lehrbuch, 1992.
DOI
[233]
Jaeger J C. Moving sources of heat and the temperature at sliding contacts. Journal Proceedings of the Royal Society of New South Wales 76: 203–224 (1942)
[234]
Qiu L H, Cheng H S. Temperature rise simulation of three-dimensional rough surfaces in mixed lubricated contact. J Tribol 120(2): 310–318 (1998)
[235]
Zhao J X, Sadeghi F, Hoeprich M H. Analysis of EHL circular contact start up: Part II—Surface temperature rise model and results. J Tribol 123(1): 75–82 (2001)
[236]
Gasch R, Knothe K. Strukturdynamik: Band 2: Kontinua und ihre Diskretisierung. Berlin: Springer Berlin, Heidelberg, 1989. (in German)
[237]
Charitopoulos A, Fillon M, Papadopoulos C I. Numerical investigation of parallel and quasi-parallel slider bearings operating under thermoelastohydrodynamic (TEHD) regime. Tribol Int 149: 105517 (2020)
[238]
Chalkiopoulos M, Charitopoulos A, Fillon M, Papadopoulos C I. Effects of thermal and mechanical deformations on textured thrust bearings optimally designed by a THD calculation method. Tribol Int 148: 106303 (2020)
[239]
Bruyere V, Fillot N, Morales-Espejel G E, Vergne P. Computational fluid dynamics and full elasticity model for sliding line thermal elastohydrodynamic contacts. Tribol Int 46(1): 3–13 (2012)
[240]
Hartinger M, Dumont M L, Ioannides S, Gosman D, Spikes H. CFD modeling of a thermal and shear-thinning elastohydrodynamic line contact. J Tribol 130(4): 041503 (2008)
[241]
Hartinger M, Gosman D, Ioannides S, Spikes H A. CFD Modelling of Elastohydrodynamic Lubrication. In Proceedings of the World Tribology Congress III, Washington D.C., USA, 2005: 531–532.
[242]
Almqvist T, Almqvist A, Larsson R. A comparison between computational fluid dynamic and Reynolds approaches for simulating transient EHL line contacts. Tribol Int 37(1): 61–69 (2004)
[243]
Mohrenstein-Ertel A. Die Berechnung der Hydrodynamischen Schmierung Gekrümmter Oberflächen unter Hoher Belastung und Relativbewegung. Düsseldorf (Germany): Verein Deutscher Ingenieure-Verlag, 1984. (in German)
[244]
Dowson D, Higginson G R. A numerical solution to the elasto-hydrodynamic problem. J Mech Eng Sci 1(1): 6–15 (1959)
[245]
Evans H P, Snidle R W. Inverse solution of Reynolds’ equation of lubrication under point-contact elastohydrodynamic conditions. J Lubr Technol 103(4): 539–546 (1981)
[246]
Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: Part I—Theoretical formulation. J Lubr Technol 98(2): 223–228 (1976)
[247]
Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: Part II—Ellipticity parameter results. J Lubr Technol 98(3): 375–381 (1976)
[248]
Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: Part IV—Starvation results. J Lubr Technol 99(1): 15–23 (1977)
[249]
Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: Part III—Fully flooded results. J Lubr Technol 99(2): 264–275 (1977)
[250]
Lubrecht A A. The numerical solution of the lubricated line- and point contact problem using multigrid techniques. Ph.D. Thesis. Enschede (the Netherlands): University of Twente, 1987.
[251]
Venner C H, Napel W E T. Multilevel solution of the elastohydrodynamically lubricated circular contact problem part I: Theory and numerical algorithm. Wear 152(2): 351–367 (1992)
[252]
Venner C H, Napel W E T. Multilevel solution of the elastohydrodynamically lubricated circular contact problem part 2: Smooth surface results. Wear 152(2): 369–381 (1992)
[253]
Venner C H. Multilevel solution of the EHL line and point-contact problems. Ph.D. Thesis. Enschede (the Netherlands): University of Twente, 1991.
[254]
Stanley H M, Kato T. An FFT-based method for rough surface contact. J Tribol 119(3): 481–485 (1997)
[255]
Ju Y, Farris T N. Spectral analysis of two-dimensional contact problems. J Tribol 118(2): 320–328 (1996)
[256]
Hu Y Z, Zhu D. A full numerical solution to the mixed lubrication in point contacts. J Tribol 122(1): 1–9 (2000)
[257]
Wang Q J, Zhu D. Interfacial Mechanics: Theories and Methods for Contact and Lubrication. New York: CRC Press, 2019.
DOI
[258]
Rohde S M, Oh K P. A unified treatment of thick and thin film elastohydrodynamic problems by using higher order element methods. Proc R Soc Lond A 343(1634): 315–331 (1975)
[259]
Oh K P, Rohde S M. Numerical solution of the point contact problem using the finite element method. Int J Numer Methods Eng 11(10): 1507–1518 (1977)
[260]
Okamura H. A contribution to the numerical analysis of isothermal elastohydrodynamic lubrication. In Proceedings of the 9th Leeds–Lyon Symposium on Tribology, London, 1982.
[261]
Habchi W, Eyheramendy D, Vergne P, Morales-Espejel G. A full-system approach of the elastohydrodynamic line/point contact problem. J Tribol 130(2): 021501 (2008)
[262]
Tan X C, Goodyer C E, Jimack P K, Taylor R I, Walkley M A. Computational approaches for modelling elastohydrodynamic lubrication using multiphysics software. Proc Inst Mech Eng Part J J Eng Tribol 226(6): 463–480 (2012)
[263]
Lohner T, Ziegltrum A, Stemplinger J P, Stahl K. Engineering software solution for thermal elastohydrodynamic lubrication using multiphysics software. Adv Tribol 2016: 6507203 (2016)
[264]
Habchi W. Coupling strategies for finite element modeling of thermal elastohydrodynamic lubrication problems. J Tribol 139(4): 041501 (2017)
[265]
Marian M, Weschta M, Tremmel S, Wartzack S. Einfluss masseerhaltender kavitationsmodelle bei der simulation hydro- und elastohydrodynamischer kontakte. Tribologie und Schmierungstechnik 64(4): 29–34 (2017) (in German)
[266]
Kaneta M, Shigeta T, Yang P R. Film pressure distributions in point contacts predicted by thermal EHL analyses. Tribol Int 39(8): 812–819 (2006)
[267]
Wang Y Q, Li H Q, Tong J W, Yang P R. Transient thermoelastohydrodynamic lubrication analysis of an involute spur gear. Tribol Int 37(10): 773–782 (2004)
[268]
Tremmel S, Marian M, Zahner M, Weschta M, Engel U, Wartzack S, Merklein M. Reibungsreduzierung in EHD-Kontakten durch mikrostrukturierte Bauteiloberflächen–Auslegung, Gestaltung und umformtechnische Herstellung. In: Gesellschaft für Tribologie e V, Ed. Göttingen (Germany): Sonderband Abschlusskolloquium Ressourceneffiziente Konstruktionselemente SPP 2017: 149–166. (in German)
[269]
Zhu D, Hu Y Z. A computer program package for the prediction of EHL and mixed lubrication characteristics, friction, subsurface stresses and flash temperatures based on measured 3-D surface roughness. Tribol Trans 44(3): 383–390 (2001)
[270]
Evans H P, Snidle B W. Analysis of micro-elastohydrodynamic lubrication for engineering contacts. Tribol Int 29(8): 659–667 (1996)
[271]
De Boer G N, Almqvist A. On the two-scale modelling of elastohydrodynamic lubrication in tilted-pad bearings. Lubricants 6(3): 78 (2018)
[272]
De Boer G N, Gao L, Hewson R W, Thompson H M. Heterogeneous Multiscale Methods for modelling surface topography in elastohydrodynamic lubrication line contacts. Tribol Int 113: 262–278 (2017)
[273]
De Boer G N, Hewson R W, Thompson H M, Gao L, Toropov V V. Two-scale EHL: Three-dimensional topography in tilted-pad bearings. Tribol Int 79: 111–125 (2014)
[274]
Johnson K L, Greenwood J A, Poon S Y. A simple theory of asperity contact in elastohydro-dynamic lubrication. Wear 19(1): 91–108 (1972)
[275]
Masjedi M, Khonsari M M. Film thickness and asperity load formulas for line-contact elastohydrodynamic lubrication with provision for surface roughness. J Tribol 134(1): 011503 (2012)
[276]
Masjedi M, Khonsari M M. On the effect of surface roughness in point-contact EHL: Formulas for film thickness and asperity load. Tribol Int 82: 228–244 (2015)
[277]
Masjedi M, Khonsari M M. Mixed lubrication of soft contacts: An engineering look. Proc Inst Mech Eng Part J J Eng Tribol 231(2): 263–273 (2017)
[278]
Costa H L, Hutchings I M. Some innovative surface texturing techniques for tribological purposes. Proc Inst Mech Eng Part J J Eng Tribol 229(4): 429–448 (2015)
[279]
Vaeth K M, Jackman R J, Black A J, Whitesides G M, Jensen K F. Use of microcontact printing for generating selectively grown films of poly(p-phenylene vinylene) and parylenes prepared by chemical vapor deposition. Langmuir 16(22): 8495–8500 (2000)
[280]
Wang H Y, Wang Y Q, Xue R Z, Kang L P, Li X J. Fabrication and electron field-emission of carbon nanofibers grown on silicon nanoporous pillar array. Appl Surf Sci 261: 219–222 (2012)
[281]
Bartz M, Terfort A, Knoll W, Tremel W. Stamping of monomeric SAMs as a route to structured crystallization templates: Patterned titania films. Chem Weinheim Der Bergstrasse Ger 6(22): 4149–4153 (2000)
DOI
[282]
Deng T, Arias F, Ismagilov R F, Kenis P J A, Whitesides G M. Fabrication of metallic microstructures using exposed, developed silver halide-based photographic film. Anal Chem 72(4): 645–651 (2000)
[283]
Mott M, Evans J R G. Zirconia/alumina functionally graded material made by ceramic ink jet printing. Mater Sci Eng A 271(1–2): 344–352 (1999)
[284]
Lejeune M, Chartier T, Dossou-Yovo C, Noguera R. Ink-jet printing of ceramic micro-pillar arrays. J Eur Ceram Soc 29(5): 905–911 (2009)
[285]
Hutchings I M, Martin J D. Inkjet Technology for Digital Fabrication. Chichester (UK): John Wiley & Sons, 2013.
DOI
[286]
Snell D, Coombs A. Novel coating technology for non-oriented electrical steels. J Magn Magn Mater 215–216: 133–135 (2000)
[287]
Kumar A V, Dutta A. Electrophotographic layered manufacturing. J Manuf Sci Eng 126(3): 571–576 (2004)
[288]
Nelson J B, Schwartz D T. Electrochemical printing: In situ characterization using an electrochemical quartz crystal microbalance. J Micromech Microeng 15(12): 2479–2484 (2005)
[289]
Zou M, Cai L, Wang H. Adhesion and friction studies of a nano-textured surface produced by spin coating of colloidal silica nanoparticle solution. Tribol Lett 21(1): 25–30 (2006)
[290]
Dumitru G, Romano V, Weber H P, Haefke H, Gerbig Y, Pflüger E. Laser microstructuring of steel surfaces for tribological applications. Appl Phys A 70(4): 485–487 (2000)
[291]
Geiger M, Roth S, Becker W. Influence of laser-produced microstructures on the tribological behaviour of ceramics. Surf Coat Technol 100–101: 17–22 (1998)
[292]
Semaltianos N G, Perrie W, French P, Sharp M, Dearden G, Watkins K G. Femtosecond laser surface texturing of a nickel-based superalloy. Appl Surf Sci 255(5): 2796–2802 (2008)
[293]
Vincent C, Monteil G, Barriere T, Gelin J C. Control of the quality of laser surface texturing. Microsyst Technol 14(9–11): 1553–1557 (2008)
[294]
Aspinwall D K, Wise M L H, Stout K J, Goh T H A, Zhao F L, El-Menshawy M F. Electrical discharge texturing. Int J Mach Tools Manuf 32(1–2): 183–193 (1992)
[295]
Langford R M, Dale G, Hopkins P J, Ewen P J S, Petford-Long A K. Focused ion beam micromachining of three-dimensional structures and three-dimensional reconstruction to assess their shape. J Micromech Microeng 12(2): 111–114 (2002)
[296]
Ike H. Properties of metal sheets with 3-D designed surface microgeometry prepared by special rolls. J Mater Process Technol 60(1–4): 363–368 (1996)
[297]
Zhang J Y, Meng Y G. A study of surface texturing of carbon steel by photochemical machining. J Mater Process Technol 212(10): 2133–2140 (2012)
[298]
Byun J W, Shin H S, Kwon M H, Kim B H, Chu C N. Surface texturing by micro ECM for friction reduction. Int J Precis Eng Manuf 11(5): 747–753 (2010)
[299]
Schönenberger I, Roy S. Microscale pattern transfer without photolithography of substrates. Electrochimica Acta 51(5): 809–819 (2005)
[300]
Costa H L, Hutchings I M. Development of a maskless electrochemical texturing method. J Mater Process Technol 209(8): 3869–3878 (2009)
[301]
Parreira J G, Gallo C A, Costa H L. New advances on maskless electrochemical texturing (MECT) for tribological purposes. Surf Coat Technol 212: 1–13 (2012)
[302]
Denkena B, Kästner J, Knoll G, Brandt S, Bach F W, Drößler B, et al. Mikrostrukturierung funktionaler oberflächen. Werkstattstechnik Online 98(6): 486–494 (2008) (in German)
[303]
Weck M, Fischer S, Vos M. Fabrication of microcomponents using ultraprecision machine tools. Nanotechnology 8(3): 145–148 (1997)
[304]
Tian H, Saka N, Suh N P. Boundary lubrication studies on undulated titanium surfaces. Tribol Trans 32(3): 289–296 (1989)
[305]
Slikkerveer P J, Veld F H I. Model for patterned erosion. Wear 233–235: 377–386 (1999)
[306]
Lasagni A, D’Alessandria M, Giovanelli R, Mücklich F. Advanced design of periodical architectures in bulk metals by means of laser interference metallurgy. Appl Surf Sci 254(4): 930–936 (2007)
[307]
Duarte M, Lasagni A, Giovanelli R, Narciso J, Louis E, Mücklich F. Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy. Adv Eng Mater 10(6): 554–558 (2008)
[308]
Mücklich F, Lasagni A, Daniel C. Laser Interference Metallurgy—Using interference as a tool for micro/nano structuring. Int J Mater Res 97(10): 1337–1344 (2006)
[309]
Lasagni A, Benke D, Kunze T, Bieda M, Eckhardt S, Roch T, Langheinrich D, Berger J. Bringing the direct laser interference patterning method to industry: A one tool-complete solution for surface functionalization. J Laser Micro Nanoeng 10(3): 340–344 (2015)
[310]
Hirt G, Thome M. Large area rolling of functional metallic micro structures. Prod Eng 1(4): 351–356 (2007)
[311]
Klocke F, Feldhaus B, Mader S. Development of an incremental rolling process for the production of defined riblet surface structures. Prod Eng 1(3): 233–237 (2007)
[312]
Engel U, Eckstein R. Microforming—From basic research to its realization. J Mater Process Technol 125–126: 35–44 (2002)
[313]
Szurdak A, Hirt G. Finite element analysis of manufacturing micro lubrication pockets in high strength steels by hot micro-coining. Steel Res Int 86(3): 257–265 (2015)
[314]
Szurdak A, Rosenkranz A, Gachot C, Hirt G, Mücklich F. Manufacturing and tribological investigation of hot micro-coined lubrication pockets. Key Eng Mater 611–612: 417–424 (2014)
[315]
Siebertz K, van Bebber D, Hochkirchen T. Statistische Versuchsplanung: Design of Experiments (DoE). Berlin: Springer Vieweg, 2010.
DOI
[316]
Booker A J, Dennis J E, Frank P D, Serafini D B, Torczon V, Trosset M W. A rigorous framework for optimization of expensive functions by surrogates. Struct Optim 17(1): 1–13 (1999)
[317]
Simpson T W, Poplinski J D, Koch P N, Allen J K. Metamodels for computer-based engineering design: Survey and recommendations. Eng Comput 17(2): 129–150 (2001)
[318]
Rosenkranz A, Marian M, Profito F J, Aragon N, Shah R. The use of artificial intelligence in tribology—A perspective. Lubricants 9(1): 2 (2020)
[319]
Marian M, Tremmel S. Current trends and applications of machine learning in tribology—A review. Lubricants 9(9): 86 (2021)
[320]
Kleppmann W. Taschenbuch Versuchsplanung: Produkte und Prozesse Optimieren. München (Germany): Hanser Verlag GmbH & Co. KG, 2009.
[321]
Johnson M E, Moore L M, Ylvisaker D. Minimax and maximin distance designs. J Stat Plan Inference 26(2): 131–148 (1990)
[322]
Nocedal J, Wright S J. Numerical Optimization. New York: Springer, 2006.
[323]
Box G E P, Wilson K B. On the experimental attainment of optimum conditions. J Royal Stat Soc Ser B Methodol 13(1): 1–45 (1951)
[324]
Box G E P, Draper N R. Response Surfaces, Mixtures, and Ridge Analyses, 2nd edn. New York: John Wiley & Sons, 2007.
DOI
[325]
Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995: 39–43.
[326]
Weicker K. Evolutionäre Algorithmen, 3rd edn. Wiesbaden (Germany): Springer Vieweg, 2015.
DOI
[327]
Kruse R, Borgelt C, Braune C, Klawonn F, Moewes C, Steinbrecher M. Computational Intelligence: Eine methodische Einführung in künstliche neuronale Netze, evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, 2nd edn. Wiesbaden (Germany): Springer Vieweg; 2015. (in German)
DOI
[328]
Alt W. Semi-local convergence of the Lagrange–Newton method with application to optimal control. In Recent Developments in Optimization. Lecture Notes in Economics and Mathematical Systems, Vol 429. Durier R., Michelot C. Eds. Berlin: Springer Berlin Heidelberg, 1–16.
[329]
Wilson R B. A simplicial algorithm for concave programming. Ph.D. Thesis. Springs (USA): University of Colorado Colorado Springs, 1963.
[330]
Sigmund O, Maute K. Topology optimization approaches. Struct Multidiscip Optim 48(6): 1031–1055 (2013)
[331]
Svanberg K. The method of moving asymptotes—A new method for structural optimization. Int J Numer Methods Eng 24(2): 359–373 (1987)
[332]
Svanberg K. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2): 555–573 (2002)
[333]
Almqvist A. A cavitation algorithm. Available on https://www.mathworks.com/matlabcentral/fileexchange/41484-a-cavitation-algorithm, 2016
[334]
Zhang J Y, Meng Y G. Direct observation of cavitation phenomenon and hydrodynamic lubrication analysis of textured surfaces. Tribol Lett 46(2): 147–158 (2012)
[335]
Fowell M, Olver A V, Gosman A D, Spikes H A, Pegg I. Entrainment and inlet suction: Two mechanisms of hydrodynamic lubrication in textured bearings. J Tribol 129(2): 336–347 (2007)
[336]
Olver A V, Fowell M T, Spikes H A, Pegg I G. ‘Inlet suction’, a load support mechanism in non-convergent, pocketed, hydrodynamic bearings. Proc Inst Mech Eng Part J J Eng Tribol 220(2): 105–108 (2006)
[337]
Kovalchenko A, Ajayi O, Erdemir A, Fenske G, Etsion I. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribol Int 38(3): 219–225 (2005)
[338]
Kalliorinne K, Pérez-Ràfols F, Fabricius J, Almqvist A. Application of topological optimisation methodology to infinitely wide slider bearings operating under compressible flow. Proc Inst Mech Eng Part J J Eng Tribol 234(7): 1035–1050 (2020)
[339]
Kalliorinne K, Almqvist A. Application of topological optimisation methodology to finitely wide slider bearings operating under incompressible flow. Proc Inst Mech Eng Part J J Eng Tribol 235(4): 698–710 (2021)
[340]
Kalliorinne K, Larsson R, Almqvist A. Application of topological optimisation methodology to hydrodynamic thrust bearings. Proc Inst Mech Eng Part J J Eng Tribol 235(8): 1669–1679 (2021)
[341]
Rayleigh L. I. Notes on the theory of lubrication. Lond Edinb Dublin Philos Mag J Sci 35(205): 1–12 (1918)
[342]
Maday C J. A bounded variable approach to the optimum slider bearing. J Lubr Technol 90(1): 240–242 (1968)
[343]
Boldyrev Y Y. Periodic variational Rayleigh problem of the gas-film lubrication theory. J Mach Manuf Reliab 45(4): 354–361 (2016)
[344]
Auloge J Y, Bourgin P, Gay B. The optimum design of one-dimensional bearings with non-Newtonian lubricants. J Lubr Technol 105(3): 391–395 (1983)
[345]
Rohde S M. The optimum slider bearing in terms of friction. J Lubr Technol 94(3): 275–279 (1972)
[346]
Badescu V. Optimization of One Dimensional Slider Bearings. In Optimal Control in Thermal Engineering. Badescu V, Ed. Cham (Switzerland): Springer, 2017: 529–581.
DOI
[347]
Fesanghary M, Khonsari M M. Topological and shape optimization of thrust bearings for enhanced load-carrying capacity. Tribol Int 53: 12–21 (2012)
[348]
Kettleborough C F. The hydrodynamic pocket thrust-bearing. Proc Inst Mech Eng 170(1): 535–544 (1956)
[349]
van Ostayen R A J. Film height optimization of dynamically loaded hydrodynamic slider bearings. Tribol Int 43(10): 1786–1793 (2010)
[350]
Dobrica M, Fillon M. Reynolds’ model suitability in simulating Rayleigh step bearing thermohydrodynamic problems. Tribol Trans 48(4): 522–530 (2005)
[351]
Choo J W, Olver A V, Spikes H A. The influence of transverse roughness in thin film, mixed elastohydrodynamic lubrication. Tribol Int 40(2): 220–232 (2007)
[352]
Venner C H, Lubrecht A A. Numerical simulation of a transverse ridge in a circular EHL contact under rolling/ sliding. J Tribol 116(4): 751–761 (1994)
[353]
Most T, Will J. Metamodel of optimal prognosis—An automatic approach for variable reduction and optimal meta-model selection. In Proceedings of the Weimar Optimization and Stochastic Days 5.0, Weinar, Germany, 2008.
[354]
Most T, Will J. Recent advances in Meta-model of optimal prognosis. In Proceedings of the Weimar Optimization and Stochastic Days 7.0, Weinar, Germany, 2010: 21–22.
[355]
Boidi G, Grützmacher P G, Varga M, Rodrigues da Silva M, Gachot C, Dini D, Profito F J, Machado I F. Tribological performance of random sinter pores vs. deterministic laser surface textures: An experimental and machine learning approach. In Tribology. Pintaude G, Cousseau T, Eds. London: IntechOpen, 2021.
[356]
Ai X L. Effect of three-dimensional random surface roughness on fatigue life of a lubricated contact. J Tribol 120(2): 159–164 (1998)
[357]
Olver A V. The mechanism of rolling contact fatigue: An update. Proc Inst Mech Eng Part J J Eng Tribol 219(5): 313–330 (2005)
[358]
Deolalikar N, Sadeghi F. Fatigue life reduction in mixed lubricated elliptical contacts. Tribol Lett 27(2): 197–209 (2007)
[359]
Vrbka M, Křupka I, Šamánek O, Svoboda P, Vaverka M, Hartl M. Effect of surface texturing on lubrication film formation and rolling contact fatigue within mixed lubricated non-conformal contacts. Meccanica 46(3): 491–498 (2011)
[360]
Britton R D, Elcoate C D, Alanou M P, Evans H P, Snidle R W. Effect of surface finish on gear tooth friction. J Tribol 122(1): 354–360 (2000)
[361]
Beilicke R, Bobach L, Bartel D. Transient thermal elastohydrodynamic simulation of a DLC coated helical gear pair considering limiting shear stress behavior of the lubricant. Tribol Int 97: 136–150 (2016)
[362]
Ziegltrum A, Lohner T, Stahl K. TEHL simulation on the influence of lubricants on the frictional losses of DLC coated gears. Lubricants 6(1): 17 (2018)
[363]
Kano M. Super low friction of DLC applied to engine cam follower lubricated with ester-containing oil. Tribol Int 39(12): 1682–1685 (2006)
[364]
Gangopadhyay A, McWatt D G, Zdrodowski R J, Simko S J, Matera S, Sheffer K, Furby R S. Valvetrain friction reduction through thin film coatings and polishing. Tribol Trans 55(1): 99–108 (2012)
[365]
Dobrenizki L, Tremmel S, Wartzack S, Hoffmann D C, Brögelmann T, Bobzin K, Bagcivan N, Musayev Y, Hosenfeldt T. Efficiency improvement in automobile bucket tappet/camshaft contacts by DLC coatings—Influence of engine oil, temperature and camshaft speed. Surf Coat Technol 308: 360–373 (2016)
[366]
Shi F H, Salant R F. A mixed soft elastohydrodynamic lubrication model with interasperity cavitation and surface shear deformation. J Tribol 122(1): 308–316 (2000)
[367]
Shi F H, Salant R F. Numerical study of a rotary lip seal with a quasi-random sealing surface. J Tribol 123(3): 517–524 (2001)
[368]
Ghosh S, Abanteriba S. Status of surface modification techniques for artificial hip implants. Sci Technol Adv Mater 17(1): 715–735 (2016)
[369]
Shah R, Gashi B, Hoque S, Marian M, Rosenkranz A. Enhancing mechanical and biomedical properties of protheses—Surface and material design. Surf Interfaces 27: 101498 (2021)
[370]
Nečas D, Usami H, Niimi T, Sawae Y, Křupka I, Hartl M. Running-in friction of hip joint replacements can be significantly reduced: The effect of surface-textured acetabular cup. Friction 8(6): 1137–1152 (2020)
[371]
Marian M, Orgeldinger C, Rothammer B, Nečas D, Vrbka M, Křupka I, Hartl M, Wimmer M A, Tremmel S, Wartzack S. Towards the understanding of lubrication mechanisms in total knee replacements—Part II: Numerical modeling. Tribol Int 156: 106809 (2021)
[372]
Nečas D, Vrbka M, Marian M, Rothammer B, Tremmel S, Wartzack S, Galandáková A, Gallo J, Wimmer M A, Křupka I, et al. Towards the understanding of lubrication mechanisms in total knee replacements—Part I: Experimental investigations. Tribol Int 156: 106874 (2021)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 December 2021
Revised: 16 January 2022
Accepted: 19 February 2022
Published: 19 April 2022
Issue date: November 2022

Copyright

© The author(s) 2022.

Acknowledgements

Max MARIAN greatly acknowledges the support from Pontificia Universidad Católica de Chile. Andreas ALMQVIST acknowledges the financial support from The Swedish Research Council (VR): DNR 2019-04293. Andreas ROSENKRANZ gratefully acknowledges the financial support given by ANID within the project Fondequip EQM190057 as well as the University of Chile in the project U-Moderniza UM-04/19.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return