AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oral delivery of ferroptosis inducers for effective treatment of hepatic fibrosis

Yinglan Yu( )Shunlong ZhangYongfeng XuHao ShaoLei Luo( )
College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
Show Author Information

Graphical Abstract

This study constructed oral delivery poly (lactic-co-glycolic acid)(PLGA)-lipid nanoparticles decorated with vitamin A. These nanoparticles were designed to efficiently penetrate through the intestine and effectively deliver ferroptosis inducers to hepatic stellate cells for the treatment of hepatic fibrosis.

Abstract

Liver fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM), which is primarily produced by activated hepatic stellate cells (HSCs). However, effective therapies for hepatic fibrosis are currently lacking. Artesunate is a promising anti-fibrotic drug candidate, but its clinical application is hindered by limited absorption. Here, we present a novel oral delivery platform that enhances the HSCs uptake of artesunate and induces potent ferroptosis. The platform is vitamin A-decorated nanoparticles encapsulated with artesunate. The multifunctional ligand vitamin A interacts with retinol-binding proteins that are highly expressed on the intestinal epithelium to promote transcytosis, highly expressed on the surface of HSCs but lowly expressed in normal hepatocytes. After oral administration, this oral delivery platform enhances transepithelial transport in the intestine, improves drug accumulation in the liver, and continuously increases HSCs uptake of artesunate. Upon drug release in HSCs, artesunate depletes glutathione peroxidase 4 and glutathione, effectively initiating ferroptosis. In vivo experiments demonstrate that this strategy induces pronounced ferroptosis, efficiently relieving liver fibrosis. This work provides a proof-of-concept demonstration that an oral delivery strategy for ferroptosis inducers may be beneficial for liver fibrosis treatment.

Electronic Supplementary Material

Download File(s)
6725_ESM.pdf (991.5 KB)

References

[1]

Fallowfield, J. A.; Ramachandran, P. A relaxin-based nanotherapy for liver fibrosis. Nat. Nanotechnol. 2021, 16, 365–366.

[2]

Koyama, Y.; Brenner, D. A. Liver inflammation and fibrosis. J. Clin. Invest. 2017, 127, 55–64.

[3]

Lee, Y. A.; Wallace, M. C.; Friedman, S. L. Pathobiology of liver fibrosis: A translational success story. Gut 2015, 64, 830–841.

[4]

Pellicoro, A.; Ramachandran, P.; Iredale, J. P.; Fallowfield, J. A. Liver fibrosis and repair: Immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 2014, 14, 181–194.

[5]

Xi, Y.; Li, Y. P.; Xu, P. F.; Li, S. H.; Liu, Z. S.; Tung, H. C.; Cai, X. R.; Wang, J. Y.; Huang, H. Z.; Wang, M. L. et al. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Sci. Adv. 2021, 7, eabg9241.

[6]

Gamboa, J. M.; Leong, K. W. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Delivery Rev. 2013, 65, 800–810

[7]

Luo, J. W.; Zhang, P.; Zhao, T.; Jia, M. D.; Yin, P.; Li, W. H.; Zhang, Z. R.; Fu, Y.; Gong, T. Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis. ACS Nano 2019, 13, 3910–3923.

[8]

Fan, W. F.; Wei, Q. Y.; Xiang, J. J.; Tang, Y. S.; Zhou, Q.; Geng, Y.; Liu, Y. P.; Sun, R.; Xu, L.; Wang, G. W. et al. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery. Adv. Mater. 2022, 34, 2109189.

[9]

Zhang, L. F.; Wang, X. H.; Zhang, C. L.; Lee, J.; Duan, B. W.; Xing, L.; Li, L.; Oh, Y. K.; Jiang, H. L. Sequential nano-penetrators of capillarized liver sinusoids and extracellular matrix barriers for liver fibrosis therapy. ACS Nano 2022, 16, 14029–14042.

[10]

Sato, Y.; Murase, K.; Kato, J.; Kobune, M.; Sato, T.; Kawano, Y.; Takimoto, R.; Takada, K.; Miyanishi, K.; Matsunaga, T. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 2008, 26, 431–442.

[11]

Zhou, Y. H.; Chen, Z. X.; Zhao, D.; Li, D.; He, C. L.; Chen, X. S. A pH-triggered self-unpacking capsule containing zwitterionic hydrogel-coated MOF nanoparticles for efficient oral exendin-4 delivery. Adv. Mater. 2021, 33, 2102044.

[12]

Yu, Y. L.; Shen, X. R.; Xiao, X.; Li, L.; Huang, Y. Butyrate modification promotes intestinal absorption and hepatic cancer cells targeting of ferroptosis inducer loaded nanoparticle for enhanced hepatocellular carcinoma therapy. Small 2023, 19, 2301149.

[13]

Liu, C.; Liu, W.; Liu, Y. H.; Duan, H. X.; Chen, L. Q.; Zhang, X. T.; Jin, M. J.; Cui, M. H.; Quan, X. Q.; Pan, L. B. et al. Versatile flexible micelles integrating mucosal penetration and intestinal targeting for effectively oral delivery of paclitaxel. Acta Pharm. Sin. B 2023, 13, 3425–3443.

[14]

Xi, Z. Y.; Ahmad, E.; Zhang, W.; Li, J. Y.; Wang, A. H.; Faridoon, N.; Wang, N.; Zhu, C. L.; Huang, W.; Xu, L. et al. Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery. J. Controlled Release 2022, 342, 1–13.

[15]

Yu, Y. L.; Wu, Z. H.; Wu, J. W.; Shen, X. R.; Wu, R. N.; Zhou, M. L.; Li, L.; Huang, Y. Investigation of FcRn-mediated transepithelial mechanisms for oral nanoparticle delivery systems. Adv. Ther. 2021, 4, 2100145.

[16]

Yu, Y. L.; Ni, M. J.; Zheng, Y. X.; Huang, Y. Airway epithelial-targeted nanoparticle reverses asthma in inhalation therapy. J. Controlled Release 2024, 367, 223–234.

[17]

Yang, T. T.; Wang, A. H.; Nie, D.; Fan, W. W.; Jiang, X. H.; Yu, M. R.; Guo, S. Y.; Zhu, C. L.; Wei, G.; Gan, Y. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat. Commun. 2022, 13, 6649.

[18]

Theodosiou, M.; Laudet, V.; Schubert, M. From carrot to clinic: An overview of the retinoic acid signaling pathway. Cell. Mol. Life Sci. 2010, 67, 1423–1445.

[19]

Yu, Y. L.; Xing, L. Y.; Li, L.; Wu, J. W.; He, J. H.; Huang, Y. Coordination of rigidity modulation and targeting ligand modification on orally-delivered nanoparticles for the treatment of liver fibrosis. J. Controlled Release 2022, 341, 215–226.

[20]

Yu, Y. L.; Li, S. J.; Yao, Y.; Shen, X. R.; Li, L.; Huang, Y. Increasing stiffness promotes pulmonary retention of ligand-directed dexamethasone-loaded nanoparticle for enhanced acute lung inflammation therapy. Bioact. Mater. 2023, 20, 539–547.

[21]

Geerts, A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 2001, 21, 311–336.

[22]

Lachowski, D.; Matellan, C.; Gopal, S.; Cortes, E.; Robinson, B. K.; Saiani, A.; Miller, A. F.; Stevens, M. M.; Del Río Hernández, A. E. Substrate stiffness-driven membrane tension modulates vesicular trafficking via caveolin-1. ACS Nano 2022, 16, 4322–4337.

[23]

Qiao, J. B.; Fan, Q. Q.; Xing, L.; Cui, P. F.; He, Y. J.; Zhu, J. C.; Wang, L. R.; Pang, T.; Oh, Y. K.; Zhang, C. F. et al. Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis. J. Controlled Release 2018, 283, 113–125.

[24]

You, D. G.; Oh, B. H.; Nguyen, V. Q.; Lim, G. T.; Um, W.; Jung, J. M.; Jeon, J.; Choi, J. S.; Choi, Y. C.; Jung, Y. J. et al. Vitamin A-coupled stem cell-derived extracellular vesicles regulate the fibrotic cascade by targeting activated hepatic stellate cells in vivo. J. Controlled Release 2021, 336, 285–295.

[25]

Wenzel, S. E.; Tyurina, Y. Y.; Zhao, J. M.; Croix, C. M. S.; Dar, H. H.; Mao, G. W.; Tyurin, V. A.; Anthonymuthu, T. S.; Kapralov, A. A.; Amoscato, A. A. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 2017, 171, 628–641.e26

[26]

Sun, X. F.; Niu, X. H.; Chen, R. C.; He, W. Y.; Chen, D.; Kang, R.; Tang, D. L. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 2016, 64, 488–500.

[27]

Ooko, E.; Saeed, M. E. M.; Kadioglu, O.; Sarvi, S.; Colak, M.; Elmasaoudi, K.; Janah, R.; Greten, H. J.; Efferth, T. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine 2015, 22, 1045–1054.

[28]

Kong, Z. Y.; Liu, R.; Cheng, Y. R. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed. Pharmacother. 2019, 109, 2043–2053.

[29]

Chen, S. Q.; Zhong, Y.; Fan, W. F.; Xiang, J. J.; Wang, G. W.; Zhou, Q.; Wang, J. Q.; Geng, Y.; Sun, R.; Zhang, Z. et al. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat. Biomed. Eng. 2021, 5, 1019–1037.

[30]

Miotto, G.; Rossetto, M.; Di Paolo, M. L.; Orian, L.; Venerando, R.; Roveri, A.; Vučković, A. M.; Bosello Travain, V.; Zaccarin, M.; Zennaro, L. et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020, 28, 101328.

[31]

Wang, H. Y.; Cheng, Y.; Mao, C.; Liu, S.; Xiao, D. S.; Huang, J.; Tao, Y. G. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol. Ther. 2021, 29, 2185–2208.

[32]

Li, X.; Yao, Q. Y.; Liu, H. C.; Jin, Q. W.; Xu, B. L.; Zhang, S. C.; Tu, C. T. Placental growth factor silencing ameliorates liver fibrosis and angiogenesis and inhibits activation of hepatic stellate cells in a murine model of chronic liver disease. J. Cell. Mol. Med. 2017, 21, 2370–2385.

[33]

Zhao, Z.; Lin, C. Y.; Cheng, K. siRNA-and miRNA-based therapeutics for liver fibrosis. Transl. Res. 2019, 214, 17–29

[34]

Wu, L.; Shan, W.; Zhang, Z. R.; Huang, Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Delivery Rev. 2018, 124, 150–163.

[35]

Kumar, V.; Mondal, G.; Slavik, P.; Rachagani, S.; Batra, S. K.; Mahato, R. I. Codelivery of small molecule hedgehog inhibitor and miRNA for treating pancreatic cancer. Mol. Pharm. 2015, 12, 1289–1298.

[36]

McCuskey, R. S. Morphological mechanisms for regulating blood flow through hepatic sinusoids. Liver 2000, 20, 3–7.

[37]

Niu, Z. G.; Tedesco, E.; Benetti, F.; Mabondzo, A.; Montagner, I. M.; Marigo, I.; Gonzalez-Touceda, D.; Tovar, S.; Diéguez, C.; Santander-Ortega, M. J. et al. Rational design of polyarginine nanocapsules intended to help peptides overcoming intestinal barriers. J. Controlled Release 2017, 263, 4–17.

[38]

El Moukhtari, S. H.; Rodríguez-Nogales, C.; Blanco-Prieto, M. J. Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Adv. Drug Delivery Rev. 2021, 173, 238–251.

[39]

Des Rieux, A.; Pourcelle, V.; Cani, P. D.; Marchand-Brynaert, J.; Préat, V. Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv. Drug Delivery Rev. 2013, 65, 833–844.

[40]

Xu, Y. N.; Zheng, Y. X.; Wu, L.; Zhu, X.; Zhang, Z. R.; Huang, Y. Novel solid lipid nanoparticle with endosomal escape function for oral delivery of insulin. ACS Appl. Mater. Interfaces 2018, 10, 9315–9324.

[41]

Wu, L.; Bai, Y. L.; Wang, L. L.; Liu, X.; Zhou, R.; Li, L.; Wu, R. N.; Zhang, Z. R.; Zhu, X.; Huang, Y. Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J. Controlled Release 2020, 323, 151–160.

[42]

Tsuchida, T.; Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 397–411.

[43]

Sato, Y.; Murase, K.; Kato, J.; Kobune, M.; Sato, T.; Kawano, Y.; Takimoto, R.; Takada, K.; Miyanishi, K.; Matsunaga, T. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 2008, 26, 431–442.

[44]

Zhang, Z. P.; Wang, C. M.; Zha, Y.; Hu, W.; Gao, Z. F.; Zang, Y. H.; Chen, J. N.; Zhang, J. F.; Dong, L. Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy. ACS Nano 2015, 9, 2405–2419.

[45]

Carlson, B. A.; Tobe, R.; Yefremova, E.; Tsuji, P. A.; Hoffmann, V. J.; Schweizer, U.; Gladyshev, V. N.; Hatfield, D. L.; Conrad, M. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 2016, 9, 22–31.

[46]

Sui, M.; Jiang, X. F.; Chen, J.; Yang, H. Y.; Zhu, Y. Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway. Biomed. Pharmacother. 2018, 106, 125–133.

Nano Research
Pages 7621-7630
Cite this article:
Yu Y, Zhang S, Xu Y, et al. Oral delivery of ferroptosis inducers for effective treatment of hepatic fibrosis. Nano Research, 2024, 17(8): 7621-7630. https://doi.org/10.1007/s12274-024-6725-z
Topics:

425

Views

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 February 2024
Revised: 25 April 2024
Accepted: 29 April 2024
Published: 29 May 2024
© Tsinghua University Press 2024
Return