Journal Home > Volume 16 , Issue 11

For the high content of sp-hybridized carbon atoms, carbyne based materials can express superior conductivity and ultra-high theoretical capacity, which are key factors of high-performance anode. However, the poor stability of synthetic intermediates and unwanted side reactions lead to huge challenge to synthesis carbyne alternating carbon–carbon triple and single bonds. Here, we rationally designed a smart “Greedy Snake” strategy to synthesize the alkyne rich carbon materials named Si capped alkyne rich carbon (Si-Alkyne-C) which comprised of sp-hybridized carbon atoms. The as-prepared Si-Alkyne-C generated on the copper surface through a carbon–carbon coupling, in which Si can effectively protect the intermediates generated by the reaction. The C–Si bond can constantly generate copper-alkyne intermediates to couple with other terminal alkynes to continuously elongate like "Greedy Snake", forming a long alkyne chain structure. The as-prepared Si-Alkyne-C can be applied as anode electrodes, exhibited very high reversible capacity of up to 2776 mAh/g at a current density of 50 mA/g and an average capacity around 1202 mAh/g at a high current density of 5000 mA/g for 5000 cycles, which are the best results among the reported carbon materials and better than many other anode materials. These results not only provide a facile strategy to prepare carbyne based materials, but also open a broad avenue for the preparation of high-capacity anode materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The preparation of whole sp-C composed alkyne rich carbon materials

Show Author's information Deyi Zhang1,2,§Ze Yang1,3,§Wenjing Liu1,2Xingru Yan1,2Qin Liu1Xiaodong Li1Changshui Huang1,3( )Yuliang Li1( )
Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

§ Deyi Zhang and Ze Yang contributed equally to this work.

Abstract

For the high content of sp-hybridized carbon atoms, carbyne based materials can express superior conductivity and ultra-high theoretical capacity, which are key factors of high-performance anode. However, the poor stability of synthetic intermediates and unwanted side reactions lead to huge challenge to synthesis carbyne alternating carbon–carbon triple and single bonds. Here, we rationally designed a smart “Greedy Snake” strategy to synthesize the alkyne rich carbon materials named Si capped alkyne rich carbon (Si-Alkyne-C) which comprised of sp-hybridized carbon atoms. The as-prepared Si-Alkyne-C generated on the copper surface through a carbon–carbon coupling, in which Si can effectively protect the intermediates generated by the reaction. The C–Si bond can constantly generate copper-alkyne intermediates to couple with other terminal alkynes to continuously elongate like "Greedy Snake", forming a long alkyne chain structure. The as-prepared Si-Alkyne-C can be applied as anode electrodes, exhibited very high reversible capacity of up to 2776 mAh/g at a current density of 50 mA/g and an average capacity around 1202 mAh/g at a high current density of 5000 mA/g for 5000 cycles, which are the best results among the reported carbon materials and better than many other anode materials. These results not only provide a facile strategy to prepare carbyne based materials, but also open a broad avenue for the preparation of high-capacity anode materials.

Keywords: energy storage, anode material, lithium storage, alkyne rich carbon materials, sp-hybridized carbon

References(42)

[1]

Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. 3.0.CO;2-Z">Adv. Mater. 1998, 10, 725–763.

[2]

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

[3]

Jiang, Y. P.; Wang, B.; Liu, P.; Wang, B.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Modified solid–electrolyte interphase toward stable Li metal anode. Nano Energy 2020, 77, 105308.

[4]

Chen, Z. X.; Qian, J. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Electrochemical performances of Al-based composites as anode materials for Li-ion batteries. Electrochim. Acta 2009, 54, 4118–4122.

[5]

Jang, B.; Koo, J.; Park, M.; Lee, H.; Nam, J.; Kwon, Y.; Lee, H. Graphdiyne as a high-capacity lithium ion battery anode material. Appl. Phys. Lett. 2013, 103, 263904.

[6]

Park, M.; Lee, H. Carbyne bundles for a lithium-ion-battery anode. J. Korean Phys. Soc. 2013, 63, 1014–1018.

[7]

Casari, C. S.; Milani, A. Carbyne: From the elusive allotrope to stable carbon atom wires. MRS Commun. 2018, 8, 207–219.

[8]

Lagow, R. J.; Kampa, J. J.; Wei, H. C.; Battle, S. L.; Genge, J. W.; Laude, D. A.; Harper, C. J.; Bau, R.; Stevens, R. C.; Haw, J. F. et al. Synthesis of linear acetylenic carbon: The “sp” carbon allotrope. Science 1995, 267, 362–367.

[9]

Kaiser, K.; Scriven, L. M.; Schulz, F.; Gawel, P.; Gross, L.; Anderson, H. L. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 2019, 365, 1299–1301.

[10]

Yang, F.; Li, C.; Li, J. L.; Liu, P.; Yang, G. W. Carbyne nanocrystal: One-dimensional van der Waals crystal. ACS Nano 2021, 15, 16769–16776.

[11]

Tabata, H.; Fujii, M.; Hayashi, S.; Doi, T.; Wakabayashi, T. Raman and surface-enhanced Raman scattering of a series of size-separated polyynes. Carbon 2006, 44, 3168–3176.

[12]

Pan, B. T.; Xiao, J.; Li, J. L.; Liu, P.; Wang, C. X.; Yang, G. W. Carbyne with finite length: The one-dimensional sp carbon. Sci. Adv. 2015, 1, e1500857.

[13]

Tykwinski, R. R. Carbyne: The molecular approach. Chem. Rec. 2015, 15, 1060–1074.

[14]

Chalifoux, W. A.; Tykwinski, R. R. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat. Chem. 2010, 2, 967–971.

[15]

Zirzlmeier, J.; Schrettl, S.; Brauer, J. C.; Contal, E.; Vannay, L.; Brémond, É.; Jahnke, E.; Guldi, D. M.; Corminboeuf, C.; Tykwinski, R. R. et al. Optical gap and fundamental gap of oligoynes and carbyne. Nat. Commun. 2020, 11, 4797.

[16]

Maier, S. An atomic-scale view of cyclocarbon synthesis. Science 2019, 365, 1245–1246.

[17]

Haley, M. M. Cyclo[18]carbon, the newest member of the family of carbon allotropes. Chem 2019, 5, 2517–2519.

[18]

Sun, Q.; Cai, L. L.; Wang, S. Y.; Widmer, R.; Ju, H. X.; Zhu, J. F.; Li, L.; He, Y. B.; Ruffieux, P.; Fasel, R. et al. Bottom–up synthesis of metalated carbyne. J. Am. Chem. Soc. 2016, 138, 1106–1109.

[19]
Cataldo, F. Polyynes: Synthesis, Properties, and Applications; CRC Press: Boca Raton, 2005.
DOI
[20]

Yang, Z.; Song, Y. W.; Zhang, C. F.; He, J. J.; Li, X. D.; Wang, X.; Wang, N.; Li, Y. L.; Huang, C. S. Porous 3D silicon-diamondyne blooms excellent storage and diffusion properties for Li, Na, and K ions. Adv. Energy Mater. 2021, 11, 2101197.

[21]

Yang, Z.; Ren, X.; Song, Y. W.; Li, X. D.; Zhang, C. F.; Hu, X. L.; He, J. J.; Li, J. Z.; Huang, C. S. Germanium-carbdiyne: A 3D well-defined sp-hybridized carbon-based material with superhigh Li storage property. Energy Environ. Mater. 2023, 6, e12269.

[22]

Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

[23]

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

[24]

Zhang, X.; Bi, R. Y.; Wang, J. Y.; Zheng, M.; Wang, J.; Yu, R. B.; Wang, D. Delicate co-control of shell structure and sulfur vacancies in interlayer-expanded tungsten disulfide hollow sphere for fast and stable sodium storage. Adv. Mater. 2023, 35, 2209354.

[25]

Ma, Y. J.; Bi, R. Y.; Yang, M.; Wei, P.; Qi, J.; Wang, J. Y.; Yu, R. B.; Wang, D. Hollow multishelled structural ZnO fillers enhance the ionic conductivity of polymer electrolyte for lithium batteries. J. Nanopart. Res. 2023, 25, 14.

[26]

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, 1133–1138.

[27]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[28]

Lucotti, A.; Tommasini, M.; Fazzi, D.; Del Zoppo, M.; Chalifoux, W. A.; Ferguson, M. J.; Zerbi, G.; Tykwinski, R. R. Evidence for solution-state nonlinearity of sp-carbon chains based on IR and Raman spectroscopy: Violation of mutual exclusion. J. Am. Chem. Soc. 2009, 131, 4239–4244.

[29]

Eisler, S.; Slepkov, A. D.; Elliott, E.; Luu, T.; McDonald, R.; Hegmann, F. A.; Tykwinski, R. R. Polyynes as a model for carbyne: Synthesis, physical properties, and nonlinear optical response. J. Am. Chem. Soc. 2005, 127, 2666–2676.

[30]

Slepkov, A. D.; Hegmann, F. A.; Eisler, S.; Elliott, E.; Tykwinski, R. R. The surprising nonlinear optical properties of conjugated polyyne oligomers. J. Chem. Phys. 2004, 120, 6807–6810.

[31]

Mohr, W.; Stahl, J.; Hampel, F.; Gladysz, J. A. Synthesis, structure, and reactivity of sp carbon chains with bis(phosphine) pentafluorophenylplatinum endgroups: Butadiynediyl (C4) through hexadecaoctaynediyl (C16) bridges, and beyond. Chem.—Eur. J. 2003, 9, 3324–3340.

[32]

Tykwinski, R. R.; Chalifoux, W.; Eisler, S.; Lucotti, A.; Tommasini, M.; Fazzi, D.; Del Zoppo, M.; Zerbi, G. Toward carbyne: Synthesis and stability of really long polyynes. Pure Appl. Chem. 2010, 82, 891–904.

[33]

Yang, Z.; Song, Y. W.; Ren, X.; Zhang, C. F.; Hu, X. L.; Li, X. D.; Wang, K.; Li, J. Z.; Huang, C. S. A universal way to prepare graphyne derivatives with variable band gap and lithium storage properties. Carbon 2021, 182, 413–421.

[34]

Zhong, J.; Song, L.; Meng, J.; Gao, B.; Chu, W. S.; Xu, H. Y.; Luo, Y.; Guo, J. H.; Marcelli, A.; Xie, S. S. et al. Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 2009, 47, 967–973.

[35]

Wu, B.; Li, M. R.; Xiao, S. N.; Qu, Y. K.; Qiu, X. Y.; Liu, T. F.; Tian, F. H.; Li, H. X.; Xiao, S. X. A graphyne-like porous carbon-rich network synthesized via alkyne metathesis. Nanoscale 2017, 9, 11939–11943.

[36]

Ren, X.; Li, X. D.; Yang, Z.; Wang, X.; He, J. J.; Wang, K.; Yin, J. G.; Li, J. Z.; Huang, C. S. Tailoring acetylenic bonds in graphdiyne for advanced lithium storage. ACS Sustainable Chem. Eng. 2020, 8, 2614–2621.

[37]

Shi, L.; Rohringer, P.; Wanko, M.; Rubio, A.; Waßerroth, S.; Reich, S.; Cambré, S.; Wenseleers, W.; Ayala, P.; Pichler, T. Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne. Phys. Rev. Mater. 2017, 1, 075601.

[38]

Chan, K. T.; Neaton, J. B.; Cohen, M. L. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 2008, 77, 235430.

[39]

Sun, Q.; Wang, Q.; Jena, P.; Kawazoe, Y. Clustering of Ti on a C60 surface and its effect on hydrogen storage. J. Am. Chem. Soc. 2005, 127, 14582–14583.

[40]

Zhou, Z.; Gao, X. P.; Yan, J.; Song, D. Y.; Morinaga, M. Enhanced lithium absorption in single-walled carbon nanotubes by boron doping. J. Phys. Chem. B 2004, 108, 9023–9026.

[41]

Yang, Z.; Cui, W. W.; Wang, K.; Song, Y. W.; Zhao, F. H.; Wang, N.; Long, Y. Z.; Wang, H. L.; Huang, C. S. Chemical modification of the sp-hybridized carbon atoms of graphdiyne by using organic sulfur. Chem.—Eur. J. 2019, 25, 5643–5647.

[42]

Li, Y. Z.; Li, Y. B.; Pei, A.; Yan, K.; Sun, Y. M.; Wu, C. L.; Joubert, L. M.; Chin, R.; Koh, A. L.; Yu, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506–510.

File
12274_2023_5820_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 March 2023
Revised: 20 April 2023
Accepted: 02 May 2023
Published: 31 May 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2022YFA1204500 and 2022YFA1204501) and the ICCAS Institute Research Project.

Return