Journal Home > Volume 16 , Issue 5

The separation of CO2/C2H2 mixture by CO2-selective sorbents is an energy-efficient C2H2 purification technique, but is strategically challenging due to their similar molecular size and physicochemical properties. Meanwhile, water is inevitable in CO2/C2H2 mixture and it is usually a significant barrier because of its competitive adsorption with CO2. To address this challenge, herein, we report the first example of metal–organic framework (MOF) that exhibits water-boosted CO2 adsorption and CO2/C2H2 separation by anchoring L-arginine (ARG) on the Zr6 cluster of MOF-808. The CO2 affinity and capacity in the resulting MOF-808-ARG are markedly facilitated by the presence of water, while the C2H2 adsorption is significantly suppressed. Specifically, CO2 adsorption capacities in adsorption isotherm and breakthrough measurement are increased to 143% and 184%, respectively. In addition, the wet MOF-808-ARG exhibits the record CO2/C2H2 selectivity of 1,180 under zero coverage. Breakthrough experiments reveal that CO2/C2H2 mixture can be completely separated and the result of mass spectrometry indicates that the C2H2 purity in the outlet is up to 99.9%. In situ infrared (IR) results and density functional theory (DFT) calculations reveal the water-promoted CO2 adsorption mechanism that the formation of bicarbonate products in the presence of water is thermodynamically and kinetically more favorable than that without water. Moreover, MOF-808-ARG also possesses excellent water stability and excellent regeneration of CO2 adsorption. This work provides a new paradigm by transforming the negative effects of water into positive ones for CO2/C2H2 separation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Water boosted CO2/C2H2 separation in L-arginine functionalized metal–organic framework

Show Author's information Hejin Zhu1,3Wenjuan Xue1,2Hongliang Huang1,2( )Lvyun Chen1,3Haoyu Liu1,2Chongli Zhong1,2,3( )
State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
Country School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
School of Material Science and Engineering, Tiangong University, Tianjin 300387, China

Abstract

The separation of CO2/C2H2 mixture by CO2-selective sorbents is an energy-efficient C2H2 purification technique, but is strategically challenging due to their similar molecular size and physicochemical properties. Meanwhile, water is inevitable in CO2/C2H2 mixture and it is usually a significant barrier because of its competitive adsorption with CO2. To address this challenge, herein, we report the first example of metal–organic framework (MOF) that exhibits water-boosted CO2 adsorption and CO2/C2H2 separation by anchoring L-arginine (ARG) on the Zr6 cluster of MOF-808. The CO2 affinity and capacity in the resulting MOF-808-ARG are markedly facilitated by the presence of water, while the C2H2 adsorption is significantly suppressed. Specifically, CO2 adsorption capacities in adsorption isotherm and breakthrough measurement are increased to 143% and 184%, respectively. In addition, the wet MOF-808-ARG exhibits the record CO2/C2H2 selectivity of 1,180 under zero coverage. Breakthrough experiments reveal that CO2/C2H2 mixture can be completely separated and the result of mass spectrometry indicates that the C2H2 purity in the outlet is up to 99.9%. In situ infrared (IR) results and density functional theory (DFT) calculations reveal the water-promoted CO2 adsorption mechanism that the formation of bicarbonate products in the presence of water is thermodynamically and kinetically more favorable than that without water. Moreover, MOF-808-ARG also possesses excellent water stability and excellent regeneration of CO2 adsorption. This work provides a new paradigm by transforming the negative effects of water into positive ones for CO2/C2H2 separation.

Keywords: moisture, CO2 adsorption, metal–organic frameworks, L-arginine, acetylene (C2H2) purification

References(41)

[1]

Schobert, H. Production of acetylene and acetylene-based chemicals from coal. Chem. Rev. 2014, 114, 1743–1760.

[2]
Stang, P. J.; Diederich, F. Modern Acetylene Chemistry; John Wiley & Sons: New York, 1995.
[3]

Granada, A.; Karra, S. B.; Senkan, S. M. Conversion of methane into acetylene and ethylene by the chlorine-catalyzed oxidative-pyrolysis (CCOP) process. 1. Oxidative pyrolysis of chloromethane. Ind. Eng. Chem. Res. 1987, 26, 1901–1905.

[4]

Eguchi, R.; Uchida, S.; Mizuno, N. Inverse and high CO2/C2H2 sorption selectivity in flexible organicinorganic ionic crystals. Angew. Chem., Int. Ed. 2012, 51, 1635–1639.

[5]

Foo, M. L.; Matsuda, R.; Hijikata, Y.; Krishna, R.; Sato, H.; Horike, S.; Hori, A.; Duan, J. G.; Sato, Y.; Kubota, Y. et al. An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. J. Am. Chem. Soc. 2016, 138, 3022–3030.

[6]

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

[7]

Ye, Y. X.; Xian, S. K.; Cui, H.; Tan, K.; Gong, L. S.; Liang, B.; Pham, T.; Pandey, H.; Krishna, R.; Lan, P. C.; et al. Ma, S.Q. Metal–organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. J. Am. Chem. Soc. 2022, 144, 1681–1689.

[8]
Lewis, J. D. Separation of acetylene from ethylene-bearing gases. U. S. Patent. 38, 371, 44, September 24, 1974.
[9]

Bao, Z. B.; Chang, G. G.; Xing, H. B.; Krishna, R.; Ren, L. L.; Chen, B. L. Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy. Environ. Sci. 2016, 9, 3612–3641.

[10]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.

[11]

Gao, J. K.; Qian, X. F.; Lin, R. B.; Krishna, R.; Wu, H.; Zhou, W.; Chen, B. L. Mixed metal–organic framework with multiple binding sites for efficient C2H2/CO2 separation. Angew. Chem., Int. Ed. 2020, 59, 4396–4400.

[12]

Wang, Y.; Jia, X. X.; Yang, H. J.; Wang, Y. X.; Chen, X. T.; Hong, A. N.; Li, J. P.; Bu, X. H.; Feng, P. Y. A strategy for constructing pore-space-partitioned MOFs with high uptake capacity for C2 hydrocarbons and CO2. Angew. Chem., Int. Ed. 2020, 59, 19027–19030.

[13]

Gong, L. S.; Liu, Y.; Ren, J. Y.; Al-Enizi, A. M.; Nafady, A.; Ye, Y. X.; Bao, Z. B.; Ma, S. Q. Utilization of cationic microporous metal–organic framework for efficient Xe/Kr separation. Nano. Res. 2022, 15, 7559–7564.

[14]

Vismara, R.; Di Nicola, C.; Millán, R. G. S.; Domasevich, K. V.; Pettinari, C.; Navarro, J. A. R.; Galli, S. Efficient hexane isomers separation in isoreticular bipyrazolate metal–organic frameworks: The role of pore functionalization. Nano Res. 2021, 14, 532–540.

[15]

Yu, J. M.; Xie, L. H.; Li, J. R.; Ma, Y. G.; Seminario, J. M.; Balbuena, P. B. CO2 capture and separations using MOFs: Computational and experimental studies. Chem. Rev. 2017, 117, 9674–9754.

[16]

Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal–organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.

[17]

Liu, J. J.; Wang, Z. F.; Cheng, P.; Zaworotko, M. J.; Chen, Y.; Zhang, Z. J. Post-synthetic modifications of metal–organic cages. Nat. Rev. Chem. 2022, 6, 339–356.

[18]

Chang, G. G.; Li, B.; Wang, H. L.; Hu, T. L.; Bao, Z. B.; Chen, B. L. Control of interpenetration in a microporous metal–organic framework for significantly enhanced C2H2/CO2 separation at room temperature. Chem. Commun. 2016, 52, 3494–3496.

[19]

Fu, X. P.; Wang, Y. L.; Liu, Q. Y. Metal–organic frameworks for C2H2/CO2 separation. Dalton Trans. 2020, 49, 16598–16607.

[20]

Duan, J. G.; Jin, W. Q.; Krishna, R. Natural gas purification using a porous coordination polymer with water and chemical stability. Inorg. Chem. 2015, 54, 4279–4284.

[21]

Zeng, H.; Xie, M.; Huang, Y. L.; Zhao, Y. F.; Zhao, X. J.; Xie, X. J.; Bai, J. P.; Wan, M. Y.; Krishna, R.; Lu, W. G. et al. Induced fit of C2H2 in a flexible MOF through cooperative action of open metal sites. Angew. Chem., Int. Ed. 2019, 58, 8515–8519.

[22]

Wang, J.; Zhang, Y.; Su, Y.; Liu, X.; Zhang, P. X.; Lin, R. B.; Chen, S. X.; Deng, Q.; Zeng, Z. L.; Deng, S. G. et al. Fine pore engineering in a series of isoreticular metal–organic frameworks for efficient C2H2/CO2 separation. Nat. Commun. 2022, 13, 200.

[23]

Mukherjee, S.; He, Y. H.; Franz, D.; Wang, S. Q.; Xian, W. R.; Bezrukov, A. A.; Space, B.; Xu, Z. T.; He, J.; Zaworotko, M. J. Halogen–C2H2 binding in ultramicroporous metal–organic frameworks (MOFs) for benchmark C2H2/CO2 separation selectivity. Chem. —Eur. J. 2020, 26, 4923–4929.

[24]

Lin, R. B.; Li, L. B.; Wu, H.; Arman, H.; Li, B.; Lin, R. G.; Zhou, W.; Chen, B. L. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J. Am. Chem. Soc. 2017, 139, 8022–8028.

[25]

Jiang, M. D.; Cui, X. L.; Yang, L. F.; Yang, Q. W.; Zhang, Z. G.; Yang, Y. W.; Xing, H. B. A thermostable anion-pillared metal–organic framework for C2H2/C2H4 and C2H2/CO2 separations. Chem. Eng. J. 2018, 352, 803–810.

[26]

Yu, F.; Hu, B. Q.; Wang, X. N.; Zhao, Y. M.; Li, J. L.; Li, B.; Zhou, H. C. Enhancing the separation efficiency of a C2H2/C2H4 mixture by a chromium metal–organic framework fabricated via post-synthetic metalation. J. Mater. Chem. A 2020, 8, 2083–2089.

[27]

Cao, J. W.; Mukherjee, S.; Pham, T.; Wang, Y.; Wang, T.; Zhang, T.; Jiang, X.; Tang, H. J.; Forrest, K. A.; Space, B. et al. One-step ethylene production from a four-component gas mixture by a single physisorbent. Nat Commun. 2021, 12, 6507.

[28]

Xie, Y.; Cui, H.; Wu, H.; Lin, R. B.; Zhou, W.; Chen, B. L. Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material. Angew. Chem., Int. Ed. 2021, 60, 9604–9609.

[29]

Hao, C. L.; Ren, H.; Zhu, H. Y.; Chi, Y. H.; Zhao, W.; Liu, X. P.; Guo, W. Y. CO2-favored metal–organic frameworks SU-101(M) (M = Bi, In, Ga, and Al) with inverse and high selectivity of CO2 from C2H2 and C2H4. Sep. Purif. Technol. 2022, 290, 120804.

[30]

Jin, M. M.; Li, Y. X.; Gu, C.; Liu, X. Q.; Sun, L. B. Tailoring microenvironment of adsorbents to achieve excellent CO2 uptakes from wet gases. AIChE J. 2020, 66, e16645.

[31]

Chen, X.; Chen, D. E.; Gan, L. H. Molecular dynamics simulation of the partial oxidation of methane to produce acetylene. Chem. Phys. Lett. 2021, 771, 138559.

[32]

Zhang, Q.; Wang, J. F.; Wang, T. F. Effect of ethane and propane addition on acetylene production in the partial oxidation process of methane. Ind. Eng. Chem. Res. 2017, 56, 5174–5184.

[33]

Xian, S. K.; Peng, J. J.; Zhang, Z. J.; Xia, Q. B.; Wang, H. H.; Li, Z. Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures. Chem. Eng. J. 2015, 270, 385–392.

[34]

Hossain, M. I.; Cunningham, J. D.; Becker, T. M.; Grabicka, B. E.; Walton, K. S.; Rabideau, B. D.; Glover, T. G. Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66. Chem. Eng. Sci. 2019, 203, 346–357.

[35]

Yazaydın, A. Ö.; Benin, A. I.; Faheem, S. A.; Jakubczak, P.; Low, J. J.; Willis, R. R.; Snurr, R. Q. Enhanced CO2 adsorption in metal–organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 2009, 21, 1425–1430.

[36]

Huang, H. L.; Zhang, W. J.; Liu, D. H.; Zhong, C. L. Understanding the effect of trace amount of water on CO2 capture in natural gas upgrading in metal–organic frameworks: A molecular simulation study. Ind. Eng. Chem. Res. 2012, 51, 10031–10038.

[37]

Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal–organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

[38]

Peng, Y. G.; Huang, H. L.; Zhang, Y. X.; Kang, C. F.; Chen, S. M.; Song, L.; Liu, D. H.; Zhong, C. L. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun. 2018, 9, 187.

[39]

Chen, X. Y.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Modified-MOF-808-Loaded polyacrylonitrile membrane for highly efficient, simultaneous emulsion separation and heavy metal ion removal. ACS Appl. Mater. Interfaces 2020, 12, 39227–39235.

[40]

DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y. G.; Walton, K. S. Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A 2013, 1, 5642–5650.

[41]

Nguyen, H. L. Metal–organic frameworks can photocatalytically split water-why not? Adv. Mater. 2022, 34, 2200465.

File
12274_2022_5028_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 June 2022
Revised: 26 August 2022
Accepted: 08 September 2022
Published: 03 November 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 22038010, 22141001, and 21978212) and the Science and Technology Plans of Tianjin (Nos. 21ZYJDJC00040 and 20ZYJDJC00110).

Return