Journal Home > Volume 16 , Issue 5

Highly active, stable, and cut-price (photo-)electrocatalysts are desired to overwhelm high energy barriers for anodic oxygen evolution reaction processes. Herein, a heterostructure of cobalt-iron oxide/black phosphorus nanosheets is in-situ synthesized via a facile and novel three-electrode electrolysis method. Bulky black phosphorus is exfoliated into its nanosheets at the cathode while the CoFe oxide is derived directly from the metal wire anode during the electrolysis process. This heterostructure exhibits excellent electrocatalytic oxygen evolution reaction (OER) performance, and the overpotential at 10 mA·cm−2 is 51 mV lower than that of the commercial RuO2 catalyst. Its superior OER performance stems from the favorable adsorption behavior and an enlarged electrochemical active surface area of the catalyst. To reveal the origin of excellent OER performance from the point of adsorption strength of OH*, methanol oxidation reaction (MOR) test is applied under the identified OER operating conditions. Further introduction of light illumination enhances the OER activity of this heterostructure. The overpotential drops down to 280 mV, benefiting from pronounced photochemical response of black phosphorus nanosheets and iron oxide inside the heterostructure. This work develops a new electrochemical method to construct high performance and light-sensitive heterostructures from black phosphorus nanosheets for the OER.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cobalt-iron oxide/black phosphorus nanosheet heterostructure: Electrosynthesis and performance of (photo-)electrocatalytic oxygen evolution

Show Author's information Man Zhao1,§Xiaoru Cheng1,§He Xiao1( )Jianru Gao1Shoufeng Xue1Xiaoxia Wang1Haishun Wu1Jianfeng Jia1( )Nianjun Yang2( )
Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
Institute of Materials Engineering, University of Siegen, Siegen 57076, Germany

§ Man Zhao and Xiaoru Cheng contributed equally to this work.

Abstract

Highly active, stable, and cut-price (photo-)electrocatalysts are desired to overwhelm high energy barriers for anodic oxygen evolution reaction processes. Herein, a heterostructure of cobalt-iron oxide/black phosphorus nanosheets is in-situ synthesized via a facile and novel three-electrode electrolysis method. Bulky black phosphorus is exfoliated into its nanosheets at the cathode while the CoFe oxide is derived directly from the metal wire anode during the electrolysis process. This heterostructure exhibits excellent electrocatalytic oxygen evolution reaction (OER) performance, and the overpotential at 10 mA·cm−2 is 51 mV lower than that of the commercial RuO2 catalyst. Its superior OER performance stems from the favorable adsorption behavior and an enlarged electrochemical active surface area of the catalyst. To reveal the origin of excellent OER performance from the point of adsorption strength of OH*, methanol oxidation reaction (MOR) test is applied under the identified OER operating conditions. Further introduction of light illumination enhances the OER activity of this heterostructure. The overpotential drops down to 280 mV, benefiting from pronounced photochemical response of black phosphorus nanosheets and iron oxide inside the heterostructure. This work develops a new electrochemical method to construct high performance and light-sensitive heterostructures from black phosphorus nanosheets for the OER.

Keywords: black phosphorus, cobalt oxide, iron oxide, oxygen evolution reaction, electrosynthesis

References(48)

[1]

Xu, W. J.; Cao, D. F.; Moses, O. A.; Sheng, B. B.; Wu, C. Q.; Shou, H. W.; Wu, X. J.; Chen, S. M.; Song, L. Probing self-optimization of carbon support in oxygen evolution reaction. Nano Res. 2021, 14, 4534–4540.

[2]

Wang, T. J.; Liu, X. Y.; Li, Y.; Li, F. M.; Deng, Z. W.; Chen, Y. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Res. 2020, 13, 79–85.

[3]

Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas, K. Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Res. 2022, 15, 4799–4806.

[4]

Wu, X. X.; Zhang, T.; Wei, J. X.; Feng, P. F.; Yan, X. B.; Tang, Y. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Res. 2020, 13, 2130–2135.

[5]

Zhao, M.; Xue, S. F.; Xiao, H.; Gao, J. R.; Cheng, X. R.; Jing, Y. Y.; Jia, J. F.; Wu, H. S. Facile in-situ electrochemical fabrication of highly efficient nickel hydroxide-iron hydroxide/graphene hybrid for oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 12547–12558.

[6]

Li, M.; Pan, X. C.; Jiang, M. Q.; Zhang, Y. F.; Tang, Y. W.; Fu, G. T. Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chem. Eng. J. 2020, 395, 125160.

[7]

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

[8]

Shi, Z. P.; Wang, X.; Ge, J. J.; Liu, C. P.; Xing, W. Fundamental understanding of the acidic oxygen evolution reaction: Mechanism study and state-of-the-art catalysts. Nanoscale 2020, 12, 13249–13275.

[9]

Zhao, M.; Zhang, J. J.; Xiao, H.; Hu, T. J.; Jia, J. F.; Wu, H. S. Facile in situ synthesis of a carbon quantum dot/graphene heterostructure as an efficient metal-free electrocatalyst for overall water splitting. Chem. Commun. 2019, 55, 1635–1638.

[10]

Geng, J.; Kuai, L.; Kan, E. J.; Wang, Q.; Geng, B. Y. Precious-metal-free Co-Fe-O/RGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route. ChemSusChem 2015, 8, 659–664.

[11]

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

[12]

Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe, Ni)S2 core-shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

[13]

Huang, L. A.; He, Z. S.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1−xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Res. 2020, 13, 246–254.

[14]

Yin, P. Q.; Wu, G.; Wang, X. Q.; Liu, S. J.; Zhou, F. Y.; Dai, L.; Wang, X.; Yang, B.; Yu, Z. Q. NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution reaction. Nano Res. 2021, 14, 4783–4788.

[15]

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.

[16]

Xiao, H.; Du, X. L.; Zhao, M.; Li, Y.; Hu, T. J.; Wu, H. S.; Jia, J. F.; Yang, N. J. Structural dependence of electrosynthesized cobalt phosphide/black phosphorus pre-catalyst for oxygen evolution in alkaline media. Nanoscale 2021, 13, 7381–7388.

[17]

Xiao, H.; Zhao, M.; Zhang, J. J.; Ma, X. F.; Zhang, J.; Hu, T. J.; Tang, T.; Jia, J. F.; Wu, H. S. Electrochemical cathode exfoliation of bulky black phosphorus into few-layer phosphorene nanosheets. Electrochem. Commun. 2018, 89, 10–13.

[18]

Li, S. T.; Zhang, Y. H.; Huang, H. W. Black phosphorus-based heterostructures for photocatalysis and photoelectrochemical water splitting. J. Energy Chem. 2022, 67, 745–779.

[19]

Xu, Y. M.; Zhang, X. Q.; Chen, Z. H.; Kempa, K.; Wang, X.; Shui, L. L. Chemical vapor deposition of amorphous molybdenum sulphide on black phosphorus for photoelectrochemical water splitting. J. Mater. Sci. Technol. 2021, 68, 1–7.

[20]

Jiang, Q. Q.; Xu, L.; Chen, N.; Zhang, H.; Dai, L. M.; Wang, S. Y. Facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem., Int. Ed. 2016, 55, 13849–13853.

[21]

Nakhanivej, P.; Yu, X.; Park, S. K.; Kim, S.; Hong, J. Y.; Kim, H. J.; Lee, W.; Hwang, J. Y.; Yang, J. E.; Wolverton, C. et al. Revealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets. Nat. Mater. 2019, 18, 156–162.

[22]

Li, X. Y.; Xiao, L. P.; Zhou, L.; Xu, Q. C.; Weng, J.; Xu, J.; Liu, B. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @ 2D black phosphorus for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 21106–21113.

[23]

Shi, F. B.; Huang, K. K.; Wang, Y.; Zhang, W.; Li, L. P.; Wang, X. Y.; Feng, S. H. Black phosphorus-modified Co3O4 through tuning the electronic structure for enhanced oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 17459–17466.

[24]

Wang, J. H.; Liu, D. N.; Huang, H.; Yang, N.; Yu, B.; Wen, M.; Wang, X.; Chu, P. K.; Yu, X. F. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 2600–2604.

[25]

Chen, H. Y.; Chen, J. X.; Ning, P.; Chen, X.; Liang, J. H.; Yao, X.; Chen, D.; Qin, L. S.; Huang, Y. X.; Wen, Z. H. 2D heterostructure of amorphous CoFeB coating black phosphorus nanosheets with optimal oxygen intermediate absorption for improved electrocatalytic water oxidation. ACS Nano 2021, 15, 12418–12428.

[26]

Xiao, H.; Xue, S. F.; Zhang, J. J.; Zhao, M.; Ma, J. C.; Chen, S.; Zheng, Z. F.; Jia, J. F.; Wu, H. S. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chem. Eng. J. 2021, 408, 127271.

[27]

Xiao, H.; Zhang, J. J.; Zhao, M.; Ma, J. C.; Li, Y.; Hu, T. J.; Zheng, Z. F.; Jia, J. F.; Wu, H. S. Electric field-assisted synthesis of Pt, carbon quantum dots-coloaded graphene hybrid for hydrogen evolution reaction. J. Power Sources 2020, 451, 227770.

[28]

Nsanzimana, J. M. V.; Gong, L. Q.; Dangol, R.; Reddu, V.; Jose, V.; Xia, B. Y.; Yan, Q. Y.; Lee, J. M.; Wang, X. Tailoring of metal boride morphology via anion for efficient water oxidation. Adv. Energy Mater. 2019, 9, 1901503.

[29]

Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

[30]

Babar, P.; Patil, K.; Karade, V.; Gour, K.; Lokhande, A.; Pawar, S.; Kim, J. H. In situ fabrication of nickel-iron oxalate catalysts for electrochemical water oxidation at high current densities. ACS Appl. Mater. Interfaces 2021, 13, 52620–52628.

[31]

Xu, J. Y.; Li, J. J.; Xiong, D. H.; Zhang, B. S.; Liu, Y. F.; Wu, K. H.; Amorim, I.; Li, W.; Liu, L. F. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts. Chem. Sci. 2018, 9, 3470–3476.

[32]

Tian, B.; Tian, B. N.; Smith, B.; Scott, M. C.; Hua, R. N.; Lei, Q.; Tian, Y. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat. Commun 2018, 9, 1397.

[33]

Tatlıdil, İ.; Bacaksız, E.; Buruk, C. K.; Breen, C.; Sökmen, M. A short literature survey on iron and cobalt ion doped TiO2 thin films and photocatalytic activity of these films against fungi. J. Alloys Compd. 2012, 517, 80–86.

[34]

Asif, S. A. B.; Khan, S. B.; Asiri, A. M. Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants. Nanoscale Res. Lett. 2014, 9, 510.

[35]

Li, J. C.; Zhou, Q. W.; Zhong, C. L.; Li, S. W.; Shen, Z. H.; Pu, J.; Liu, J. Y.; Zhou, Y. N.; Zhang, H. G.; Ma, H. X. (Co/Fe)4O4 cubane-containing nanorings fabricated by phosphorylating cobalt ferrite for highly efficient oxygen evolution reaction. ACS Catal. 2019, 9, 3878–3887.

[36]

Wen, T.; Zheng, Y.; Zhang, J.; Davey, K.; Qiao, S. Z. Co(II) boron imidazolate framework with rigid auxiliary linkers for stable electrocatalytic oxygen evolution reaction. Adv. Sci. 2019, 6, 1801920.

[37]

Chen, H. Y.; Song, L. Z.; Ouyang, S. X.; Wang, J. B.; Lv, J.; Ye, J. H. Co and Fe codoped WO2.72 as alkaline-solution-available oxygen evolution reaction catalyst to construct photovoltaic water splitting system with solar-to-hydrogen efficiency of 16.9%. Adv. Sci. 2019, 6, 1900465.

[38]

Shi, J. H.; Qiu, F.; Yuan, W. B.; Guo, M. M.; Lu, Z. H. Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chem. Eng. J. 2021, 403, 126312.

[39]

Ge, K.; Sun, S. J.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z. H.; Cao, J. Y.; Yang, Y. F.; Zhang, Y.; Pan, M. W. et al. Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12097–12102.

[40]

Chen, J. S.; Li, H.; Pei, Z. X.; Huang, Q. W.; Yuan, Z. W.; Wang, C. J.; Liao, X. Z.; Henkelman, G.; Chen, Y.; Wei, L. Catalytic activity atlas of ternary Co-Fe-V metal oxides for the oxygen evolution reaction. J. Mater. Chem. A 2020, 8, 15951–15961.

[41]

Zhang, H. B.; Zhou, W.; Dong, J. C.; Lu, X. F.; Lou, X. W. Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy Environ. Sci. 2019, 12, 3348–3355.

[42]

Guo, C. Y.; Liu, X. J.; Gao, L. F.; Ma, X. J.; Zhao, M. Z.; Zhou, J. Z.; Kuang, X.; Deng, W. Q.; Sun, X.; Wei, Q. Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting. J. Mater. Chem. A 2019, 7, 21704–21710.

[43]

Zhang, G. X.; Yang, J.; Wang, H.; Chen, H. B.; Yang, J. L.; Pan, F. Co3O4−δ quantum dots As a highly efficient oxygen evolution reaction catalyst for water splitting. ACS Appl. Mater. Interfaces 2017, 9, 16159–16167.

[44]

Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

[45]

Anantharaj, S.; Ede, S. R.; Karthick, K.; Sam Sankar, S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and correctness in the evaluation of electrocatalytic water splitting: Revisiting activity parameters with a critical assessment. Energy Environ. Sci. 2018, 11, 744–771.

[46]

Tao, H. B.; Xu, Y. H.; Huang, X.; Chen, J. Z.; Pei, L. J.; Zhang, J. M.; Chen, J. G.; Liu, B. A general method to probe oxygen evolution intermediates at operating conditions. Joule 2019, 3, 1498–1509.

[47]

Zhong, J. P.; Hou, C.; Li, L.; Waqas, M.; Fan, Y. J.; Shen, X. C.; Chen, W.; Wan, L. Y.; Liao, H. G.; Sun, S. G. A novel strategy for synthesizing Fe, N, and S tridoped graphene-supported Pt nanodendrites toward highly efficient methanol oxidation. J. Catal. 2020, 381, 275–284.

[48]

Zhang, J. M.; Sun, S. N.; Li, Y.; Zhang, X. J.; Zhang, P. Y.; Fan, Y. J. A strategy in deep eutectic solvents for carbon nanotube-supported PtCo nanocatalysts with enhanced performance toward methanol electrooxidation. Int. J. Hydrogen Energy 2017, 42, 26744–26751.

File
12274_2022_4676_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 April 2022
Revised: 26 May 2022
Accepted: 18 June 2022
Published: 20 July 2022
Issue date: May 2023

Copyright

© The Author(s) 2022

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21571119), the Applied Basic Research Project of Shanxi Province (Nos. 201901D211393 and 201901D211398), Scientific and Technological Innovation Programs of Higher Education Institution in Shanxi (No. 2019L0466), the Graduate Education Innovation Project of Shanxi Province (No. 2021Y480), the Graduate Education Innovation Project of Shanxi Normal University (No. 2021XSY038), and 1331 Engineering of Shanxi Province.

Rights and permissions

Copyright: © 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return