Journal Home > Volume 16 , Issue 3

Cardiovascular diseases (CVDs) are one of the most serious diseases threatening human health in the world. Therefore, effective monitoring and treatment of CVDs are urgently needed. Compared with traditional rigid devices, nanomaterials based flexible devices open up new opportunities for further development beneficial from the unique properties of nanomaterials which contribute to excellent performance to better prevent and treat CVDs. This review summarizes recent advances of nanomaterials based flexible devices for the monitoring and treatment of CVDs. First, we review the outstanding characteristics of nanomaterials. Next, we introduce flexible devices based on nanomaterials for practical use in CVDs including in vivo, ex vivo, and in vitro methods. At last, we make a conclusion and discuss the further development needed for nanomaterials and monitoring and treatment devices to better care CVDs.


menu
Abstract
Full text
Outline
About this article

Nanomaterials based flexible devices for monitoring and treatment of cardiovascular diseases (CVDs)

Show Author's information Zehua Xiang1Mengdi Han3Haixia Zhang1,2( )
National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China

Abstract

Cardiovascular diseases (CVDs) are one of the most serious diseases threatening human health in the world. Therefore, effective monitoring and treatment of CVDs are urgently needed. Compared with traditional rigid devices, nanomaterials based flexible devices open up new opportunities for further development beneficial from the unique properties of nanomaterials which contribute to excellent performance to better prevent and treat CVDs. This review summarizes recent advances of nanomaterials based flexible devices for the monitoring and treatment of CVDs. First, we review the outstanding characteristics of nanomaterials. Next, we introduce flexible devices based on nanomaterials for practical use in CVDs including in vivo, ex vivo, and in vitro methods. At last, we make a conclusion and discuss the further development needed for nanomaterials and monitoring and treatment devices to better care CVDs.

Keywords: treatment, nanomaterials, monitoring, flexible devices, cardiovascular diseases (CVDs)

References(123)

[1]

Ma, L. Y.; Chen, W. W.; Gao, R. L.; Liu, L. S.; Zhu, M. L.; Wang, Y. J.; Wu, Z. S.; Li, H. J.; Gu, D. F.; Yang, Y. J. et al. China cardiovascular diseases report 2018: An updated summary. J. Geriatr. Cardiol. 2020, 17, 1–8.

[2]

Hong, Y. J.; Jeong, H.; Cho, K. W.; Lu, N. S.; Kim, D. H. Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1808247.

[3]

Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.

[4]

Sempionatto, J. R.; Lin, M. Y.; Yin, L.; De La paz, E; Pei, K. X.; Sonsa-ard, T.; de Loyola Silva, A. N.; Khorshed, A. A.; Zhang, F. Y.; Tostado, N. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 2021, 5, 737–748.

[5]

Son, D.; Lee, J.; Lee, D. J.; Ghaffari, R.; Yun, S. M.; Kim, S. J.; Lee, J. E.; Cho, H. R.; Yoon, S.; Yang, S. X. et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 2015, 9, 5937–5946.

[6]

Chen, Z. Y.; Boyajian, N.; Lin, Z. X.; Yin, R. T.; Obaid, S. N.; Tian, J. B.; Brennan, J. A.; Chen, S. W.; Miniovich, A. N.; Lin, L. Q. et al. Flexible and transparent metal nanowire microelectrode arrays and interconnects for electrophysiology, optogenetics, and optical mapping. Adv. Mater. Technol. 2021, 6, 2100225.

[7]

Choi, Y. S.; Yin, R. T.; Pfenniger, A.; Koo, J.; Avila, R.; Lee, K. B.; Chen, S. W.; Lee, G.; Li, G.; Qiao, Y. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 2021, 39, 1228–1238.

[8]

Lee, S.; Sasaki, D.; Kim, D.; Mori, M.; Yokota T.; Lee, H.; Park, S.; Fukuda, K.; Sekino, M.; Matsuura, K. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 2019, 14, 156–160.

[9]

Feiner, R.; Engel, L.; Fleischer, S.; Malki, M.; Gal, I.; Shapira, A.; Shacham-Diamand, Y.; Dvir, T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 2016, 15, 679–685.

[10]

Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, T.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.

[11]

Gong, S.; Cheng, W. L. One-dimensional nanomaterials for soft electronics. Adv. Electron. Mater. 2017, 3, 1600314.

[12]

Cheng, L.; Wang, X. W.; Gong, F.; Liu, T.; Liu, Z. 2D nanomaterials for cancer theranostic applications. Adv. Mater. 2020, 32, 1902333.

[13]

Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, L.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

[14]

Cheng, E. M.; Lim, E. A.; Tan, W. H.; Mustafa, W. A.; Syed Idrus, S. Z.; Mohd Nasir, N. F.; Abdulmalek, M.; Beh, H. G.; Lee, Y. S.; Mou Yusop, S. N. A. Comparative study between wearable sensor and cuff arm blood pressure meter in measuring blood pressure and heart rate monitor using statistical approach. J. Phys.: Conf. Ser. 2020, 1529, 022082.

[15]

Song, J. K.; Do, K.; Koo, J. H.; Son, D.; Kim, D. H. Nanomaterials-based flexible and stretchable bioelectronics. MRS Bull. 2019, 44, 643–656.

[16]

Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

[17]

Valiev, R. Nanomaterial advantage. Nature 2002, 419, 887–889.

[18]

Lee, Y.; Kim, J.; Koo, J. H.; Kim, T. H.; Kim, D. H. Nanomaterials for bioelectronics and integrated medical systems. Korean J. Chem. Eng. 2018, 35, 1–11.

[19]

Hong, S.; Lee, S.; Kim, D. H. Materials and design strategies of stretchable electrodes for electronic skin and its applications. Proc. IEEE 2019, 107, 2185–2197.

[20]

Kim, T.; Cho, M.; Yu, K. J. Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene. Materials, 2018, 11, 1163.

[21]

Lee, W.; Yun, H.; Song, J. K.; Sunwoo, S. H.; Kim, D. H. Nanoscale materials and deformable device designs for bioinspired and biointegrated electronics. Acc. Mater. Res. 2021, 2, 266–281.

[22]

Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782–791.

[23]

Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592.

[24]

Yang, W. F.; Gong, W.; Hou, C. Y.; Su, Y.; Guo, Y. B.; Zhang, W.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 2019, 10, 5541.

[25]

Li, D. F.; He, J. H.; Song, Z.; Yao, K. M.; Wu, M. G.; Fu, H. R.; Liu, Y. M.; Gao, Z.; Zhou, J. K.; Wei, L. et al. Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsyst. Nanoeng. 2021, 7, 85.

[26]

Sun, B. H.; McCay, R. N.; Goswami, S.; Xu, Y. D.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 2018, 30, 1804327.

[27]

Park, J.; Choi, S.; Janardhan, A. H.; Lee, S. Y.; Raut, S.; Soares, J.; Shin, K.; Yang, S. H.; Lee, C.; Kang, K. W. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 2016, 8, 344ra86.

[28]

Anderson, J. M.; Miller, K. M. Biomaterial biocompatibility and the macrophage. Biomaterials 1984, 5, 5–10.

[29]

Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, 2000165.

[30]

Seo, K. J.; Qiang, Y.; Bilgin, I.; Kar, S.; Vinegoni, C.; Weissleder, R.; Fang, H. Transparent electrophysiology microelectrodes and interconnects from metal nanomesh. ACS Nano 2017, 11, 4365–4372.

[31]

Hwang, S. W.; Lee, C. H.; Cheng, H.; Jeong, J. W.; Kang, S. K.; Kim, J. H.; Shin, J.; Yang, J.; Liu, Z. J.; Ameer, G. A. et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 2015, 15, 2801–2808.

[32]

Sun, M. J.; Li, Z.; Yang, C. Y.; Lv, Y. J.; Yuan, L.; Shang, C. X.; Liang, S. Y.; Guo, B. W.; Liu, Y.; Li, Z. et al. Nanogenerator-based devices for biomedical applications. Nano Energy, 2021, 89, 106461.

[33]

Zou, Y.; Bo, L.; Li, Z. Recent progress in human body energy harvesting for smart bioelectronic system. Fundam. Res. 2021, 1, 364–382.

[34]

Ouyang, H.; Liu, Z.; Li, N.; Shi, B. J.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q. et al. Symbiotic cardiac pacemaker. Nat. Commun. 2019, 10, 1821.

[35]

Padrela, L.; Rodrigues, M. A.; Duarte, A.; Dias, A. M. A.; Braga, M. E. M.; de Sousa, H. C. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals—A comprehensive review. Adv. Drug Deliver. Rev. 2018, 131, 22–78.

[36]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[37]

Liu, W. C.; Fang, X.; Chen, Q. Q.; Li, Y. X.; Li, T. Reliability analysis of an integrated device of ECG, PPG and pressure pulse wave for cardiovascular disease. Microelectron. Reliab. 2018, 87, 183–187.

[38]

Deng, J.; Yuk, H.; Wu, J. J.; Varela, C. E.; Chen, X. Y.; Roche, E. T.; Guo, C. F.; Zhao, X. H. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 2021, 20, 229–236.

[39]

Li, H. G.; Liu, H. Z.; Sun, M. Z.; Huang, Y. A.; Xu, L. Z. 3D interfacing between soft electronic tools and complex biological tissues. Adv. Mater 2021, 33, 2004425.

[40]

Kshirsagar, T.; Dickreuter, S.; Mierzejewski, M.; Burkhardt, C. J.; Chassé, T.; Fleischer, M.; Jones, P. D. Transparent graphene/PEDOT: PSS microelectrodes for electro- and optophysiology. Adv. Mater. Technol. 2019, 4, 1800318.

[41]

Ricciardulli A. G.; Yang, S.; Wetzelaer, G. J. A. H.; Feng, X. L.; Blom, P. W. M. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 2018, 28, 1706010.

[42]

Son, D.; Kang, J.; Vardoulis, O.; Kim, Y.; Matsuhisa, N.; Oh, J. Y.; To, J. W. F.; Mun, J.; Katsumata, T.; Liu, Y. X. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057–1065.

[43]

Zhao, S. Y.; Li, G.; Tong, C. J.; Chen, W. J.; Wang, P. X.; Dai, J. K.; Fu, X. F.; Xu, Z.; Liu, X. J.; Lu, L. L. et al. Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes. Nat. Commun. 2020, 11, 1788.

[44]

Stetsenko, M.; Margitych, T.; Kryvyi, S.; Maksimenko, L.; Hassan, A.; Filonenko, S.; Li, B. K.; Qu, J. L.; Scheer, E.; Snegir, S. Gold nanoparticle self-aggregation on surface with 1, 6-hexanedithiol functionalization. Nanomaterials 2020, 10, 512.

[45]

Liu, J.; Zhang, X. Y.; Liu, Y. X.; Rodrigo, M.; Loftus, P. D.; Aparicio-Valenzuela, J.; Zheng, J. K.; Pong, T. Cyr, K. J.; Babakhanian, M. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl. Acad. Sci. USA 2020, 117, 14769–14778.

[46]

Narayan, S. M.; Shivkumar, K.; Krummen, D. E.; Miller, J. M.; Rappel, W. J. Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: Stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms. Circ. Arrhythm. Electrophysiol. 2013, 6, 58–67.

[47]

Bradley, C. J.; Haines, D. E. Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2020, 31, 2136–3147.

[48]

Haïssaguerre, M.; Sanders, P.; Hocini, M.; Takahashi, Y.; Rotter, M.; Sacher, F.; Rostock, T.; Hsu, L. F.; Bordachar, P.; Reuter, S. et al. Catheter ablation of long-lasting persistent atrial fibrillation: Critical structures for termination . J. Cardiovasc. Electrophysiol. 2005, 16, 1125–1137.

[49]

Li, J.; Kang, L.; Yu, Y. H.; Long, Y.; Jeffery, J. J.; Cai, W. B.; Wang, X. D. Study of long-term biocompatibility and bio-safety of implantable nanogenerators. Nano Energy 2018, 51, 728–735.

[50]

Galassi, T. V.; Antman-Passig, M.; Yaari, Z.; Jessurun, J.; Schwartz, R. E.; Heller, D. A. Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS One 2020, 15, e0226791.

[51]

Lin, W. C.; Yao, C. M.; Huang, T. Y.; Cheng, S. J.; Tang, C. M. Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dent. Mater. 2019, 35, 751–762.

[52]

Ouyang, H.; Li, Z.; Gu, M.; Hu, Y. R.; Xu, L. L.; Jiang, D. J.; Cheng, S. J.; Zou, Y.; Deng, Y.; Shi, B. J. et al. A bioresorbable dynamic pressure sensor for cardiovascular postoperative care. Adv. Mater. 2021, 33, 2102302.

[53]

Meng, K. Y.; Chen, J.; Li, X. S.; Wu, Y. F.; Fan, W. J.; Zhou, Z. H.; He, Q.; Wang, X.; Fan, X.; Zhang, Y. X. et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 2019, 29, 1806388.

[54]

Sempionatto, J. R.; Moon, J. M.; Wang, J. Touch-based fingertip blood-free reliable glucose monitoring: Personalized data processing for predicting blood glucose concentrations. ACS Sens. 2021, 6, 1875–1883.

[55]

Fuchs, F. D.; Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 2020, 75, 285–292.

[56]

Yoo, S.; Baek, H.; Doh, K.; Jeong, J.; Ahn, S.; Oh, I. Y.; Kim, K. Validation of the mobile wireless digital automatic blood pressure monitor using the cuff pressure oscillometric method, for clinical use and self-management, according to international protocols. Biomed. Eng. Lett. 2018, 8, 399–404.

[57]

Cox, D. J.; Fang, K.; McCall, A. L.; Conaway, M. R.; Banton, T. A.; Moncrief, M. A.; Diamond, A. M.; Taylor, A. G. Behavioral strategies to lower postprandial glucose in those with type 2 diabetes may also lower risk of coronary heart disease. Diabetes Ther. 2019, 10, 277–281.

[58]

Bandodkar, A. J.; Jia, W. Z.; Yardımcı, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Anal. Chem. 2015, 87, 394–398.

[59]

Chen, Y. H.; Lu, S. Y.; Zhang, S. S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B. W.; Wang, X. Y.; Feng, X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 2017, 3, e1701629.

[60]

Pu, Z. H.; Zhang, X. G.; Yu, H. X.; Tu, J. A.; Chen, H. L.; Liu, Y. C.; Su, X.; Wang, R. D.; Zhang, L.; Li, D. C. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 2021, 7, eabd0199.

[61]

Duchateau, J.; Sacher, F.; Pambrun, T.; Derval, N.; Chamorro-Servent, J.; Denis, A.; Ploux, S.; Hocini, M.; Jaïs, P.; Bernus, O. et al. Performance and limitations of noninvasive cardiac activation mapping. Heart Rhythm 2019, 16, 435–442.

[62]

Koo, J. H.; Song, J. K.; Kim, D. H.; Son, D. Soft implantable bioelectronics. ACS Mater. Lett. 2021, 3, 1528–1540.

[63]

Kim, D. H.; Ghaffari, R.; Lu, N. S.; Wang, S. D.; Lee, S. P.; Keum, H.; D’Angelo, R.; Klinker, L.; Su, Y. W.; Lu, C. F. et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. USA 2012, 109, 19910–19915.

[64]

Koh, A.; Gutbrod, S. R.; Meyers, J. D.; Lu, C. F.; Webb, R. C.; Shin, G.; Li, Y. H.; Kang, S. K.; Huang, Y. G.; Efimov, I. R. et al. Ultrathin injectable sensors of temperature, thermal conductivity, and heat capacity for cardiac ablation monitoring. Adv. Healthc. Mater. 2016, 5, 373–381.

[65]

Mackman, N.; Bergmeier, W.; Stouffer, G. A.; Weitz, J. I. Therapeutic strategies for thrombosis: New targets and approaches. Nat. Rev. Drug Discov. 2020, 19, 333–352.

[66]

Wolberg, A. S.; Rosendaal, F. R.; Weitz, J. I.; Jaffer, I. H.; Agnelli, G.; Baglin, T.; Mackman, N. Venous thrombosis. Nat. Rev. Dis. Primers 2015, 1, 15006.

[67]

Li, T.; Feng, Z. Q.; Qu, M. H.; Yan, K.; Yuan, T.; Gao, B. B.; Wang, T.; Dong, W.; Zheng, J. Core/shell piezoelectric nanofibers with spatial self-orientated β-phase nanocrystals for real-time micropressure monitoring of cardiovascular walls. ACS Nano 2019, 13, 10062–10073.

[68]

Zheng, Q.; Zhang, H.; Shi, B. J.; Xue, X.; Liu, Z.; Jin, Y. M.; Ma, Y.; Zou, Y.; Wang, X. X.; An, Z. et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016, 10, 6510–6518.

[69]

Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B. J.; Li, N.; Jiang, D. J.; Xie, F.; Qu, D.; Zou, Y.; Huang, Y. et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 2019, 29, 1807560.

[70]
Cohn, J. N.; El Shahawy, M. Monitoring cardiovascular disease progression. Open J. Cardiol. Heart Dis. 2019, 3, OJCHD. 000552.2019.
[71]

Sharma, P. A.; Maheshwari, R.; Tekade, M.; Tekade, R. K. Nanomaterial based approaches for the diagnosis and therapy of cardiovascular diseases. Curr. Pharm. Des. 2015, 21, 4465–4478.

[72]

Chu, K. F.; Dupuy, D. E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014, 14, 199–208.

[73]

Sim, K.; Ershad, F.; Zhang, Y. C.; Yang, P. Y.; Shim, H.; Rao, Z.; Lu, Y. T.; Thukral, A.; Elgalad, A.; Xi, Y. T. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 2020, 3, 775–784.

[74]

Schneider, O.; Moruzzi, A.; Fuchs, S.; Grobel, A.; Schulze, H. S.; Mayr, T.; Loskill, P. Fusing spheroids to aligned μ-tissues in a heart-on-chip featuring oxygen sensing and electrical pacing capabilities. Mater. Today Bio 2022, 15, 100280.

[75]

Keum, D. H.; Mun, J. H.; Hwang, B. W.; Kim, J.; Kim, H.; Jo, W.; Ha, D. H.; Cho, D. W.; Kim, C.; Hahn, S. K. Smart microbubble eluting theranostic stent for noninvasive ultrasound imaging and prevention of restenosis. Small 2017, 13, 1602925.

[76]

Niccoli, G.; Montone, R. A.; Ferrante, G.; Crea, F. The evolving role of inflammatory biomarkers in risk assessment after stent implantation. J. Am. Coll. Cardiol. 2010, 56, 1783–1793.

[77]

Jukema, J. W.; Verschuren, J. J. W.; Ahmed, T. A. N.; Quax, P. H. A. Restenosis after PCI. Part 1: Pathophysiology and risk factors. Nat. Rev. Cardiol. 2012, 9, 53–62.

[78]

Van Lith, R.; Baker, E.; Ware, H.; Yang, J.; Farsheed, A. C.; Sun, C.; Ameer, G. 3D‐printing strong high‐resolution antioxidant bioresorbable vascular stents. Adv. Mater. Technol. 2016, 1, 1600138.

[79]

Mizuno, A.; Changolkar, S.; Patel, M. S. Wearable devices to monitor and reduce the risk of cardiovascular disease: Evidence and opportunities. Annu. Rev. Med. 2021, 72, 459–471.

[80]

Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448.

[81]

Morales, D. L. S.; Khan, M. S.; Gottlieb, E. A.; Krishnamurthy, R.; Dreyer, W. J.; Adachi, I. Implantation of total artificial heart in congenital heart disease. Semin. Thorac. Cardiov. 2012, 24, 142–143.

[82]

Roberts, P. A.; Boudjemline, Y.; Cheatham, J. P.; Eicken, A.; Ewert, P.; McElhinney, D. B.; Hill, S. L.; Berger, F.; Khan, D.; Schranz, D. et al. Percutaneous tricuspid valve replacement in congenital and acquired heart disease. J. Am. Coll. Cardiol. 2011, 58, 117–122.

[83]

Ardehali, A.; Esmailian, F.; Deng, M.; Soltesz, E.; Hsich, E.; Naka, Y.; Mancini, D.; Camacho, M.; Zucker, M.; Leprince, P. et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): A prospective, open-label, multicentre, randomised non-inferiority trial. Lancet 2015, 385, 2577–2584.

[84]

Paloschi, V.; Sabater-Lleal, M.; Middelkamp, H.; Vivas, A.; Johansson, S.; van der Meer, A.; Tenje, M.; Maegdefessel, L. Organ-on-a-chip technology: A novel approach to investigate cardiovascular diseases. Cardiovasc. Res. 2021, 117, 2742–2754.

[85]

Starr, A.; Fessler, C. L.; Grunkemeier, G.; He, G. W. Heart valve replacement surgery: Past, present and future. Clin. Exp. Pharmacol. Physiol. 2002, 29, 735–738.

[86]
Kosaraju, A.; Goyal, A.; Grigorova, Y.; Makaryus, A. N. Left ventricular ejection fraction; StatPearls Publishing: Treasure Island, FL, USA; 2022. https://www.ncbi.nlm.nih.gov/books/NBK459131/ (accessed Mar 20, 2022).
[87]

Mehmel, H. C.; Stockins, B.; Ruffmann, K.; von Olshausen, K.; Schuler, G.; Kübler, W. The linearity of the end-systolic pressure-volume relationship in man and its sensitivity for assessment of left ventricular function. Circulation 1981, 63, 1216–1222.

[88]

Ross, J. Jr. Transseptal left heart catheterization: A 50-year odyssey. J. Am. Coll. Cardiol. 2008, 51, 2107–2115.

[89]

Dagdeviren, C.; Shi, Y.; Joe, P.; Ghaffari, R.; Balooch, G.; Usgaonkar, K.; Gur, O.; Tran, P. L.; Crosby, J. R.; Meyer, M. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 2015, 14, 728–736.

[90]

Yang, W. Y.; Gong, Y.; Yao, C.-Y.; Shrestha, M.; Jia, Y. Y.; Qiu, Z.; Fan, Q. H.; Weber, A.; Li, W. A fully transparent, flexible PEDOT: PSS-ITO-Ag-ITO based microelectrode array for ECoG recording. Lab Chip 2021, 21, 1096–1108.

[91]

Liao, C. Z.; Li, Y. C.; Tjong, S. C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018, 19, 3564.

[92]

Yang, Q. Q.; Wei, T.; Yin, R. T.; Wu, M. Z.; Xu, Y. M.; Koo, J.; Choi, Y. S.; Xie, Z. Q.; Chen, S. W.; Kandela, I. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 2021, 20, 1559–1570.

[93]

Dreifus, L. S.; Watanabe, Y.; Haiat, R.; Kimbiris, D. Atrioventricular block. Am. J. Cardiol. 1971, 28, 371–380.

[94]

Gutruf, P.; Yin, R. T.; Lee, K. B.; Ausra, J.; Brennan, J. A.; Qiao, Y.; Xie, Z. Q.; Peralta, R.; Talarico, O.; Murillo, A. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 2019, 10, 5742.

[95]

Del Nido, P.; Goldman, B. S. Temporary epicardial pacing after open heart surgery: Complications and prevention. J. Card. Surg. 1989, 4, 99–103.

[96]

Elmistekawy, E. Safety of temporary pacemaker wires. Asian Cardiovasc. Thorac. Ann. 2019, 27, 341–346.

[97]

Zheng, Q.; Shi, B. J.; Fan, F. R.; Wang, X. X.; Yan, L.; Yuan, W. W.; Wang, S. H.; Liu, H.; Li, Z.; Wang, Z. L. In vivo powering of pacemaker by breathing‐driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856.

[98]

Huang, S. T.; Dong, J. Z.; Du, X.; Wu, J. H.; Yu, R. H.; Long, D. Y.; Ning, M.; Sang, C. H.; Jiang, C. X.; Bai, R. et al. Relationship between ablation lesion size estimated by ablation index and different ablation settings—An ex vivo porcine heart study. J. Cardiovasc. Transl. 2020, 13, 965–969.

[99]

Jaworek, M.; Gelpi, G.; Romagnoni, C.; Lucherini, F.; Contino, M.; Fiore, G. B.; Vismara, R.; Antona, C. Long-arm clip for transcatheter edge-to-edge treatment of mitral and tricuspid regurgitation—Ex-vivo beating heart study. Struct. Heart 2019, 3, 211–219.

[100]

Zuppinger, C. 3D cardiac cell culture: A critical review of current technologies and applications. Front. Cardiovasc. Med. 2019, 6, 87.

[101]

Sander, V.; Suñe, G.; Jopling, C.; Morera, C.; Belmonte, J. C. I. Isolation and in vitro culture of primary cardiomyocytes from adult zebrafish hearts. Nat. Protoc. 2013, 8, 800–809.

[102]

Das, M.; Molnar, P.; Gregory, C.; Riedel, L.; Jamshidi, A.; Hickman, J. J. Long-term culture of embryonic rat cardiomyocytes on an organosilane surface in a serum-free medium. Biomaterials 2004, 25, 5643–5647.

[103]

Jimbo, Y.; Sasaki, D.; Ohya, T.; Lee, S.; Lee, W.; Hassani, F. A.; Yokota, T.; Matsuura, K.; Umezu, S.; Shimizu, T. et al. An organic transistor matrix for multipoint intracellular action potential recording. Proc. Natl. Acad. Sci. USA 2021, 118, e2022300118.

[104]

Dipalo, M.; Rastogi, S. K.; Matino, L.; Garg, R.; Bliley, J.; Iachetta, G.; Melle, G.; Shrestha, R.; Shen, S.; Santoro, F. et al. Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes. Sci. Adv. 2021, 7, eabd5175.

[105]

Abbott, J.; Ye, T. Y.; Qin, L.; Jorgolli, M.; Gertner, R. S.; Ham, D.; Park, H. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 2017, 12, 460–466.

[106]

Bers, D. M.; Barry, W. H.; Despa, S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc. Res. 2003, 57, 897–912.

[107]

Brown, A. M.; Lee, K. S.; Powell, T. Voltage clamp and internal perfusion of single rat heart muscle cells. J. Physiol. 1981, 318, 455–477.

[108]

Gouwens, N. W.; Wilson, R. I. Signal propagation in Drosophila central neurons. J. Neurosci. 2009, 29, 6239–6249.

[109]

Gu, Y.; Wang, C. F.; Kim, N.; Zhang, J. X.; Wang, T. M.; Stowe, J.; Nasiri, R.; Li, J. F.; Zhang, D. B.; Yang, A. et al. Three-dimensional transistor arrays for intra-and inter-cellular recording. Nat. Nanotechnol. 2022, 17, 292–300.

[110]

Liu, Y. L.; Huang, W. H. Stretchable electrochemical sensors for cell and tissue detection. Angew. Chem., Int. Edit. 2021, 60, 2757–2767.

[111]

Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986–994.

[112]

Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.

[113]

Feiner, R.; Fleischer, S.; Shapira, A.; Kalish, O.; Dvir, T. Multifunctional degradable electronic scaffolds for cardiac tissue engineering. J. Control. Release 2018, 281, 189–195.

[114]

Griffith, L. G.; Naughton, G. Tissue engineering-current challenges and expanding opportunities. Science 2002, 295, 1009–1014.

[115]

Dai, X. C.; Zhou, W.; Gao, T.; Liu, J.; Lieber, C. M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 2016, 11, 776–782.

[116]

Yu, S. Y.; Huang, S.; Ding, Y. S.; Wang, W.; Wang, A. Y.; Lu, Y. Transient receptor potential ion-channel subfamily V member 4: A potential target for cancer treatment. Cell Death Dis. 2019, 10, 497.

[117]

Schanze, N.; Bode, C.; Duerschmied, D. Platelet contributions to myocardial ischemia/reperfusion injury. Front. Immunol. 2019, 10, 1260.

[118]

Saha, P.; Sharma, S.; Korutla, L.; Datla, S. R.; Shoja-Taheri, F.; Mishra, R.; Bigham, G. E.; Sarkar, M.; Morales, D.; Bittle G. et al. Circulating exosomes derived from transplanted progenitor cells aid the functional recovery of ischemic myocardium. Sci. Transl. Med. 2019, 11, eaau1168.

[119]

Huang, C.; Grobert, N.; Watt, A. A. R.; Johnston, C.; Crossley, A.; Young, N. P.; Grant, P. S. Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon 2013, 61, 525–536.

[120]

Prevoteau, A.; Soulié-Ziakovic, C.; Leibler, L. Universally dispersible carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 19961–19964.

[121]

Fang, H.; Yu, K. J.; Gloschat, C.; Yang, Z. J.; Song, E. M.; Chiang, C. H.; Zhao, J. N.; Won, S. M.; Xu, S. Y.; Trumpis, M. et al. Erratum: Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 2017, 1, 0055.

[122]

Song, E. M.; Li, J. H.; Won, S. M.; Bai, W. B.; Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 2020, 19, 590–603.

[123]

Chiang, C. H.; Won, S. M.; Orsborn, A. L.; Yu, K. J.; Trumpis, M.; Bent, B.; Wang, C.; Xue, Y. G.; Min, S.; Woods, V. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 2020, 12, eaay4682.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 April 2022
Revised: 12 May 2022
Accepted: 16 May 2022
Published: 08 June 2022
Issue date: March 2023

Copyright

© Tsinghua University Press, corrected publication 2022

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFA0108100) and the National Natural Science Foundation of China (No. 62104009).

Return