Journal Home > Volume 15 , Issue 7

The design and optimization of one-dimension (1D) magnetic material are of great importance for the energy conversion, storage and spin electron devices, which remain a huge challenge. Herein, 1D porous Fe3O4 nanotubes (NTs) have been fabricated via a combined process of electrospinning and calcination. In the electrospinning precursors, by regulating the content ratio between two types of polyvinyl pyrrolidone with different molecular weight, porous Fe3O4 NTs with vortex-domain configuration have been fabricated. Based on the unique 1D nanotube structure encapsulated with multi-domains, the composite Fe3O4 NTs exhibit high complex permeability (μʹ, μʺ) values, and hold both strong magnetic storage and dissipation capacity. Our Fe3O4 NTs exhibit excellent microwave absorption (MA) performance with the maximum reflection loss value of −57.1 dB and the efficient absorption bandwidth of 12.0 GHz. The generated magnetic vortices make the crucial contribution to the spin-wave resonance which improves the MA dissipation under high-frequency. Related magnetic flux line distribution and magnetic domain moment were confirmed by the electron holography and micro-magnetic simulation, respectively, providing the deep insight to the microwave absorption mechanism.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency

Show Author's information Ruixuan Zhang1Lei Wang1,4Chunyang Xu1Chongyun Liang3( )Xianhu Liu5Xuefeng Zhang6Renchao Che1,2( )
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, China
Joint-Research Center for Computational Materials, Zhejiang Laboratory, Hangzhou 311100, China
Department of Chemistry, Fudan University, Shanghai 200433, China
School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China

Abstract

The design and optimization of one-dimension (1D) magnetic material are of great importance for the energy conversion, storage and spin electron devices, which remain a huge challenge. Herein, 1D porous Fe3O4 nanotubes (NTs) have been fabricated via a combined process of electrospinning and calcination. In the electrospinning precursors, by regulating the content ratio between two types of polyvinyl pyrrolidone with different molecular weight, porous Fe3O4 NTs with vortex-domain configuration have been fabricated. Based on the unique 1D nanotube structure encapsulated with multi-domains, the composite Fe3O4 NTs exhibit high complex permeability (μʹ, μʺ) values, and hold both strong magnetic storage and dissipation capacity. Our Fe3O4 NTs exhibit excellent microwave absorption (MA) performance with the maximum reflection loss value of −57.1 dB and the efficient absorption bandwidth of 12.0 GHz. The generated magnetic vortices make the crucial contribution to the spin-wave resonance which improves the MA dissipation under high-frequency. Related magnetic flux line distribution and magnetic domain moment were confirmed by the electron holography and micro-magnetic simulation, respectively, providing the deep insight to the microwave absorption mechanism.

Keywords: microwave absorption, porous structure, one-dimensional structure, vortex domain

References(52)

1

Sun, B.; Horvat, J.; Kim, H. S.; Kim, W. S.; Ahn, J.; Wang, G. X. Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C 2010, 114, 18753–18761.

2

Heumann, M.; Uhlig, T.; Zweck, J. True single domain and configuration-assisted switching of submicron permalloy dots observed by electron holography. Phys. Rev. Lett. 2005, 94, 077202.

3

Jin, K. H.; Liu, F. 1D topological phases in transition-metal monochalcogenide nanowires. Nanoscale 2020, 12, 14661–14667.

4

Braunecker, B.; Simon, P. Interplay between classical magnetic moments and superconductivity in quantum one-dimensional conductors: Toward a self-sustained topological majorana phase. Phys. Rev. Lett. 2013, 111, 147202.

5

Jin, C.; Wu, Z. C.; Zhang, R. X.; Qian, X.; Xu, H. L.; Che, R. C. 1D electromagnetic-gradient hierarchical carbon microtube via coaxial electrospinning design for enhanced microwave absorption. ACS Appl. Mater. Interfaces 2021, 13, 15939–15949.

6

Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

7

Ma, M. L.; Li, W. T.; Tong, Z. Y.; Huang, W. B.; Wang, R. Z.; Lyu, P.; Ma, Y.; Wu, G. L.; Yan, Q.; Li, P. X. et al. Facile synthesis of the one-dimensional flower-like yolk-shell Fe3O4@SiO2@NiO nanochains composites for high-performance microwave absorption. J. Alloys Compd. 2020, 843, 155199.

8

Wang, L.; Yu, X. F.; Huang, M. Q.; You, W. B.; Zeng, Q. W.; Zhang, J.; Liu, X. H.; Wang, M.; Che, R. C. Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon 2021, 172, 516–528.

9

Liu, X. F.; Hao, C. C.; He, L. H.; Yang, C.; Chen, Y. B.; Jiang, C. B.; Yu, R. H. Yolk-shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182.

10

Pan, Y. F.; Wang, G. S.; Liu, L.; Guo, L.; Yu, S. H. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284–294.

11

Pan, J. L.; Guo, H. G.; Wang, M.; Yang, H.; Hu, H. W.; Liu, P.; Zhu, H. W. Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 2020, 13, 621–629.

12

Li, Y.; Cheng, H. F.; Wang, N. N.; Zhou, S.; Xie, D. J.; Li, T. T. Preparation and microwave absorption properties of the Fe/TiO2/Al2O3 composites. Nano 2018, 13, 1850125.

13

Yuan, X. T.; Riaz, M. S.; Wang, X.; Dong, C. L.; Zhang, Z.; Huang, F. Q. Oxygen evolution activity of Co-Ni nanochain alloys: Promotion by electron injection. Chem.—Eur. J. 2018, 24, 3707–3711.

14

Vysakh, A. B.; Shebin, K. J.; Jain, R.; Sumanta, P.; Gopinath, C. S.; Vinod, C. P. Surfactant free synthesis of Au@Ni core-shell nanochains in aqueous medium as efficient transfer hydrogenation catalyst. Appl. Catal. A 2019, 575, 93–100.

15

Liu, X. L.; Yang, Y.; Ng, C. T.; Zhao, L. Y.; Zhang, Y.; Bay, B. H.; Fan, H. M.; Ding, J. Magnetic vortex nanorings: A new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv. Mater. 2015, 27, 1939–1944.

16

Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. MOF-derived yolk-shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099.

17

Wang, L.; Huang, M. Q.; Yu, X. F.; You, W. B.; Zhang, J.; Liu, X. H.; Wang, M.; Che, R. C. MOF-derived Ni1−xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 2020, 12, 150.

18

Huang, M. Q.; Wang, L.; Pei, K.; You, W. B.; Yu, X. F.; Wu, Z. C.; Che, R. C. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020, 16, 2000158.

19

Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGo: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

20

Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

21

Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed coni nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

22

Song, L. L.; Duan, Y. P.; Liu, J.; Pang, H. F. Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 2020, 13, 95–104.

23

Zhao, S. C.; Yan, L. L.; Tian, X. D.; Liu, Y. Q.; Chen, C. Q.; Li, Y. Q.; Zhang, J. K.; Song, Y.; Qin, Y. Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. 2018, 11, 530–541.

24

Han, C.; Zhang, M.; Cao, W. Q.; Cao, M. S. Electrospinning and in-situ hierarchical thermal treatment to tailor C-NiCo2O4 nanofibers for tunable microwave absorption. Carbon 2021, 171, 953–962.

25

Lu, M. M.; Cao, M. S.; Chen, Y. H.; Cao, W. Q.; Liu, J.; Shi, H. L.; Zhang, D. Q.; Wang, W. Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 2015, 7, 19408–19415.

26

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

27

Ma, Y. X.; Zhao, R. H.; Song, C. K.; Jin, C. D.; Wang, J. S.; Wei, Y. R.; Huang, Y.; Wang, J. N.; Wang, J. B.; Liu, Q. F. Current-driven radial vortex switching in a permalloy nanodisk. J. Magn. Magn. Mater. 2019, 491, 165544.

28

Kato, M.; Niwa, Y.; Suematsu, H.; Ishida, T. Vortex configuration and vortex-vortex interaction in nano-structured superconductors. Phys. C:Supercond. 2012, 479, 106–110.

29

Rabiu, M.; Mensah, S. Y.; Seini, I. Y.; Abukari, S. S. Hydrodynamic study of edge spin-vortex excitations of fractional quantum hall fluid. Phys. Lett. A 2016, 380, 2570–2574.

30

Hou, X. L.; Tian, Y.; Xue, Y.; Liu, C. Y.; Xia, W. X.; Xu, H.; Lampen-Kelley, P.; Srikanth, H.; Phan, M. H. Formation of tree-like and vortex magnetic domains of nanocrystalline α-(Fe, Si) in La-Fe-Si ribbons during rapid solidification and subsequent annealing. J. Alloys Compd. 2016, 669, 205–209.

31

Wang, X.; Pan, F.; Xiang, Z.; Zeng, Q. W.; Pei, K.; Che, R. C.; Lu, W. Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 2020, 157, 130–139.

32

Wang, Y.; Chen, T. Y.; Sun, S. W.; Liu, X. Y.; Hu, Z. Y.; Lian, Z. H.; Liu, L.; Shi, Q. F.; Wang, H.; Mi, J. C. et al. A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy. Nano Res. 2022, 15, 3246–3253.

33

Guslienko, K. Y.; Kakazei, G. N.; Kobljanskyj, Y. V.; Melkov, G. A.; Novosad, V.; Slavin, A. N. Microwave absorption properties of permalloy nanodots in the vortex and quasi-uniform magnetization states. New J. Phys. 2014, 16, 063044.

34

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500–1519.

35

Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

36

Zhang, Y.; Zhang, J.; Yuan, L. X.; Li, G.; Zhang, X. Z.; Yue, Z. X.; Li, L. T. Synthesis and microwave magnetic properties of magnetite nanowire arrays in polycarbonate templates. Ceram. Int. 2017, 43, S403–S406.

37

Li, B.; Rong, T. L.; Du, X. Y.; Shen, Y. Y.; Shen, Y. Q. Preparation of Fe3O4 particles with unique structures from nickel slag for enhancing microwave absorption properties. Ceram. Int. 2021, 47, 18848–18857.

38

Thomas, J. M.; Simpson, E. T.; Kasama, T.; Dunin-Borkowski, R. E. Electron holography for the study of magnetic nanomaterials. Acc. Chem. Res. 2008, 41, 665–674.

39

Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133.

40

Jing, P. P.; Pan, L. N.; Du, J. L.; Wang, J. B.; Liu, Q. F. Robust SiO2-modified CoFe2O4 hollow nanofibers with flexible room temperature magnetic performance. Phys. Chem. Chem. Phys. 2015, 17, 12841–12848.

41

Fang, J. Y.; Liu, T.; Chen, Z.; Wang, Y.; Wei, W.; Yue, X. G.; Jiang, Z. H. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 2016, 8, 8899–8909.

42

Lindner, J.; Barsukov, I.; Raeder, C.; Hassel, C.; Posth, O.; Meckenstock, R.; Landeros, P.; Mills, D. L. Two-magnon damping in thin films in case of canted magnetization: Theory versus experiment. Phys. Rev. B 2009, 80, 224421.

43

Wang, L.; Li, X.; Shi, X. F.; Huang, M. Q.; Li, X. H.; Zeng, Q. W.; Che, R. C. Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 2021, 13, 2136–2156.

44

Wang, L.; Huang, M. Q.; Qian, X.; Liu, L. L.; You, W. B.; Zhang, J.; Wang, M.; Che, R. C. Confined magnetic-dielectric balance boosted electromagnetic wave absorption. Small 2021, 17, 2100970.

45

Cao, M. S.; Shu, J. C.; Wen, B.; Wang, X. X.; Cao, W. Q. Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature. Small Struct. 2021, 2, 2100104.

46

Zhang, M.; Han, C.; Cao, W. Q.; Cao, M. S.; Yang, H. J.; Yuan, J. A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 2021, 13, 27.

47

Wang, Z. K.; Feng, E. X.; Wang, W. W.; Ma, Z.; Liu, Q. F.; Wang, J. B.; Xue, D. S. Adjustable magnetic anisotropy and resonance frequency of patterned ferromagnetic films by laser etching. J. Alloys Compd. 2012, 543, 197–199.

48

Chai, G. Z.; Yang, Y. C.; Zhu, J. Y.; Lin, M.; Sui, W. B.; Guo, D. W.; Li, X. L.; Xue, D. S. Adjust the resonance frequency of (Co90Nb10/Ta)n multilayers from 1.4 to 6.5 GHz by controlling the thickness of ta interlayers. Appl. Phys. Lett. 2010, 96, 012505.

49

Abe, M.; Shames, A. I.; Matsushita, N.; Shimada, Y. Ferromagnetic resonance study on magnetic homogeneity in spin-sprayed NiZn ferrite films highly permeable at gigahertz frequencies. IEEE Trans. Magn. 2003, 39, 3142–3144.

50

Chen, J. W.; Tang, D. M.; Zhang, B. S.; Yang, Y.; Lu, M.; Lu, H. X. Inhomogeneous exciting field dependence of permeability and microwave properties of trilayer ferromagnetic films with in-plane uniaxial anisotropy. J. Phys. :Condens. Matter 2007, 19, 346227.

51

Qiu, R. K.; Wang, Z. Y.; Zhang, Z. D. Spin-wave resonance frequency in a ferromagnetic thin film. J. Magn. Magn. Mater. 2013, 331, 92–97.

52

Boust, F.; Vukadinovic, N. Micromagnetic simulations of vortex resonances in coupled nanodisks. IEEE Trans. Magn. 2011, 47, 349–354.

Video
12274_2022_4401_MOESM2_ESM.mp4
12274_2022_4401_MOESM3_ESM.mp4
12274_2022_4401_MOESM4_ESM.mp4
12274_2022_4401_MOESM5_ESM.mp4
12274_2022_4401_MOESM6_ESM.mp4
12274_2022_4401_MOESM7_ESM.mp4
File
12274_2022_4401_MOESM1_ESM.pdf (639.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 February 2022
Revised: 30 March 2022
Accepted: 06 April 2022
Published: 26 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51725101, 11727807, 51672050, 61790581, and 22088101), the National Basic Research Program of China (No. 2018YFA0209102), and Infrastructure and Facility Construction Project of Zhejiang Laboratory.

Return