Journal Home > Volume 16 , Issue 3

Lithium-sulfur (Li-S) battery is one of the promising high-energy battery systems for future use. However, the shuttle effect due to the dissolved lithium polysulfides in ether electrolyte hampers its practical application. Applying electrolyte additives in Li-S battery has been widely acknowledged as an effective way to reduce the shuttle effect and improve cycling efficiency. In this work, benzoselenol (PhSeH) is used as an organic electrolyte additive in Li-S battery. It reacts with elemental sulfur to form phenyl selenosulfide, altering the redox pathway of the cathode with the regeneration of S8 at the end of charge and enabling new redox reactions with high reversibility. The Li-S coin cell with an optimized amount of PhSeH in the electrolyte delivers a high discharge capacity of 1,436 mAh·g−1 and a capacity retention of 92.86% in 200 cycles, and exhibits lower discharge overpotential in comparison to the cell with blank electrolyte. The Li-S pouch cell with a low electrolyte/sulfur (E/S) ratio of 4.0 μL·mg−1 shows a discharge capacity of 1,398 mAh and excellent capacity retention for 20 cycles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Benzoselenol as an organic electrolyte additive in Li-S battery

Show Author's information Junpeng Sun§Kai Zhang§Yongzhu FuWei Guo( )
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

§ Junpeng Sun and Kai Zhang contributed equally to this work.

Abstract

Lithium-sulfur (Li-S) battery is one of the promising high-energy battery systems for future use. However, the shuttle effect due to the dissolved lithium polysulfides in ether electrolyte hampers its practical application. Applying electrolyte additives in Li-S battery has been widely acknowledged as an effective way to reduce the shuttle effect and improve cycling efficiency. In this work, benzoselenol (PhSeH) is used as an organic electrolyte additive in Li-S battery. It reacts with elemental sulfur to form phenyl selenosulfide, altering the redox pathway of the cathode with the regeneration of S8 at the end of charge and enabling new redox reactions with high reversibility. The Li-S coin cell with an optimized amount of PhSeH in the electrolyte delivers a high discharge capacity of 1,436 mAh·g−1 and a capacity retention of 92.86% in 200 cycles, and exhibits lower discharge overpotential in comparison to the cell with blank electrolyte. The Li-S pouch cell with a low electrolyte/sulfur (E/S) ratio of 4.0 μL·mg−1 shows a discharge capacity of 1,398 mAh and excellent capacity retention for 20 cycles.

Keywords: electrochemical performance, lithium-sulfur (Li-S) battery, benzoselenol, electrolyte additive, sulfur-selenium bond

References(50)

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[3]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[4]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[5]

Guo, W.; Fu, Y. Z. A perspective on energy densities of rechargeable Li-S batteries and alternative sulfur-based cathode materials. Energy Environ. Mater. 2018, 1, 20–27.

[6]

Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C. M.; Rodriguez-Martínez, L. M.; Armand, M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives. Angew. Chem., Int. Ed. 2018, 57, 15002–15027.

[7]

Guo, W.; Zhang, W. Y.; Si, Y. B.; Wang, D. H.; Fu, Y. Z.; Manthiram, A. Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 2021, 12, 3031.

[8]

Zhao, Y. Y.; Ye, Y. S.; Wu, F.; Li, Y. J.; Li, L.; Chen, R. J. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries. Adv. Mater. 2019, 31, 1806532.

[9]

Fu, Y. S.; Wu, Z.; Yuan, Y. F.; Chen, P.; Yu, L.; Yuan, L.; Han, Q. R.; Lan, Y. J.; Bai, W. X.; Kan, E. J. et al. Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide. Nat. Commun. 2020, 11, 845.

[10]

Agostini, M.; Sadd, M.; Xiong, S. Z.; Cavallo, C.; Heo, J.; Ahn, J. H.; Matic, A. Designing a safe electrolyte enabling long-life Li/S batteries. ChemSusChem 2019, 12, 4176–4184.

[11]

Mo, Y. X.; Lin, J. X.; Wu, Y. J.; Yin, Z. W.; Lu, Y. Q.; Li, J. T.; Zhou, Y.; Sheng, T.; Huang, L.; Sun, S. G. Core–shell structured S@Co(OH)2 with a carbon-nanofiber interlayer: A conductive cathode with suppressed shuttling effect for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 4065–4073.

[12]

Ai, W.; Li, J. W.; Du, Z. Z.; Zou, C. J.; Du, H. F.; Xu, X.; Chen, Y.; Zhang, H. B.; Zhao, J. F.; Li, C. M. et al. Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li-S batteries. Nano Res. 2018, 11, 4562–4573.

[13]

Knoop, J. E.; Ahn, S. Recent advances in nanomaterials for high-performance Li-S batteries. J. Energy Chem. 2020, 47, 86–106.

[14]

He, B.; Li, W. C.; Chen, Z. Y.; Shi, L.; Zhang, Y.; Xia, J. L.; Lu, A. H. Multilevel structured carbon film as cathode host for Li-S batteries with superhigh-areal-capacity. Nano Res. 2021, 14, 1273–1279.

[15]

Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.

[16]

Li, S.; Dai, H. L.; Li, Y. H.; Lai, C.; Wang, J. L.; Huo, F. W.; Wang, C. Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage Mater. 2019, 18, 222–228.

[17]

Wang, Z.; Feng, M.; Sun, H.; Li, G. R.; Fu, Q.; Li, H. B.; Liu, J.; Sun, L. Q.; Mauger, A.; Julien, C. M. et al. Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. Nano Energy 2019, 59, 390–398.

[18]

Sun, M. L.; Wang, X. F.; Wang, J.; Yang, H.; Wang, L. N.; Liu, T. X. Assessment on the self-discharge behavior of lithium-sulfur batteries with LiNO3-possessing electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 35175–35183.

[19]

Xu, K.; Liang, X.; Wang, L. L.; Wang, Y.; Yun, J. F.; Sun, Y.; Xiang, H. F. Tri-functionalized polypropylene separator by rGO/MoO2 composite for high-performance lithium-sulfur batteries. Rare Met. 2021, 40, 2810–2818.

[20]

Wu, M.; Cui, Y.; Bhargav, A.; Losovyj, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu, Y. Z. Organotrisulfide: A high capacity cathode material for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2016, 55, 10027–10031.

[21]

Sang, P. F.; Si, Y. B.; Fu, Y. Z. Polyphenyl polysulfide: A new polymer cathode material for Li-S batteries. Chem. Commun. 2019, 55, 4857–4860.

[22]

Wang, D. Y.; Guo, W.; Fu, Y. Z. Organosulfides: An emerging class of cathode materials for rechargeable lithium batteries. Acc. Chem. Res. 2019, 52, 2290–2300.

[23]

Zhang, X. Y.; Chen, K.; Sun, Z. H.; Hu, G. J.; Xiao, R.; Cheng, H. M.; Li, F. Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1076–1095.

[24]

Pan, Z. Y.; Brett, D. J. L.; He, G. J.; Parkin, I. P. Progress and perspectives of organosulfur for lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2103483.

[25]

Guo, W.; Bhargav, A.; Ackerson, J. D.; Cui, Y.; Ma, Y.; Fu, Y. Z. Mixture is better: Enhanced electrochemical performance of phenyl selenosulfide in rechargeable lithium batteries. Chem. Commun. 2018, 54, 8873–8876.

[26]

Chen W. J.; Zhao C. X.; Li B. Q.; Jin Q.; Zhang X. Q.; Yuan T. Q.; Zhang X. T.; Jin Z. H.; Kaskel S.; Zhang Q. A mixed ether electrolyte for lithium metal anode protection in working lithium-sulfur batteries. Energy Environ. Mater. 2020, 3, 160–165.

[27]

Fan, L. L.; Deng, N. P.; Yan, J.; Li, Z. H.; Kang, W. M.; Cheng, B. W. The recent research status quo and the prospect of electrolytes for lithium sulfur batteries. Chem. Eng. J. 2019, 369, 874–897.

[28]

Zeng, W. D. ; Cheng, M. M. C. ; Ng, S. K. Y. Effects of transition metal cation additives on the passivation of lithium metal anode in Li-S batteries. Electrochim. Acta 2019, 319, 511–517.

[29]

Zhang, S. S.; Read, J. A. A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J. Power Sources 2012, 200, 77–82.

[30]

Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta 2012, 70, 344–348.

[31]

Li, J.; Zhang, L.; Qin, F. R.; Hong, B.; Xiang, Q.; Zhang, K.; Fang, J.; Lai, Y. Q. ZrO(NO3)2 as a functional additive to suppress the diffusion of polysulfides in lithium-sulfur batteries. J. Power Sources 2019, 442, 227232.

[32]

Chen, S. R.; Dai, F.; Gordin, M. L.; Yu, Z. X.; Gao, Y.; Song, J. X.; Wang, D. H. Functional organosulfide electrolyte promotes an alternate reaction pathway to achieve high performance in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 4231–4235.

[33]

Dong, L. W.; Liu, J. P.; Chen, D. J.; Han, Y. P.; Liang, Y. F.; Yang, M. Q.; Yang, C. H.; He, W. D. Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries. ACS Nano 2019, 13, 14172–14181.

[34]

Qian, F.; Shao, J.; Chen, Y.; Zhu, G. B.; Qu, Q. T.; Zheng, H. H. Partially fluorinated ether as an electrolyte additive to modify electrode surface and suppress dissolution of polysulfides in Li-S batteries. Electrochem. Energy Technol. 2018, 4, 39–46.

[35]

Qian, Y. X.; Schultz, C.; Niehoff, P.; Schwieters, T.; Nowak, S.; Schappacher, F. M.; Winter, M. Investigations on the electrochemical decomposition of the electrolyte additive vinylene carbonate in Li metal half cells and lithium ion full cells. J. Power Sources 2016, 332, 60–71.

[36]

Fan, Q. Q.; Li, B. H.; Si, Y. B.; Fu, Y. Z. Lowering the charge overpotential of Li2S via the inductive effect of phenyl diselenide in Li-S batteries. Chem. Commun. 2019, 55, 7655–7658.

[37]

Gu, X. X.; Yang, Z. G.; Qiao, S.; Shao, C. B.; Ren, X. L.; Yang, J. J. Exploiting methylated amino resin as a multifunctional binder for high-performance lithium-sulfur batteries. Rare Met. 2021, 40, 529–536.

[38]

Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhao, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.

[39]

Bhargav, A.; Bell, M. E.; Karty, J.; Cui, Y.; Fu, Y. Z. A class of organopolysulfides as liquid cathode materials for high-energy-density lithium batteries. ACS Appl. Mater. Interfaces 2018, 10, 21084–21090.

[40]

Fábián, M.; Sváb, E.; Pamukchieva, V.; Szekeres, A.; Petrik, P.; Vogel, S.; Ruett, U. Study of As-Se-Te glasses by neutron-, X-ray diffraction and optical spectroscopic methods. J. Non-Cryst. Solids 2012, 358, 860–868.

[41]

Yuan, B.; Zhu, W. D.; Hung, I.; Gan, Z. H.; Aitken, B.; Sen, S. Structure and chemical order in S-Se binary glasses. J. Phys. Chem. B 2018, 122, 12219–12226.

[42]

Li, F. L.; Si, Y. B.; Liu, B. J.; Li, Z. J.; Fu, Y. Z. Lithium benzenedithiolate catholytes for rechargeable lithium batteries. Adv. Funct. Mater. 2019, 29, 1902223.

[43]

Cui, Y.; Ackerson, J. D.; Ma, Y.; Bhargav, A.; Karty, J. A.; Guo, W.; Zhu, L. K.; Fu, Y. Z. Phenyl selenosulfides as cathode materials for rechargeable lithium batteries. Adv. Funct. Mater. 2018, 28, 1801791.

[44]

Sha, L. N.; Gao, P.; Ren, X. C.; Chi, Q. Q.; Chen, Y. J.; Yang, P. P. A self-repairing cathode material for lithium-selenium batteries: Se-C chemically bonded selenium-graphene composite. Chem.—Eur. J. 2018, 24, 2151–2156.

[45]

Gu, X. X.; Xin, L. B.; Li, Y.; Dong, F.; Fu, M.; Hou, Y. L. Highly reversible Li-Se batteries with ultra-lightweight N,S-codoped graphene blocking layer. Nano-Micro Lett. 2018, 10, 59.

[46]

Susarla, S.; Tsafack, T.; Owuor, P. S.; Puthirath, A. B.; Hachtel, J. A.; Babu, G.; Apte, A.; Jawdat, B. I.; Hilario, M. S.; Lerma, A. et al. High-K dielectric sulfur-selenium alloys. Sci. Adv. 2019, 5, eaau9785.

[47]

Zhao, C.; Xu, G. L.; Zhao, T. S.; Amine, K. Beyond the polysulfide shuttle and lithium dendrite formation: Addressing the sluggish sulfur redox kinetics for practical high-energy Li-S batteries. Angew. Chem., Int. Ed. 2020, 59, 17634–17640.

[48]

Sun, F. G.; Cheng, H. Y.; Chen, J. Z.; Zheng, N.; Li, Y. S.; Shi, J. L. Heteroatomic SenS 8−n molecules confined in nitrogen-doped mesoporous carbons as reversible cathode materials for high-performance lithium batteries. ACS Nano 2016, 10, 8289–8298.

[49]

Zhao, J. W.; Si, Y. B.; Han, Z. X.; Li, J. J.; Guo, W.; Fu, Y. Z. An organic-inorganic hybrid cathode based on S-Se dynamic covalent bonds. Angew. Chem., Int. Ed. 2020, 59, 2654–2658.

[50]

Lian, J.; Guo, W.; Fu, Y. Z. Isomeric organodithiol additives for improving interfacial chemistry in rechargeable Li-S batteries. J. Am. Chem. Soc. 2021, 143, 11063–11071.

File
12274_2022_4361_MOESM1_ESM.pdf (1,004.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 February 2022
Revised: 03 March 2022
Accepted: 24 March 2022
Published: 29 April 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22179120 and U2004214) and Zhengzhou University.

Return