Journal Home > Volume 16 , Issue 3

It remains elusive to realize the distinct catalysis of isomeric catalysts because it becomes challenging to identify structural isomers in the polydisperse nanoparticles. Herein we investigate catalysis of two geometric isomers for 36-gold-atom nanoclusters with different Au cores arrangements but the same thiolate ligands, thereby providing access to isomer catalysts readily participate in a desired reaction. Compared to the Au36(SR)24 with a one-dimensional (1D) layout of Au4 tetrahedral units, the Au36(SR)24 with a two-dimensional (2D) layout of Au4 tetrahedral units is more effective for the intramolecular hydroamination of alkyne. Our study suggests that the exposed Au sties of the two Au36(SR)24 catalysts favor different reaction intermediates and pathways. The intramolecular H transfer leads to intermediates with the C–N and with C=N for the 1D and 2D Au36(SR)24 respectively, and hence the different on-site and off-site pathways for the successive reaction steps account for the different performances of the two Au36(SR)24 catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intramolecular hydroamination of alkynes driven by isomeric Au36(SR)24 nanocluster catalysts

Show Author's information Yuying Zhang1Ancheng Tang1Xiao Cai1Jiayu Xu1Guangjun Li1Weigang Hu1Xu Liu1Mingyang Chen2( )Yan Zhu1( )
School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

It remains elusive to realize the distinct catalysis of isomeric catalysts because it becomes challenging to identify structural isomers in the polydisperse nanoparticles. Herein we investigate catalysis of two geometric isomers for 36-gold-atom nanoclusters with different Au cores arrangements but the same thiolate ligands, thereby providing access to isomer catalysts readily participate in a desired reaction. Compared to the Au36(SR)24 with a one-dimensional (1D) layout of Au4 tetrahedral units, the Au36(SR)24 with a two-dimensional (2D) layout of Au4 tetrahedral units is more effective for the intramolecular hydroamination of alkyne. Our study suggests that the exposed Au sties of the two Au36(SR)24 catalysts favor different reaction intermediates and pathways. The intramolecular H transfer leads to intermediates with the C–N and with C=N for the 1D and 2D Au36(SR)24 respectively, and hence the different on-site and off-site pathways for the successive reaction steps account for the different performances of the two Au36(SR)24 catalysts.

Keywords: catalytic activity, catalysis, isomeric structure, Au36 clusters

References(45)

[1]

Wang, B. N.; Durantini, J.; Nie, J.; Lanterna, A. E.; Scaiano, J. C. Heterogeneous photocatalytic click chemistry. J. Am. Chem. Soc. 2016, 138, 13127–13130.

[2]

Sun, B.; Ning, L. L; Zeng, H. C. Confirmation of Suzuki–Miyaura cross-coupling reaction mechanism through synthetic architecture of nanocatalysts. J. Am. Chem. Soc. 2020, 142, 13823–13832.

[3]

Wang, Y. H.; Wang, G. Y.; van der Wal, L. I.; Cheng, K.; Zhang, Q. H.; de Jong, K. P.; Wang, Y. Visualizing element migration over bifunctional metal-zeolite catalysts and its impact on catalysis. Angew. Chem., Int. Ed. 2021, 60, 17735–17743.

[4]

Li, W. H.; Yang, J. R.; Jing, H. Y.; Zhang, J.; Wang, Y.; Li, J.; Zhao, J.; Wang, D. S.; Li, Y. D. Creating high regioselectivity by electronic metal-support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 2021, 143, 15453–15461.

[5]

Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.

[6]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[7]

Shen, H.; Deng, G. C.; Kaappa, S.; Tan, T. D.; Han, Y. Z.; Malola, S.; Lin, S. C.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Highly robust but surface-active: An N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem., Int. Ed. 2019, 58, 17731–17735.

[8]

Shen, H.; Xu, Z.; Hazer, M. S. A.; Wu, Q. Y.; Peng, J.; Qin, R. X.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Surface coordination of multiple ligands endows N-heterocyclic carbene-stabilized gold nanoclusters with high robustness and surface reactivity. Angew. Chem., Int. Ed. 2021, 60, 3752–3758.

[9]

Yuan, S. F.; Lei, Z.; Guan, Z. J.; Wang, Q. M. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance. Angew. Chem., Int. Ed. 2021, 60, 5225–5229.

[10]

Li, Y. W.; Chen, Y. X.; House, S. D.; Zhao, S.; Wahab, Z.; Yang, J. C.; Jin, R. C. Interface engineering of gold nanoclusters for CO oxidation catalysis. ACS Appl. Mater. Interfaces 2018, 10, 29425–29434.

[11]

Yu, Y.; Luo, Z. T.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D. E.; Xie, J. P. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 2014, 136, 1246–1249.

[12]

Pyo, K.; Xu, H. M.; Han, S. M.; Saxena, S.; Yoon, S. Y.; Wiederrecht, G.; Ramakrishna, G.; Lee, D. Synthesis and photophysical properties of light-harvesting gold nanoclusters fully functionalized with antenna chromophores. Small 2021, 17, 2004836.

[13]

Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.

[14]

Wang, C.; Chen, J. C.; Zhou, X. R.; Li, W.; Liu, Y.; Yue, Q.; Xue, Z. T.; Li, Y. H.; Elzatahry, A. A.; Deng, Y. H. et al. Magnetic yolk–shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res. 2015, 8, 238–245.

[15]

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

[16]

Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

[17]

Ma, W.; Xu, L. G.; de Moura, A. F.; Wu, X. L.; Kuang, H.; Xu, C. L.; Kotov, N. A. Chiral inorganic nanostructures. Chem. Rev. 2017, 117, 8041–8093.

[18]

Maity, P.; Yamazoe, S.; Tsukuda, T. Dendrimer-encapsulated copper cluster as a chemoselective and regenerable hydrogenation catalyst. ACS Catal. 2013, 3, 182–185.

[19]

Yao, C. H.; Guo, N.; Xi, S. B.; Xu, C. Q.; Liu, W.; Zhao, X. X.; Li, J.; Fang, H. Y.; Su, J.; Chen, Z. X. et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 2020, 11, 4389.

[20]

Nematulloev, S.; Huang, R. W.; Yin, J.; Shkurenko, A.; Dong, C. W.; Ghosh, A.; Alamer, B.; Naphade, R.; Hedhili, M. N.; Maity, P. et al. [Cu15(PPh3)6(PET)13]2+: A copper nanocluster with crystallization enhanced photoluminescence. Small 2021, 17, 2006839.

[21]

Zhao, M. H.; Huang, S.; Fu, Q.; Li, W. F.; Guo, R.; Yao, Q. X.; Wang, F. L.; Cui, P.; Tung, C. H.; Sun, D. Ambient chemical fixation of CO2 using a robust Ag27 cluster-based two-dimensional metal–organic framework. Angew. Chem., Int. Ed. 2020, 59, 20031–20036.

[22]

Higaki, T.; Li, Q.; Zhou, M.; Zhao, S.; Li, Y. W.; Li, S. T.; Jin, R. C. Toward the tailoring chemistry of metal nanoclusters for enhancing functionalities. Acc. Chem. Res. 2018, 51, 2764–2773.

[23]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[24]

Wan, X. K.; Wang, J. Q.; Wang, Q. M. Ligand-protected Au55 with a novel structure and remarkable CO2 electroreduction performance. Angew. Chem., Int. Ed. 2021, 60, 20748–20753.

[25]

Zhang, C. L.; Chen, Y. D.; Wang, H.; Li, Z. M.; Zheng, K.; Li, S. J.; Li, G. Transition metal-mediated catalytic properties of gold nanoclusters in aerobic alcohol oxidation. Nano Res. 2018, 11, 2139–2148.

[26]

Wu, Z. N.; Du, Y. H.; Liu, J. L.; Yao, Q. F.; Chen, T. K.; Cao, Y. T.; Zhang, H.; Xie, J. P. Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew. Chem., Int. Ed. 2019, 58, 8139–8144.

[27]

Cao, Y. T.; Liu, T. Y.; Chen, T. K.; Zhang, B. H.; Jiang, D. E.; Xie, J. P. Revealing the etching process of water-soluble Au25 nanoclusters at the molecular level. Nat. Commun. 2021, 12, 3212.

[28]

Li, S. T.; Alfonso, D.; Nagarajan, A. V.; House, S. D.; Yang, J. C.; Kauffman, D. R.; Mpourmpakis, G.; Jin, R. C. Monopalladium substitution in gold nanoclusters enhances CO2 electroreduction activity and selectivity. ACS Catal. 2020, 10, 12011–12016.

[29]

Tang, L.; Ma, A. L.; Zhang, C.; Liu, X. G.; Jin, R. C.; Wang, S. X. Total structure of bimetallic core–shell [Au42Cd40(SR)52]2− nanocluster and its implications. Angew. Chem., Int. Ed. 2021, 60, 17969–17973.

[30]

Kawawaki, T.; Kataoka, Y.; Hirata, M.; Akinaga, Y.; Takahata, R.; Wakamatsu, K.; Fujiki, Y.; Kataoka, M.; Kikkawa, S.; Alotabi, A. S. et al. Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster. Angew. Chem., Int. Ed. 2021, 60, 21340–21350.

[31]

Chakraborty, I. Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[32]

Zhu, Y. F.; Guo, J.; Qiu, X. Y.; Zhao, S. L.; Tang, Z. Y. Optical activity of chiral metal nanoclusters. Acc. Mater. Res. 2021, 2, 21–35.

[33]

Chen, Y. X.; Liu, C.; Tang, Q.; Zeng, C. J.; Higaki, T.; Das, A.; Jiang, D. E.; Rosi, N. L.; Jin, R. C. Isomerism in Au28(SR)20 nanocluster and stable structures. J. Am. Chem. Soc. 2016, 138, 1482–1485.

[34]

Xu, J. Y.; Chen, M. Y.; Zhu, Y. Selective hydrogenation of CO2 dictated by isomers in Au28(SR)20 nanoclusters: Which one is better? Chem.—Eur. J. 2019, 25, 9185−9190.

[35]

Tian, S. B.; Li, Y. Z.; Li, M. B.; Yuan, J. Y.; Yang, J. L.; Wu, Z. K.; Jin, R. C. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 2015, 6, 10012.

[36]

Liu, X.; Xu, W. W.; Huang, X. Y.; Wang, E. D.; Cai, X.; Zhao, Y.; Li, J.; Xiao, M.; Zhang, C. F.; Gao, Y. et al. De novo design of Au36(SR)24 nanoclusters. Nat. Commun. 2020, 11, 3349.

[37]

Zeng, C. J.; Qian, H. F.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. C. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem., Int. Ed. 2012, 51, 13114–13118.

[38]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[39]
Dunning, T. H. Jr.; Hay, J. P. Modern theoretical chemistry. In Methods of Electronic Structure Theory; Schaefer III, H. F., Ed.; Plenum Press: New York, 1977; pp 1–28.
[40]

Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.

[41]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2009.
[42]

Harris, J. W.; Cordon, M. J.; Di Iorio, J. R.; Vega-Vila, J. C.; Ribeiro, F. H.; Gounder, R. Titration and quantification of open and closed Lewis acid sites in Sn-beta zeolites that catalyze glucose isomerization. J. Catal. 2016, 335, 141–154.

[43]

Lu, T. L.; Fu, X. M.; Zhou, L. P.; Su, Y. L.; Yang, X. M.; Han, L.; Wang, J. F.; Song, C. Y. Promotion effect of Sn on Au/Sn-USY catalysts for one-pot conversion of glycerol to methyl lactate. ACS Catal. 2017, 7, 7274–7284.

[44]

Sun, Y. N.; Wang, E. D.; Ren, Y. J.; Xiao, K.; Liu, X.; Yang, D.; Gao, Y.; Ding, W. P.; Zhu, Y. The evolution in catalytic activity driven by periodic transformation in the inner sites of gold clusters. Adv. Funct. Mater. 2019, 29, 1904242.

[45]

Li, G. J.; Hu, W. G.; Sun, Y. N.; Xu, J. Y.; Cai, X.; Cheng, X. L.; Zhang, Y. Y.; Tang, A. C.; Liu, X.; Chen, M. Y. et al. Reactivity and lability modulated by a valence electron moving in and out of 25-Atom gold nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 21135–21142.

File
12274_2022_4288_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 December 2021
Revised: 01 March 2022
Accepted: 03 March 2022
Published: 28 March 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge financial supports from Fundamental Research Funds for the Central Universities, Programs for high-level entrepreneurial and innovative talents introduction of Jiangsu Province, and Scientific and Technological Innovation Foundation of Shunde Graduate School of USTB (No. BK19BE024). This computational work is supported by the Tianhe2-JK computing time award at the Beijing Computational Science Research Center.

Return