Journal Home > Volume 15 , Issue 6

Electrochemical reduction of NO offers us an attractive alternative to traditional selective catalytic reduction process for harmful NO removal and simultaneous NH3 production, but it requires efficient electrocatalyst to enable the NO reduction reaction with high selectivity. Here, we report on the development of Bi nanoparticles/carbon nanosheet composite (Bi@C) for highly effective NO reduction electrocatalysis toward selective NH3 formation. Such Bi@C catalyst attains an impressive NH3 yield of 1,592.5 μg·h−1·mgcat.−1 and a high Faradaic efficiency as high as 93% in 0.1 M Na2SO4 electrolyte. Additionally, it can be applied as efficient cathode materials for Zn–NO battery to reduce NO to NH3 with high electricity generation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3

Show Author's information Qian Liu1Yiting Lin2Luchao Yue2Jie Liang2Longcheng Zhang2Tingshuai Li2Yongsong Luo2Meiling Liu3( )Jinmao You4Abdulmohsen Ali Alshehri5Qingquan Kong1Xuping Sun2( )
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

Electrochemical reduction of NO offers us an attractive alternative to traditional selective catalytic reduction process for harmful NO removal and simultaneous NH3 production, but it requires efficient electrocatalyst to enable the NO reduction reaction with high selectivity. Here, we report on the development of Bi nanoparticles/carbon nanosheet composite (Bi@C) for highly effective NO reduction electrocatalysis toward selective NH3 formation. Such Bi@C catalyst attains an impressive NH3 yield of 1,592.5 μg·h−1·mgcat.−1 and a high Faradaic efficiency as high as 93% in 0.1 M Na2SO4 electrolyte. Additionally, it can be applied as efficient cathode materials for Zn–NO battery to reduce NO to NH3 with high electricity generation.

Keywords: electrocatalysis, carbon nanosheet, NH3 synthesis , NO reduction reaction, Bi nanoparticle

References(39)

1

Bosch, H.; Janssen, F. Formation and control of nitrogen oxides. Cataly. Today 1988, 2, 369–379.

2

Gruber, N.; Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

3

Huo, H.; Zhang, Q.; Liu, F.; He, K. B. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: A life-cycle analysis at provincial level. Environ. Sci. Technol. 2013, 47, 1711–1718.

4
Liang, J.; Hu, W. F.; Song, B. Y.; Mou, T.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Alshehri, A. A.; Hamdy, M. S.; Yang, L. M. et al. Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorg. Chem. Front., in press, DOI: 10.1039/D2QI00002D.https://doi.org/10.1039/D2QI00002D
DOI
5

Li, P. F.; Zhang, T. Z.; Sun, H. X.; Gao, Y. F.; Zhang, Y. Y.; Liu, Y. Y.; Ge, C. M.; Chen, H.; Dai, X. P.; Zhang, X. Cobalt doped Fe-Mn@CNTs catalysts with highly stability for low-temperature selective catalytic reduction of NOx. Nano Res. 2022, 15, 3001–3009.

6

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

7

Han, L. P.; Cai, S. X.; Gao, M.; Hasegawa, J. Y.; Wang, P. L.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 2019, 119, 10916–10976.

8

Piumetti, M.; Bensaid, S.; Fino, D.; Russo, N. dCatalysis in diesel engine NOx aftertreatment: A review. Catal. Struct. React. 2015, 1, 155–173.

9

Beale, A. M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C. H. F.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371–7405.

10

Serrano-Lotina, A.; Monte, M.; Juez, A. I.; Pavón-Cadierno, P.; Portela, R.; Ávila, P. MnOx-support interactions in catalytic bodies for selective reduction of NO with NH3. Appl. Catal. B:Environ. 2019, 256, 117821.

11

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

12

Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

13

Rosca, V.; Duca, M.; De Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

14

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

15

Kobayashi, H.; Hayakawa, A.; Somarathne, K. D. K. A.; Okafor, E. C. Science and technology of ammonia combustion. Proc. Combust. Inst. 2019, 37, 109–133.

16

Li, Z. R.; Ma, Z. Y.; Liang, J.; Ren, Y. C.; Li, T. S.; Xu, S. R.; Liu, Q.; Li, N.; Tang, B.; Liu, Y. et al. MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100586.

17

Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Liu, Y. F.; Qi, D. F.; Qiu, Y.; Zhuo, L. C.; Zhao, S. Z.; Sun, J. Q.; Tang, X. L. et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 2020, 78, 105321.

18

Liang, J.; Zhou, Q.; Mou, T.; Chen, H.; Yue, L.; Luo, Y.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of nitric oxide to ammonia under ambient conditions. Nano Res. 2022, 15, 4008–4013.

19

Liu, H.; Xiang, K. S.; Yang, B. T.; Xie, X. F.; Wang, D. L.; Zhang, C.; Liu, Z. L.; Yang, S.; Liu, C.; Zou, J. P. et al. The electrochemical selective reduction of NO using CoSe2@CNTs hybrid. Environ. Sci. Pollut. Res. 2017, 24, 14249–14258.

20

Liu, P. Y.; Liang, J.; Wang, J. Q.; Zhang, L. C.; Li, J.; Yue, L. C.; Ren, Y. C.; Li, T. S.; Luo, Y. L.; Li, N. et al. High-performance NH3 production via NO electroreduction over a NiO nanosheet array. Chem. Commun. 2021, 57, 13562–13565.

21

Katsounaros, I.; Figueiredo, M. C.; Chen, X. T.; Calle-Vallejo, F.; Koper, M. T. M. Structure- and coverage-sensitive mechanism of NO reduction on platinum electrodes. ACS Catal. 2017, 7, 4660–4667.

22

Rosca, V.; Koper, M. T. M. Mechanism of electrocatalytic reduction of nitric oxide on Pt(100). J. Phys. Chem. B 2005, 109, 16750–16759.

23

Shibata, M.; Murase, K.; Furuya, N. Reduction of nitrogen monoxide to nitrogen at gas diffusion electrodes with noble metal catalysts. J. Appl. Electrochem. 1998, 28, 1121–1125.

24

Choi, J.; Du, H. L.; Nguyen, C. K.; Suryanto, B. H. R.; Simonov, A. N.; MacFarlane, D. R. Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: A potential source of ammonia in dinitrogen reduction studies. ACS Energy Lett. 2020, 5, 2095–2097.

25

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. Y.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

26

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

27

Vemula, S. R.; Kumar, D.; Cook, G. R. Bismuth-catalyzed synthesis of 2-substituted quinazolinones. Tetrahedron Lett. 2018, 59, 3801–3805.

28

Wu, D.; Wang, X. W.; Fu, X. Z.; Luo, J. L. Ultrasmall Bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl. Catal. B:Environ. 2021, 284, 119723.

29

Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902–2908.

30

Zhang, X.; Hou, X. F.; Zhang, Q.; Cai, Y. X.; Liu, Y. Y.; Qiao, J. L. Polyethylene glycol induced reconstructing Bi nanoparticle size for stabilized CO2 electroreduction to formate. J. Catal. 2018, 365, 63–70.

31

Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320.

32

Zhao, Y.; Liu, X. L.; Liu, Z. X.; Lin, X.; Lan, J.; Zhang, Y. L.; Lu, Y. R.; Peng, M.; Chan, T. S.; Tan, Y. W. Spontaneously Sn-doped Bi/BiOx core-shell nanowires toward high-performance CO2 electroreduction to liquid fuel. Nano Lett. 2021, 21, 6907–6913.

33

Gong, J. Y.; Lee, C. S.; Chang, Y. Y.; Chang, Y. S. A novel self-assembling nanoparticle of Ag-Bi with high reactive efficiency. Chem. Commun. 2014, 50, 8597–8600.

34

Kim, M. K.; Kim, M. S.; Park, J. H.; Kim, J.; Ahn, C. Y.; Jin, A. H.; Mun, J.; Sung, Y. E. Bi-MOF derived micro/meso-porous Bi@C nanoplates for high performance lithium-ion batteries. Nanoscale 2020, 12, 15214–15221.

35

Jiang, X. X.; Wang, Q. L.; Xiao, X.; Chen, J. J.; Shen, Y.; Wang, M. K. Interfacial engineering of bismuth with reduced graphene oxide hybrid for improving CO2 electroreduction performance. Electrochim. Acta 2020, 357, 136840.

36

Hofmann, P. The surfaces of bismuth: Structural and electronic properties. Prog. Surf. Sci. 2006, 81, 191–245.

37

Shu, Y.; Hu, W. T.; Liu, Z. Y.; Shen, G. Y.; Xu, B.; Zhao, Z. S.; He, J. L.; Wang, Y. B.; Tian, Y. J.; Yu, D. L. Coexistence of multiple metastable polytypes in rhombohedral bismuth. Sci. Rep. 2016, 6, 20337.

38

Pham, E. K.; Chang, S. G. Removal of NO from flue gases by absorption to an iron(ii) thiochelate complex and subsequent reduction to ammonia. Nature 1994, 369, 139–141.

39

Lin, Y. T.; Liang, J.; Li, H. B.; Zhang, L. C.; Mou, T.; Li, T. S.; Yue, L. C.; Ji, Y. Y.; Liu, Q.; Luo, Y. L. et al. Bi nanodendrites for highly efficient electrocatalytic NO reduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100611.

File
12274_2022_4283_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 January 2022
Revised: 28 February 2022
Accepted: 01 March 2022
Published: 28 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072015) and the Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education (2020-02).

Return